1	FAA Text 2017 R2 10Mar17
2 3	
4	
5	REVISION 2
6	
7	The System Fayalite-Albite-Anorthite and the Syenite Problem
8	
9	S. A. MORSE ^{1*} , J. B. BRADY ²
10	
11	¹ Department of Geosciences, University of Massachusetts, Amherst, MA 01003-9297, USA.
12 13	² Department of Geology, Smith College, Northampton, MA 01063, USA
13 14	Department of Geology, Siniti Conege, Northampton, MA 01005, USA
15	
16	Intended for American Mineralogist
17	Intended for American Wineralogist
17	10 March 2017
	10 March 2017
19 20 21	*Corresponding Author. E-mail tm@geo.umass.edu
22	

23 24	ABSTRACT
25	The presence in a magma of fayalite, the iron end-member of the olivine binary series, affects the
26	feldspars at pressure by lowering the temperatures at which they crystallize from the magma.
27	Starting with estimates from published literature it becomes obvious that at pressure, fayalite
28	becomes important because the pressure effects on the melting temperatures are very different:
29	large for albite, and small for anorthite. In this experimental study, a powder of fayalite
30	composition was combined with six finely ground natural feldspars from Ab to An_{97} to make six
31	bulk compositions. Using graphite crucibles in piston-cylinder apparatus at a pressure of 5 kbar,
32	a cotectic in the ternary system was found to run from 1,141°C at An(Fa) to 1,124°C at Ab(Fa),
33	with fayalite contents from 68 to 17 weight percent, respectively. The results can be used to
34	show that ternary feldspars saturated with fayalite and Fe monoclinic pyroxene will crystallize at
35	a 5-kbar multiphase eutectic 1010°C, 56°C below a calculated azeotropic point on the Ab-Or join.
36	The results are used to compare the end points of two very different layered intrusions,
37	Skaergaard and Kiglapait, and to illuminate the nature and origins of syenite and trachyte, which
38	are leucocratic rocks unsaturated with mafic minerals. Because fayalite-saturated melts are
39	responsive to pressure unequally on the feldspar end members, olivine of intermediate
40	composition will have a damped but potentially significant effect on feldspar fractionation in the
41	lower crust of the Earth, possibly affecting the origin of anorthosite and syenite.
42	
43 44	Keywords: Fayalite, olivine, feldspar, fractionation, melting experiments, syenite origin
45	Keyworus. Fayance, onvinc, reidspar, nactionation, menting experiments, syemic origin
46	
47	
48	

49	INTRODUCTION
50	
51	This study was undertaken to quantify an early estimate about the low temperature of the
52	fayalite-saturated cotectic in the system Fa-An-Ab. The original estimate of this thermal effect
53	was developed by the senior author in ~1988 from published studies of the systems Fa-An and
54	Fa-Ab. Because the fayalite-saturatred composition also occurs in some syenites, we considered
55	that rock type and its genesis to be a logical target for comparison.
56	The fayalite component of olivine in crystallizing melts can have a profound effect on the
57	fractionation of plagioclase at pressure because it affects albite and anorthite very differently.
58	The pressure effect is large for albite and small for anorthite, which makes the plagioclase binary
59	loop and the cotectic curve flatter in temperature (Lindsley, 1968). Because of this behavior, the
60	fractionating power of plagioclase is affected by the presence of fayalite, and in principle by the
61	presence of olivine in general. This contribution was designed to quantify the influence of
62	olivine composition on plagioclase fractionation. This was done by finding the cotectic trace in
63	the system Fa-An-Ab at 5 kbar. The results are applied to natural rocks both known and
64	conjectured.
65	
66	METHOD OF WORKING
67	
68	The purpose of this exercise was to locate the cotectic in the system Fa-An-Ab at 5 kbar
69	pressure and to determine its temperature profile. The method adopted was to work in piston-
70	cylinder apparatus because of our satisfactory experience with this technology (e.g., Morse et al.,
71	2004). We chose to make up the bulk compositions using a mixture of feldspar end members
72	and natural plagioclase in compositions spaced so that observed melting would bracket
73	equilibrium values for the fayalite-plagioclase cotectic. We chose three hours as a nominal run-
74	time in the expectation that at the high temperatures of these experiments, melting would occur if
75	melt is stable.
76	This work has been done by making up a set of six bulk compositions, holding them, three at
77	a time in graphite, at 5 kbar in a piston-cylinder apparatus at a chosen temperature, quenching
78	them, mounting in epoxy, and interpreting them in reflected light. This procedure suffices to
79	show the existence of melt and crystalline phases (if any). It does not afford the time required
80	for determination of equilibrium crystal compositions, which in our experience requires
81	experimental durations of ~24 hr at 5 kbar in graphite (Morse et al., 2004), nor need it do so to
82	define a cotectic. The criterion of relevance is not reversal but reproducibility.
83	In our experiments, there are examples of glass only (quenched melt) above the liquidus, no

