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Abstract  31 

Apatite is an excellent tracer of petrogenetic processes as it can incorporate a large 32 range of elements that are sensitive to melt evolution (LREE-MREE, Sr, Pb, Mn, 33 halogens, Nd isotopes). Recent advances in the understanding of trace element 34 concentrations and isotope ratios in apatite provide a novel tool to investigate 35 magmatic petrogenesis and sediment provenance. Recent experimental work has 36 better characterized trace element partition coefficients for apatite which are 37 sensitive to changes in magma composition (e.g. SiO2 and the Aluminium Saturation 38 Index value). The chemistry of apatites from granitoids has been suggested to reflect 39 the composition of the host magma and yield information about petrogenetic 40 processes that are invisible at the whole rock scale (mixing, in-situ crystal 41 fractionation, metasomatism). Nd isotopes in apatite can now be analysed by LA-42 MC-ICP-MS to constrain mantle and crustal contributions to the source(s) of the43 studied magma. These recent advances highlight exciting new horizons to 44 understand igneous processes using accessory minerals. In this contribution, we use 45 



a compilation of recent data to show that apatite in the matrix and as inclusions 46 within zircon and titanite is useful for providing insights into the nature and 47 petrogenesis of the parental magma. Trace element modelling from in-situ analyses 48 of apatite and titanite can reliably estimate the original magma composition, using 49 appropriate partition coefficients and careful imaging. This provides a new way to 50 look at magmatic petrogenesis that have been overprinted by metamorphic 51 processes. It also provides the rationale for new investigations of sedimentary 52 provenance using detrital accessory minerals, and could provide a powerful new 53 window into early Earth processes if applied to Archean or Hadean samples. 54 
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Introduction  58 Interest in apatite has recently increased as this mineral seems to be an excellent 59 recorder of Earth and planetary processes (e.g. Bruand et al., 2014; Harlov et al., 60 2015; Mc Cubbin et al., 2015; Piccoli et al., 2015; Tartèse et al., 2014; Zirner et al., 61 2015). Development of in situ techniques such as laser ablation (LA)-ICP-MS and the 62 ion microprobe allows analysis of trace elements in different zones within accessory 63 minerals such as apatite that may record different parts of the crystallization 64 history. Apatite has been shown to record petrogenetic processes during 65 crystallisation (in-situ crystal fractionation, mixing, metasomatism) and is a mineral 66 able to highlight events that are not always visible using whole rock compositions 67 (Bruand et al., 2014). Apatite is also a datable mineral (by U-Pb) and recent 68 



advances in that field have also been successful (e.g. Chew and Donelick, 2012). 69 Developing petrological tools based on apatite chemistry is of broad interest as it is 70 a common mineral in most igneous rock types (e.g. felsic, mafic, ultramafic; see 71 Piccoli and Candela, 2002 for review), constitutes one of the main carriers of P2O5 72 and REE (alongside zircon, titanite, allanite and monazite), contains various 73 elements sensitive to oxidation state (Mn, V, S; E.g. Miles et al., 2014, Parat et al., 74 2011) and can accommodate halogens in its structure (F and Cl).  75 In this contribution we compile recent findings showing that apatite is a 76 valuable mineral for tracking igneous petrogenesis and is also of great potential use 77 for provenance studies (Foster and Carter, 2007; Morton and Yaxley, 2007). The 78 first part of this paper is dedicated to the use of apatite as a petrogenetic tool within 79 granitoids and its ability to record different processes that are not necessarily 80 visible using whole rock compositions.  The second part looks at using apatite 81 inclusions armoured within robust minerals (e.g. zircon, titanite) to provide a new 82 provenance tool via characterization of  the original host rock. 83 84 
Apatite: A petrogenetic recorder 85 

Imaging 86 Apatite is commonly zoned as a result of its crystallization, dissolution and/or 87 reprecipitation history. Such zoning can be easily identified by imaging using back-88 scattered (BSE) and/or cathodoluminescence (CL) techniques (Fig. 1) and 89 interpretation of this zoning combined with detailed petrographic study of the 90 surrounding mineral phases can give additional information on the timing and 91 



nature of apatite crystallization (e.g. Bruand et al., 2014; Zirner et al., 2015). In 92 Figure 1a, imaging of apatite crystals within a granitoid from high Ba-Sr granites 93 (northern Scotland) reveals distinct core and rim zonation, the significance of which 94 is discussed below. Despite many workers describing the common presence of 95 zoning in apatite and the use of BSE or CL techniques to observe the zoning (e.g. 96 Kempe and Goetze, 2002; Shore and Fowler, 1996), this first stage of apatite 97 description is often omitted and valuable information can therefore be missed. 98 99 
Trace elements 100 A number of studies have presented detailed trace element chemistry for apatite 101 crystals in various igneous systems using in-situ techniques  (e.g. Belousova et al., 102 2001, 2002; Chu et al., 2009; Hoskin et al., 2000; Sha and Chappell, 1999).  These 103 showed that rare earth element (REE) patterns vary with (i) the type of magma (e.g. 104 affected by differentiation, Hoskin et al., 2000), (ii) the presence or absence of other 105 accessory minerals (e.g. Hoskin et a., 2000; Miles et al., 2013) and could give clues 106 about (iii) the geological setting (Belousova et al., 2002; Chu et al., 2009; Sha and 107 Chappell 1999). More recently, detailed imaging associated with in-situ work has 108 shown that an important part of the crystallization history of an igneous body can 109 be observed at the apatite grain scale (e.g. Bruand et al., 2014, Zirner et al., 2015). In 110 the first part of this contribution, we summarize some of those findings and describe 111 their potential importance for a better understanding of petrogenetic processes. 112 Apatite chemistry from the high Ba-Sr granites (Northern Scotland, Bruand et al., 113 2014) provide an excellent example to observes those new findings. Two localities 114 