84 glass (below the solidus), glass plus feldspar only (on the plagiclase side of the ternary cotectic 85 composition), glass plus fayalite only (on the olivine side of the ternary cotectic composition), 86 and glass plus fayalite plus plagioclase at co-saturation. In our set of 36 experiments (Table S1¹) 87 24 were deemed successful. There are 10 at three-phase cotectic equilibrium and the rest at zero 88 or one solid phase. Three bulk compositions were found to be sub-solidus, without melt, while 89 other bulk compositions in the same crucible were partly melted. A result having melt plus one 90 crystalline phase represents one leg of a three-phase triangle; melt plus two crystalline phases 91 makes a complete three-phase, invariant triangle. Experimental results at An₁₅ and An₆₆ have 92 been studied with SEM and microprobe to characterize examples of crystal and melt 93 compositions. 94 95 STARTING MATERIALS AND COMPOSITIONS 96 97 The starting materials for this experimental endeavor were synthetic fayalite and six natural 98 feldspar compositions described in Table 1. The synthetic fayalite was confirmed pure by X-ray 99 diffraction. Of the feldspars, one was an endmember (Amelia albite, Ab, from the Amelia Court 100 House leucogranite, VA), two were blends of endmembers, and three were natural samples from the Kiglapait layered intrusion (e.g., Morse, 2015b). The endmember An was a natural sample 101 102 from an amphibolite in the Kiglapait contact zone (KI 2072, An₉₇). Plagioclase compositions 103 were made for An₁₅ and An₃₀ by physically adding powdered sample KI 2072 to Amelia albite 104 as described below. To these feldspars, variable amounts of fayalite were added. The resulting 105 list of intended bulk compositions is given in Table 1. 106 This project was begun by estimating the 1-atm ternary cotectic from the studies of Bowen and Schairer (1936) for the binary Fa-Ab, and Schairer (1942) for the binary Fa-An. The results 107 were interpreted as a straight-line cotectic from Fa₆₄ on the Fa-An sideline to Fa₁₆ on the Fa-Ab 108 109 sideline. The temperature difference on this cotectic was estimated from the 1-atm temperatures 110 on the sidelines to be $1,110 - 1,050 = 60^{\circ}$ C. Adjustments to 5 kbar were made from literature data (e.g., Morse, 1994) assuming pressure corrections of 11.6°C/kbar for Fa-Ab and ~4°C/kbar for Fa-111 112 An, yielding an estimate for the Fa-saturated span An to Ab of only 20°C. These preliminary 113 values have been superseded by reference to a corrected value for 1-atm melting of albite at 1,100°C (Lange, 2003) and a reconsideration of the pressure effect, discussed below. 114

¹Deposit item AM-16-00000, Table S1. Deposit items are free to all readers and found on the MSA web site, via the specific issue's Table of Contents (go to http://www.minsocam.org/MSA/AmMin/TOC/)

115	Mixtures for the experiments were made by weighing, combining, and grinding the
116	components under acetone in a mullite mortar, typically for ~5 minutes. For each of the starting
117	feldspars, fayalite was added to make a bulk composition bracket over a range of fayalite
118	amounts and a range of temperatures. Electron probe compositions of the starting materials are
119	listed in Table 2. The calculated bulk compositions of all the experiments are listed in Table 3
120	by the name of the plagioclase given in column 4. The initial composition brackets in % Fa were
121	mostly small, e.g., 4% Fa for An_{15} and An_{30} , but 18% Fa for An_{48} , only one value (60% Fa) for
122	An ₆₆ , and a bracket of 3% Fa for An ₉₇ .
123	After grinding, the mixed bulk composition powders were dried overnight at 120°C, placed in
124	small glass vials, and stored in a desiccator.
125	
126	Experimental
127	
128	Melting experiments were made at 5 kbar pressure in a Rockland Research 19mm piston-
129	cylinder apparatus at the Five College Experimental Petrology Laboratory at Smith College. The
130	\sim 7mg samples were packed, three per run, into 1.5 mm diameter holes drilled to a depth of 2.5
131	mm in an 8 mm long graphite rod. This crucible was covered with a <1-mm graphite lid and
132	placed inside a fired pyrophyllite cup with lid. This in turn was placed within a graphite furnace
133	containing MgO spacers below and above the crucible. The furnace was surrounded by a Pyrex
134	tube, then placed into a salt sleeve with a lead foil sheath, then placed in the tungsten carbide
135	core of the cylinder. It was topped by a brass base plug placed inside a pyrophyllite sleeve. An
136	alumina thermocouple sheath with Type D W-Re thermocouple wires crossed over at the tip was
137	fed through the base plug and upper spacer to rest on the top of the fired pyrophyllite cap.
138	In conventional protocol, samples were pressurized hydraulically to about 120% of the
139	working pressure (because pressure drops with heating) and then heated with a run-up in stages
140	with a programed controller. The pressure was corrected in the 'hot piston-in' routine near and
141	at the chosen run temperature, which was controlled to $\sim 1^\circ\!\!C$ and ± 100 bar, generally for three
142	hours, then quenched to 300°C in 20 seconds by turning off the power to the furnace. The
143	retrieved samples in their graphite cylinder were then embedded in epoxy and held in vacuum
144	overnight. The cured 1-inch disks were ground by hand on silicon carbide sheets until the
145	sample showed. The disk was then polished in a succession of diamond grits to 1-micron in a
146	Struers automatic polisher.
147	The experimental data and visual interpretations are summarized in Supplemental Table S1.

148 Most of the experiments were quenched at three hours. A few early experiments were kept at

149	temperature for 6 to 8.5 hours, but only one composition at 7.7 hr (run 3.3 in Table 2) was used
150	in the final array. Of special note is the observation of small blebs of metallic iron in six
151	experiments, signifying reduction in the graphite capsule. These amounted to less than 1% and
152	were found in only two experiments (6.1 and 6.3) that were listed but not definitive in the final
153	results. Some euhedral plagioclase crystals have swallowtail cores. In Run 8.3, fayalite spinifex
154	clusters were observed amongst big euhedral olivines. In run 9.1 plagioclase rims were seen on
155	olivine. Our experience and that of other workers suggests that graphite-saturated equilibria at
156	pressure tends to maintain the oxygen fugacity to values lower than FMQ; in the present case
157	with these bulk compositions the f_{O2} is clearly lower than the wüstite-magnetite (WM) buffer.
158	Because of the steep temperature gradients in piston-cylinder apparatus (see Watson et al.,
159	2002), our reported temperatures are believed to be precise only to $\pm - 5^{\circ}$ C.
160	
161	TEST OF THE EXPERIMENTAL DESIGN
162	
163	Our method of working reflects our experience that melting is rapid in this system at
164	temperatures above 1000°C and that the presence of melt speeds the approach to equilibrium.
165	We tested this approach with more detailed analyses of two samples, as shown in the SEM/BEI
166	images and chemical studies of Figure 1 and Table 4, which will best work in unison. In Fig. 1A
167	of nominal composition An15 we observe a pale gray background of melt accompanied by dark
168	plagioclase in many subhedral forms, and white, more rounded, grains of fayalite. The
169	plagioclase contacts against melt have a characteristic bright BEI outline that arises from the
170	mafic rejected solute pushed away by crystal growth. Careful examination will reveal that
171	several dark crystals in the NW and SE corners have calcic cores that are of a lighter gray
172	intensity.
173	In Fig. 1B of plagioclase composition An ₆₆ we find no bright BEI outlines and only anhedral
174	to rarely subhedral plagioclase; the sample is annealed but unmelted.
175	Electron microprobe studies of these two experimental samples are shown in Table 4. It is
176	clear from the analyses that the olivine compositions are essentially the same (columns 1,7 and
177	11), even though they do not meet the test of good stoichiometry. The plagioclase composition
178	in FAA 4.1 is $An_{15.7}$, near the nominal bulk composition of An_{15} . The normative glass (melt)
179	composition is $An_{17.7}$. We find that both crystal phases are present, so the bulk composition
100	

180 straddles the cotectic at this temperature. We find that some of the plagioclase is zoned but near

- 181 the expected composition. At these high temperatures we find that the physical mixture (Table
- 182 1) of finely ground Ab and An_{97} has, within three hours, yielded crystals and melts that are, as
- 183 far as we know, essentially on composition. We conclude that reaction rates are sufficiently fast

184 at the experimental conditions for our experiments to approach equilibrium closely and to constrain the location of the desired cotectic, possibly within the measurement limits of +/- 5°C. 185 186 The experimental liquid and plagioclase compositions are close and therefore the three-phase 187 triangle for the An15 composition is very narrow. Concerns about the possibility that feldspar might not nucleate can be dispelled by looking 188 189 at Fig. 1B, where several compositions on and near the cotectic have actually nucleated. It is 190 also our experience that we have never yet encountered failure of feldspar to nucleate at pressure, 191 very likely due to the high surface energy of the finely ground samples. 192 193 194 **RESULTS FOR THE COTECTIC LIQUIDUS** 195 196 A summary of the pertinent experimental results is shown in Table 5, ordered by the 197 plagioclase composition. Details of this table, ordered by experiment number, are furnished in 198 Supplementary Table S1. Compositional brackets on the cotectic can be inferred from the 199 relative amounts of plagioclase and olivine. From the nominal temperature and the fraction of 200 glass observed optically, the best-fit cotectic temperature is shown in the right-hand column. 201 The results of the 5-kbar, fayalite-saturated melting experiments are shown in the ternary plot of 202 Fig. 2. The six bulk feldspar compositions are pure Ab and the five compositions listed along the Ab-An base line. The ternary cotectic is drawn through the space between nearest olivine 203 204 and plagioclase saturation pairs. It is straight at higher temperatures above An_{15} then curved to 205 meet the Fa-Ab cotectic. The amount of fayalite is expressed in weight percent, as measured in 206 the mixtures. The melting points of the three corner compositions are given in degrees C at 5 207 kbar. The entire cotectic range of plagioclase compositions is reached in 17 degrees. 208 Of course, this result is relatively meaningless at the high-temperature end because fayalite 209 is not ordinarily found in An-rich rocks. However, as fractionation proceeds, the relevance of 210 the diagram increases. The pair Fa + Ab is an end member almost never found, and cannot occur 211 in the presence of any CaO-bearing phase (Bowen, 1945); in particular, calcic pyroxene. 212 Instead, crystallization of Fa-saturated liquids more likely involves oligoclase and alkali 213 feldspars. 214 The thermal profile of the cotectic in Fig. 2 is shown in Fig. 3. The steepening of the 215 cotectic temperature toward Fa-Ab is chiefly a reflection of the large effect of pressure on 216 temperature for albite as compared to anorthite. This effect is combined with the systematic 217 increase in feldspar relative to olivine.

218	
219	EFFECT OF FAYALITE ON TERNARY FELDSPARS
220	
221	Melting of albite, sanidine, and anorthite
222	As usual the terminology is simplified by using Ab, Or, and An as the compositional end
223	members, but describing the Or component as sanidine when melting is to be considered.
224	At 1-atm albite melts at 1100°C (Lange, 2003) and the pressure effect in her figure 3, 0 to 10
225	kbar, is given by $T^{\circ}C = 0.36(P^2) + 18.15(P) + 1,100$, for which $R^2 = 1$. At 5 kbar, then, the
226	melting point is 1,182°C and the mean difference is 16.6°C/kbar.
227	At 1-atm sanidine melts incongruently to leucite + melt but metastably by itself at 1,200°C.
228	Its metastable melting behavior is given by Waldbaum and Thompson (1969) in a curve satisfied
229	by the polynomial $T^{\circ}C = 0.307(P^2) + 18.61(P) + 1,200$, $R^2 = 1$. The mean pressure effect is
230	17 °C/kbar and the 5 kbar melting point is 1,285°C. Note the interesting similarity of the
231	coefficients for Ab and Or and the mean pressure effect.
232	The 1-atm system Ab-Or is an azeotrope with an azeotropic point at $X_{\text{Or}} = 0.331$ (Waldbaum
233	and Thompson, 1969) which the authors chose to take as precisely $1/3$, a tradition followed here.
234	The temperature at the minimum was taken by these authors as $1,061$ °C, here corrected to $1,041$ °C
235	using the Lange correction for Ab. This step for the binary is warranted by the similarities of the
236	Ab and Or coefficients mentioned above. The 5-kbar azeotropic melting point is 1124°C, and
237	here the stable phase is sanidine, well away from the more K-rich breakdown to $Lc + L$.
238	The ternary feldspar system is completed by addition of An, which melts at 1,553°C at 1-atm
239	and 1,563°C at 5 kbar (Goldsmith, 1980).
240	
241	Melting of fayalite
242	The metastable melting of fayalite by itself, bypassing the 1-atm incongruent breakdown to
243	Fe plus liquid, is taken to occur at 1,205°C. A high-pressure Simon equation for the melting
244	curve based on Lindsley (1966) was given by Morse (1994) in Fig. 18.24. This relationship is
245	more conveniently represented using temperature as the dependent variable in the polynomial $\frac{2}{2}$
246	$T^{\circ}C = -0.0592(P^2) + 7.788(P) + 1205$, which yields 1,243°C at 5 kbar; again, the value of R ² = 1.
247	
248	A
249	AN APPLICATION OF FAYALITE-SATURATED TERNARY FELDSPAR
250	
251	Fayalite-saturated feldspar at 5 kbar

252	Albite melts at 1,182°C; the sideline Fa-Ab cotectic is at 1,124°C and the difference is 58°C.
253	The azeotropic point at $X_{Or} = 1/3$ melts at 1,124°C, forming a fortuitous isotherm with Fa-
254	saturated albite. Because of the similar pressure effects on Ab and Or, and for lack of any
255	evidence to the contrary, we assume that the Fa effect is the same at the azeotropic point as at the
256	Ab-Fa sideline, and therefore that a Fa-saturated alkali feldspar would melt at 1,124-58 =
257	1,066°C.
258	A result calculated specifically for the terminal ferrosyenite of the Kiglapait intrusion is
259	shown in Fig. 4. The diagram shows a 5-kbar section from An to the alkali feldspar azeotropic
260	point AP at $X_{\text{Or}} = 1/3$ on the binary Ab-Or. The temperatures 1,141 and 1,010°C are
261	experimental from this contribution (Fig. 2) and from Morse and Brady (in review), respectively.
262	The temperature of the AP point, 1,066C, is described above as calculated from the Ab-Or join
263	and then reduced to account for the fayalite saturation. The thermal minimum is represented as
264	an azeotrope lying at 11% ternary An and therefore projecting from Or to An ₁₆ on the Ab-An
265	sideline. The bulk composition at this terminal point includes components and indeed crystals of
266	ferrohedenbergite, a CaAl-bearing pyroxene, that requires the feldspar to be calcic relative to
267	pure Ab (Bowen, 1945).
268	We now have three interesting fayalite-saturated thermal points at 5 kbar: the azeotropic
269	point, the experimental, pyroxene-saturated ternary minimum (Fig. 4) at ~An ₁₆ as projected from
270	Or (and so lying on the An ₁₁ line), and An. The experimental temperature of the natural ternary
271	feldspar eutectic is 56°C below that of the Ab-Or azeotrope.
272	
273	VARIABLE OLIVINE COMPOSITIONS
274	
275	A derivative ternary diagram can be constructed to show liquids with variable Mg-Fe olivine
276	compositions with plagioclase, as in Fig. 5. The results are guided in part by the 5-kbar
277	experimental studies of troctolites in the Kiglapait intrusion (Morse et al., 2004). Paths are
278	shown for the approximate trends of the Skaergaard and Kiglapait liquids. The locations of
279	average trachyte (TR) and syenite (SY) are taken from Fig. 5, to be discussed. These locations
280	appear to be anomalous in terms of their high Mg ratio and low An content, and are unlikely to
281	have been produced by any simple trajectory of magmatic fractionation. Decompression (see
282	arrow "-P") would move the field boundaries and the sample compositions somewhat closer to
283	the feldspar join. Note that both these compositions are much richer in total (i.e., ternary)
284	feldspar than in plagioclase alone, shown here. One conclusion from this system is that the
285	effect of Mg on the feldspar-richness of syenites and trachytes is not large.

286	
287	THE SYENITE PROBLEM
288	
289	Because this contribution is mainly about the terminal crystallization of rocks that can be
290	described as syenites, it is pertinent to expand the discussion to a very old problem of that rock
291	type. A glance at Fig. 6 will quickly show the problem. In this paper and others on the Kiglapait
292	intrusion we tacitly assume that prolonged fractional crystallization leads to rocks called syenite
293	(or ferrosyenite) that are mutually saturated with olivine and calcic pyroxene as well as feldspars,
294	whereas nearly 100 percent of what are called syenites and trachytes in the rest of the world are
295	felsic and far from saturation with mafics.
296	There is perhaps a general agreement that syenites are fundamentally rocks of alkali
297	feldspars, a few mafic phases, and no quartz. But the contrast in color index means that when we
298	say "syenite" we may not understand each other. Indeed, the difference between the Gardar
299	rocks and the evolved rocks of layered intrusions is stark. More troublesome yet is the origin of
300	the most abundant syenites: How do they get to be so felsic? In this they become cousins of
301	anorthosite: felsic leftovers of once-cotectic magmas that have left their mafics behind. They
302	have enough traces of mafics to know that there is considerable variety among them, so it isn't
303	just one magma type that generates these separate magmas that intrude overlying crust.
304	Is there somewhere lurking among our outcrops a mid-crustal mafic residue of parental
305	syenite? If not, can it be in the basal crust or uppermost mantle, undetected?
306	One word of caution: the Kiglapait troctolitic magma gives a residue of mafic-saturated
307	syenite about the size of a teacup: ~ 0.15 % (i.e. ~ 5 km ³) of the total magma (Morse, 2015b).
308	Real leucosyenites have had a very different history (e.g., an alkalic magma) to make sizeable
309	intrusions (e.g., Upton, 2013).
310	The fayalite component of magma has a profound effect on the phase equilibria of residual
311	magma. But it operates only at mutual saturation with mafics, leaving the real syenite problem
312	unresolved.
313	
314	FURTHER CONSIDERATION OF THE PRESSURE EFFECT
315	
316	It is significant that Fig. 2 presents the effect of fayalite on plagioclase composition at 5
317	kbar. At atmospheric pressure the estimated difference between the melting temperatures of
318	fayalite-saturated albite and anorthite is ~60°C. The pressure effect is about 16.6 °C/kbar for Fa-
319	saturated albite and only 1.6C for anorthite. At ~6.3 kbar, therefore, the fayalite-saturated

320	temperatures are essentially the same for all values of X_{An} . This result requires that the liquidus
321	and solidus are jointly reduced to a straight line, with loop width zero. That is why the above
322	estimates of plausible loop widths are chosen to be small. ²
323	At higher pressures, the fayalite-saturated plagioclase loop is reversed! The next question
324	must then be, is this effect anywhere relevant within the Earth? The answer must be, perhaps
325	surprisingly, yes.
326	Fayalite presumably does not occur with calcic plagioclase, but a significant fraction of it
327	does occur in olivine coexisting with plagioclase in troctolites or olivine gabbros. In a sense,
328	then, all natural olivine at pressure must have some partial effect to narrow the effective
329	plagioclase loop and therefore to reduce the effect of plagioclase fractionation. In more evolved
330	bulk compositions the fayalite effect can reduce zoning and thereby supplement adcumulus
331	growth.
332	At depth in the Kiglapait intrusion the presence of olivine must have some small effect on
333	the fractionation of plagioclase in addition to the more important effect of the augite component
334	of the liquid that affects the activity of silica and therefore, preferentially, of albite (Morse,
335	2014). But our consideration must go deeper. At the base of the crust, what does fractionation
336	do to the origin of anorthosite? Or syenite, for that matter. There is a potential here for the
337	generation of plagioclase at nearly constant composition while mafics sink and feldspar becomes
338	concentrated in the lower crust.
339	
340	IMPLICATIONS
341	
342	The effect of iron-rich olivine to limit the variability of plagioclase composition is shown to
343	be considerable at modest pressure. The ususal assumption of a relatively fat Ab-An loop that
344	drives substantial plagioclase fractionation must be modified if Fe-rich olivine is present in the
345	local magmatic system. This effect ramifies to assumptions about plagioclase fractionation
346	efficiency at moderate pressures, including both cumulus feldspar crystals and their interstitial

²We have not attempted to determine tielines or three-phase triangles in this exercise but these can be estimated as follows. For Fo70 olivine and coexisting plagioclase the value of K_D in linear partitioning (Morse et al., 2004) is 0.52, rising with pressure as the loop width diminishes (e.g., Morse, 2015a). The partition coefficient K_D is inversely proportional to loop width (idem) and has the expected value of 1.0 for Fa-An-Ab at 6.3 kbar, shown here. At the experimental pressure used here, 5 kbar, if the value of K_D is 0.8, the mid-range loop width is 5.6% An; if K_D is 0.9, the width is 2.6%. Either value would be time-consuming to determine experimentally.

347	trapped liquids, if any. It applies especially to any modeling of feldspar-rich, olivine-bearing
348	magmatic systems at lower crustal depths, including the possibility that feldspar crystals may
349	grow, accumulate, and fractionate at constant composition. If then separated from their mafic
350	minerals they might ascend to form felsic rocks ranging from anorthosites to syenites.
351	
352	HISTORY OF THIS STUDY (by Morse)
353	
354	I have in my files an entertaining letter from Hatten S. Yoder Jr. dated at the Geophysical
355	Laboratory on January 27, 1989, including a page of 12 ternary diagrams, all with the base at Ab
356	- An, and each with a different apical phase, in order: Diopside, Wollastonite, Enstatite, Sphene,
357	Silica, Nepheline, Leucite, Sanidine, Fayalite, Forsterite, Åkermanite, and Spinel. Cotectics and
358	peritectics where needed are drawn with neat curves from known or inferred sideline
359	temperatures. It is suggested that such drawings would be good lab exercises for students. In
360	particular, this sentence is found at the end of paragraph 1:
361	"Take special note of the one for fayalite - within 58°C you can run from anorthite to albite!"
362	My response on 26 Feb 1989 mentioned re-emergence of his letter from my desk
363	stratigraphy and continued in paragraph three with a discussion of our small differences for Fa-
364	An-Ab, where I got 36.5% An at the sideline compared to his 27%. [cf.31% An in Fig. 2:
365	together we bracketed it!]. I refer to my drawings "which I happened to have in my file awaiting
366	your beck and call." We agreed that the temperature range was small, but had not yet considered
367	the pressure effect, in which the steep pressure dependence of Ab-melting tends to overtake the
368	lesser pressure effect of An-melting. My response ended with the fervent desire to have
369	somebody study "my favorite system, Fa-An-Ab-Or." The advent of the piston-cylinder
370	apparatus with graphite crucibles finally made this quest feasible.
371	
372	ACKNOWLEDGMENTS
373	
374	We are grateful to Rob Reisener for sharing his synthetic fayalite powder. We thank Mike
375	Jercinovic for making the SEM studies and electron probe analyses with TM. We recognize the
376	helpful review of the original manuscript by James Scoates, an exhaustive and interesting review
377	of the first revision by Don Lindsley, and we acknowledge the reviews of a second reviewer and
378	the Associate Editor. This article is based on research supported by the National Science
379	Foundation under Award No. EAR 0948095.
380	
381	

382	SUPPLEMENTARY DATA
383	
384	Supplementary data for this paper are available at online. (Table S1)
385	
386	REFERENCES
387	
388	Bowen, N. L. (1945). Phase equilibria bearing on the origin and differentiation of alkaline rocks.
389	American Journal of Science 243A, 75-89.
390	Bowen, N. L., and Schairer, J. F. (1936). The system, albite-fayalite. Proceedings of the
391	National Academy of Sciences 22, 345-350.
392	Bryan, W. B., Thompson, G., Frey, F. A., and Dickey J. S. (1976). Inferred geologic settings
393	and differentiation in basalts from the Deep-Sea Drilling Project. Journal of Geophysical
394	Research 81(23), 4285-4304.
395	Fuhrman, M. L., Frost, B. R., and Lindsley, D. H. (1988). Crystallization conditions of the
396	Sybille Monzosyenite, Laramie Anorthosite Complex, Wyoming. Journal of Petrology 29,
397	699-729.
398	Goldsmith, J. R. (1980). Melting and breakdown reactions of anorthite at high temperatures and
399	pressures. American Mineralogist 65, 272-284.
400	Grove, T. L., Kinzler, R. J., and Bryan, W. B. (1992). Fractionation of mid-ocean ridge basalt
401	(MORB). American Geophysical Union Monograph (eds. J.P. Morgan, D.K. Blackman,
402	J.M. Sinton), 71, 281-310. (Table 1 #7)
403	Lange, R. A. (2003). The fusion curve of albite revisited and the compressibility of $NaAlSi_3O_8$
404	liquid with pressure. American Mineralogist 88, 109-120.
405	Le Maitre, R. W. (1976). The chemical variability of some common igneous rocks. Journal of
406	Petrology 17, 589-598 plus 39 figures.
407	Lindsley, D. H. (1966). Pressure-temperature relations in the system FeO-SiO ₂ . Carnegie
408	Institution of Washington Yearbook 65, 244-247.
409	Lindsley, D. H. (1968). Melting relations of plagioclase at high pressure. In Isachsen, Y. W.,
410	ed., Origin of anorthosite and related rocks, New York State Museum and Science Service
411	Memoir 18, 39-46.
412	McBirney, A. R., and Naslund, H. R. (1990). The differentiation of the Skaergaard intrusion:
413	A discussion of Hunter and Sparks (Contrib Mineral Petrol 95:451-461). Contributions to
414	Mineralogy and Petrology 104, 235-240.
415	Morse, S. A. (1981). Kiglapait geochemistry IV: The major elements. Geochimica et

- 416 Cosmochimica Acta 45, 461- 479.
- 417 Morse, S. A. (1994). Basalts and Phase Diagrams. Corrected and reprinted by Krieger,
 418 Melbourne, FL, 493 pp.
- 419 Morse, S. A. (2014). Plagioclase fractionation in troctolitic magma. Journal of Petrology 55,
 420 2403-2418.
- 421 Morse, S. A. (2015a). Linear partitioning in binary solutions: A review with a novel partitioning
 422 array. American Mineralogist 100: 1021-1032.
- Morse, S. A. (2015b). Kiglapait Intrusion, Labrador. In Charlier et al. (eds), Layered Intrusions
 Springer-Dordrecht, 589-648.
- 425 Morse, S. A. (Sub judice) Kiglapait Mineralogy V: The feldspars. In revision at American
 426 Mineralogist.
- Morse, S. A., and Brady, J. B. (In revision). Thermal history of the Kiglapait Upper Zone. In
 revision for Journal of Petrology.
- Morse, S. A. & Ross, Malcolm (2004). Kiglapait mineralogy IV: The augite series. American
 Mineralogist 89, 1380-1395.
- Morse, S. A., Brady, J. B., and Sporleder, B. A. (2004) Experimental petrology of the Kiglapait
 intrusion: Cotectic trace for the Lower Zone at 5kb in graphite. Journal of Petrology 45,
 2225-2259.
- 434 Schairer, J. F. (1942). The system CaO-FeO-Al₂O₃-SiO₂. I. Results of quenching experiments
 435 on five joins. American Ceramic Society Journal 25, 241-274.
- Schairer, J. F., and Yoder, H. S. (1967). The system Albite-Anorthite-Forsterite at 1
 Atmosphere. Yearbook Carnegie Institution of Washington 65, 204-209.
- 438 Upton, B. G. J. (2013) Tectono-magmatic evolution of the younger Gardar southern rift, South
 439 Greenland. Geological Survey of Denmark and Greenland Bulletin 29, 124 pp.
- 440 Upton, B. G. J., Martin, A. R., and Stephenson, D. (1990). Evolution of the Tugtutôq Central
- 441 Complex, South Greenland: A high-level, rift-axial, late-Gardar centre. Journal of
 442 Volcanology and Geothermal Research 43, 195-214. (Table 2)
- Wager, L. R., and Brown, G. M. (1967). Layered igneous rocks. San Francisco: Freeman
 (1968, Edinburgh: Oliver & Boyd): 588 pp.
- Waldbaum, D. R., and Thompson, J. B., Jr. (1969). Mixing properties of sanidine crystalline
 solutions. I. Phase diagrams from equations of state. American Mineralogist 54, 1274-1298.
- Watson, E. B., Wark, D. A., Price, J. D., and Van Orman, J. A. (2002). Mapping the thermal
 structure of solid-media pressure assemblies. Contributions to Mineralogy & Petrology 142,
- 449
 640-652.

450	Watt, S. W. (1966). Chemical analyses from the Gardar Igneous Province, South Greenland.
451	Rapport Grønlands Geologiske Undersøgelse 6: 92 pp.
452	
453	CAPTIONS
454	
455	Figure 1. SEM/BEI images of two experimental results, for FAA 4.1 (A) and FAA 11.3 (B).
456	Melt is plentiful in (A) and the subhedral plagioclase grains have bright BEI outlines. Zoning can
457	be seen in both plagioclase and glass. In (B) no melt is present, nor any bright BEI outlines. The
458	measured plagioclase composition (Table 2) is equal to the input bulk composition (Table 1).
459	
460	Figure 2. The system Fayalite - Plagioclase at 5 kbar. The cotectic boundary between fayalite
461	and plagioclase is located as shown in weight percent fayalite, since these were the quantities
462	weighed in to make the bulk compositions. The endmember components are pure fayalite and
463	natural feldspars. Compositions An_{48} and An_{66} are analyzed plagioclase feldspars from the
464	Kiglapait Intrusion, Labrador (Morse, in review). A mixture of the two plagioclase end members
465	An ₀ and An ₉₇ was used to create the compositions An ₁₅ and An ₃₀ . All starting materials were
466	finely ground crystalline mixtures whose bulk compositions are indicated along the Ab-An
467	sideline. All but one of the experiments were held at temperature and pressure for 3 hours.
468	Those in the plagioclase field were typically poor in crystals and rich in glass, whereas those in
469	the olivine field typically contained tens of percent olivine. The total temperature range from
470	fayalite-saturated pure An to pure Ab is estimated at 17C.
471	
472	Figure 3. Temperatures along the cotectic trace of Figure 1. The fayalite contents in Wt. % are
473	given at each determined point. The sample at An_{48} appears to have an abnormally low
474	temperature and can be raised by 5°C within experimental error.
475	
476	Figure 4. A calculated 5-kbar T-X phase diagram to show the thermal effect of saturating the
477	feldspars with fayalite. The anorthite temperature is taken directly from the ternary diagram
478	(Figure 1) and is not of petrologic interest. The implied azeotropic minimum at 1,010°C is the 5-
479	kbar endpoint of the Kiglapait fractionation history reported in Morse and Brady (in review)
480	representing the terminal reaction liquid = feldspar (cryptoperthite) + olivine + ferrohedenbergite
481	+ apatite + ilmenite. The temperature plotted at Ab is that of the fayalite - saturated binary
482	minimum at $X_{\text{Or}} = 1/3$ on the Ab-Or sideline, calculated as described in the text. The final liquid
483	owes its An-rich composition to the presence of the Ca-Al-Fe pyroxene known from experiment

to have lost Al to feldspar during cooling (Morse and Ross, 2004). The temperature drop of 56°C
recalls Bowen's (1945) "plagioclase effect" in which it is understood that no pure albite can
crystallize from a magma containing Ca. Abbreviation: Ap, Azeotropic point.

487

488 **Figure 5**. The system Olivine - Plagioclase at 5 kbar, in oxygen units, contoured in X_{Mg} . The 489 heavy line nearest the OL corner is the cotectic for the system Fa-Ab-An, converted from Figure

490 2. The lowermost cotectic line is that for the system Fo-An-Ab (Schairer & Yoder, 1967),

491 recalculated to 5 kb, and the intervening lines of variable X_{Mg} are interpolated. The arrows

492 shown for the Kiglapait (KI) and Skaergaard (SKD) Intrusions are net LIQUIDUS paths between

the endpoints, taken from Morse et al. (2004) and Morse (1981) in the first case, and from

494 McBirney & Naslund (1990) and Wager & Brown (1968) in the second case. The fractionation

495 paths of the layered intrusions are taken as guides to magma evolution in general in this

496 composition space. The notation "-P" with arrow signifies decompression. The vertical line at 497 An₅₀ is simply a guide to the eye.

497 498

499 Figure 6. (A) Ternary plot of olivine + hypersthene (OLHY), feldspar (FSP), and augite (AUG) 500 referred to a weight ferrous ratio $FeO/(FeO+Fe_2O_3) = 0.9$. The solid line is the experimental 501 cotectic trace of liquid + Ol + Pl for the Lower Zone of the Kiglapait intrusion (Morse et al., 502 2004), from an initial composition at 5.2% AUG to saturation with augite at 24.5% AUG. The 503 cross marked IBZ is the average of three rock compositions from the Kiglapait Inner Border 504 Zone. The solid circles (KI SY) are the compositions of the six uppermost syenites in the 505 intrusion (Morse, 1981); the red dot is the average of the two uppermost samples. MORB 506 compositions are plotted to illustrate their near-saturation with augite; the upper symbol is a glass 507 from Grove et al. (1992); the lower symbol is the average of 155 Atlantic glasses from Bryan et 508 al. (1976). Compositions of average syenite and trachyte are from Le Maitre (1976). The 509 Gardar SY is an average of 8 Kûngnât syenites from Watt (1966). The symbol SYB refers to the 510 Sybille monzosyenite, Wyoming, from Table 2 of Fuhrman et al. (1988). The arrow labeled 511 MELTS shows the calculated result of feldspar fractionation from a saddle syenite composition 512 in Tugtutôq Central Complex of South Greenland (Upton et al. 1990, Table 2). The end of the 513 arrowhead denotes the premature appearance of olivine in the calculation. (B) Compositions of 514 syenite and trachyte in terms of feldspar end members An and Or, plotted against Mg number; 515 abbreviations as in (A).

FAA SEM 1

Morse-Brady Fig. 1

Morse-Brady Fig. 3

Table 1. Syster	n Fa-An-Al									
Measured starting compositions, from oxygen norms.										
Starting Mate	rial:									
	Amelia	An+Ab	An+Ab	KI 3369	KI 3645	KI 2072				
Composition Target	An 0	An 15	An 30	An 48	An 66	An 97				
Expected An	0.47	15	30	48.3	66.1	97				
Probe result	0.47	14.8	30	48.5	66.2	97				
	Crystal	Glass	Glass	Crystal	Crystal	Crystal				

Table 2. Electron microprobe compositions of starting materials										
		(Normaliz	zed to 10							
Sample:	Fayalite	Amelia	An 15*	An 30*	An 48.3	An 66.1	KI 2072			
SiO2	29.48	68.24	64.27	60.26	56.04	41.51	41.1			
TiO2	0	0	0	0	0.08	0.08	0			
AI2O3	0	19.48	22.03	24.8	27.86	30.71	37.1			
Fe2O3	0	0	0	0	0.09	0.25	0			
FeO	70.52	0	0.05	0.09	0.25	0.15	0.28			
MgO	0	0	0	0	0.06	0.14	0			
CaO	0	0.10	3.25	6.44	9.6	13.21	21.3			
Na2O	0	12.03	10.17	8.3	5.67	3.74	0.35			
K2O	0	0.15	0.13	0.1	0.34	0.21	0			
Total	100	100	100	100	100	100	100			
An, Mol %	0	0.5	15	30	48.3	66.1	97.0			
Samples with * are mixtures of Amelia albite and An 97										

Table 2. Electron microprobe compositions of starting materials

Table 3. Bulk Compositions of experiments									
BC	%	%	Plag			Ternary	/		
#	Fa	Plag	Name	XAn	An	Ab	Or		
Amelia		100	Am	0.005	0.0047	0.9872	0.0081		
KI 3369pl		100	An48	0.483	0.474	0.506	0.020		
KI 3645pl		100	An66	0.661	0.653	0.335	0.012		
KI 2072pl		100	An97	0.970	0.970	0.030	0		
An15		100	An15	0.146	0.146	0.854	0.007		
An30		100	An30	0.291	0.291	0.709	0.006		
BC1	15	85	Am	0.005	0.004	0.846	not calc		
BC2	25	75	Am	0.005	0.004	0.746	do		
BC3	40	60	An48	0.483	0.290	0.310	-etc		
BC3a	36	64	Am	0.005	0.003	0.637			
BC3b	55	45	An48	0.483	0.217	0.233			
BC4	36	64	An15	0.015	0.010	0.630			
BC4a	36	64	An15	0.015	0.010	0.630			
BC5	46	54	An30	0.03	0.016	0.524			
BC5a	46	54	An30	0.03	0.016	0.524			
BC6	58	42	An48	0.483	0.203	0.217			
BC7	60	40	An66	0.661	0.264	0.136			
BC8	67	33	An97	0.97	0.320	0.010			
BC9	70	30	An97	0.97	0.291	0.009			
BC10	40	60	An15	0.146	0.088	0.512			
BC11	50	50	An30	0.291	0.146	0.355			
BC12	20	80	Am	0.005	0.004	0.796			
BC13	53	47	An48	0.483	0.227	0.243			
BC14	17	83	Am	0.005	0.004	0.826			
BC15	10	90	Am	0.005	0.005	0.896			

Experiments An 15, 2; An30, 2; An 48, 4; An 66, 1; An 97, 2

Table 4: Two electron probe results in the system Fa-An-Ab

	Exper #								Exper #		
			FAA 4.1					FAA 11.3			
	PLAGIO-				PLAGIO-				OL(4) -		
	OLIVINE	SD	CLASE	SD	GLASS	SD	OLIVINE	SD	CLASE	SD	OL(11)
SiO2	31.03	0.41	63.34	0.36	52.31	0.26	30.94	0.30	50.01	1.10	0.09
TiO2	0.01	0.01	0	0	0.00	0.00	0.00	0.00	0.03	0.02	0.01
AI2O3	0.12	0.20	22.42	0.49	14.70	0.34	0.12	0.13	30.76	0.91	0.00
FeO	68.52	0.58	1.57	0.84	25.53	0.66	68.40	0.64	1.70	0.86	0.12
MgO	0.13	0.02	nd		0.02	0.01	0.13	0.01	nd		0.00
CaO	0.20	0.05	3.31	0.34	2.12	0.33	0.40	0.04	13.54	0.94	-0.20
Na2O	nd		9.81	0.13	5.36	0.33	nd		3.81	0.49	
K2O	nd		0.05	0.01	0.03	0.01	nd		0.15	0.04	
Sum	100.00*	0.37	100.5		100.20		100.00**		100.00***		
N	12		8		12		12		12		
	Fo 0.03		An 15.7		P2O5 0.04 An 17.7				An 66.2		

(*) normalized from 101.00

(**) normalized from 100.89 (***) normalized from 99.13

Note: Mn in olivine = 0.00

Table 5. System Fa	yalite-Al	bite-An	orthite	, 5 kbar	
0/	- T	0/	0/	0/	

	%	onn aye	T	%	%	%	Interpreted
Comp	Fa	Run	deg C	OL	PL	Glass	Result
	4.5		4400	0	10	00	
An 0	15	1.1	1120	0	10	90	
	25	2.1	1125	0	1	99	LIQUIDUS 1124
	25	9.1	1125	25	1	74	
–	20	10.1	1125	25	10	65	
An 15	36	4.1	1120	30	20	50	LIQUIDUS 1132
	36	6.1	1130	2	0	98	
	36	10.2	1125	40	10	65	
	40	9.2	1125	40	0	60	
An 30	46	4.2	1120	35	25	40	LIQUIDUS 1134
	46	7.1	1135	0	0	100	
	50	9.3	1125	50	0	50	
	46	10.3	1125	45	25	30	
	46	11.1	1128	45	10	45 T?	
	46	12.2	1133	40	30	30	
An 48	40	1.3	1120	0	50	50	LIQUIDUS 1136?
	40	3.3	1122	0	40	60	
	58	6.3	1130	1	0	98	
	58	7.2	1135	0	0	100	
	53	11.2	1128	60	40	0	
	53	12.3	1133	50	50	0	
An66	60	8.1	1140	0	0	100	LIQUIDUS 1138?
	60	11.3	1128	70	30	0	
An 97	67	8.2	1140	0	4	96 T>1140	FaAn 1141
	70	8.3	1140	30	5	45	