were studied in detail (the Strontian and Rogart plutons) in which compositions 115 range from tonalitic to granodiorite to granite, with a local ultramafic component 116 (the so-called appinites; Fowler et al., 2001, 2008). Results on the felsic 117 compositions show that in one locality (Rogart) apatite displays oscillatory zoning 118 and that REE content decreases continuously from core to  rim, reflecting 119 progressive in-situ crystal fractionation (Fig. 1b). By contrast, apatites from the 120 second locality (Strontian) have oscillatory cores and homogeneous rims. These 121 different zones correlate with an abrupt change in REE and Y, which is also visible in 122 titanite from the same samples (decrease in REE, Nb and Ta). Prowatke and Klemme 123 (2006) showed that apatite partition coefficients for REE are strongly dependent 124 upon the SiO2 content of the magma. Apatite in felsic systems can host up to almost 125 an order of magnitude more REE than apatite crystallising in mafic systems (Fig. 2). 126 Moreover, changes of REE, Zr, Nb and Ta in titanite and elemental ratios such as 127 Sr/Sm in apatite and titanite match local apatite and titanite ultramafic 128 compositions (See Fig.  6a, 7 and 12in Bruand et al., 2014). Therefore, these abrupt 129 changes of apatite composition at Strontian are the likely result of a mixing event 130 with local mafic magma, visible at the single grain scale in both apatite and titanite 131 from the studied samples (Bruand et al., 2014), not apparent in whole –rock 132 chemistry (Fowler et al., 2008) but in agreement with field evidence that shows 133 disrupted synplutonic mafic dykes and abundant mafic enclaves. 134 135 Other trace elements in apatite have also proven useful to assess the host rock 136 chemistry. A compilation of data from the literature indicates that the Sr content in 137 



apatite is of particular interest (e.g. Jennings et al., 2011), since it correlates well 138 with Sr of the whole rock (Fig. 3a). Importantly, Bruand et al. (2014) also showed 139 that when Sr from the whole rock is affected by feldspar alteration (see altered 140 sample on Fig. 3a), it is possible to estimate the original Sr content based on the 141 SrAp content of the sample using the SrWR-SrAp correlation compiled from the 142 literature . These authors also show that Sr content of apatite and titanite from the 143 same samples correlate along a 10:1 regression line, which seems robust regardless 144 of alteration in the whole rock. Sr in apatite has also been shown to correlate 145 strongly with whole-rock SiO2 (Fig. 3b; Belousova et al., 2001; Bruand et al., 2014, 146 2016; Jennings et al., 2011). Therefore, SiO2 and Sr concentrations from the original 147 rock can be derived using SrAp and give information of the original/unaltered host 148 rock. This tool is important for future work on provenance studies (see second part 149 of this paper).  150 Finally in this section, halogen (F, Cl) contents in apatite in igneous and 151 metamorphic systems may ultimately be used as a proxy for water content of the 152 melt. For example, the halogen content of apatites has been extensively used in the 153 recent years to constrain the amount of water on the Moon (Boyce et al., 2010; 154 Tartèse et al., 2013). However, there are still intense debates in the planetary 155 science community as recent modelling work questions the reliability of water 156 content estimates and infer that H-rich apatite can be generated from a magma poor 157 in hydrogen (Boyce et al., 2014). 158 159 
In situ isotopic analyses 160 



O isotopes analyses in zircon have been used for many years to constrain the 161 nature of the magma source reservoirs and more particularly the input of recycled 162 material in the source or during assimilation (e.g. Valley et al., 2003 and references 163 therein). Zircon has been shown to retain O isotope ratios of the magma source 164 unlike other minerals in which O isotopes can be completely reset when affected by 165 metamorphic or metasomatic events (e.g. quartz).  Oxygen isotope data from single 166 grains of other accessory minerals is limited (Bindeman, 2008). Although oxygen 167 isotope analysis in bio-apatite is a common technique to interpret 168 paleoenvironmental conditions (e.g. Zheng, 1996), data concerning metamorphic 169 and magmatic rocks are almost non-existent (Farver and Giletti, 1989). Recent 170 technical advances provide an opportunity to analyse in-situ O (King et al., 2001; 171 Bonamici et al., 2014), Sm-Nd isotopes (Foster & Carter, 2007; Gregory et al., 2009), 172 Cl and H isotopes in accessory minerals (e.g. Greenwood et al. 2011; Tartèse et al., 173 2014). Similarly, the understanding of oxygen isotope behaviour in other phases 174 such as titanite has recently shown progress (e.g. King et al., 2001 for igneous and 175 metamorphic rocks and Bonamici et al., 2011, 2014, 2015 for titanite in 176 metamorphic rocks). King et al. (2001) show a consistent zircon-titanite 177 fractionation factor of ~1.2 ± 0.3‰ for igneous and of ~2.1 ± 0.4‰ for 178 metamorphic rocks. Bonamici et al. (2011, 2014) recently used oxygen isotope 179 profiles in titanite grains to infer the cooling history of metamorphic rocks. In 180 summary, although there is still a lot to learn about oxygen isotope behaviour in 181 apatite, titanite or monazite, they have comparable potential to zircon (Valley, 2003) 182 to highlight mantle and/or crustal components in the petrological source.  183 



In terms of radiogenic isotopes, data are also limited, but Gregory et al. 184 (2009) demonstrated that Sm-Nd isotope analysis at the micrometer scale offers the 185 prospect of developing petrological tools similar to the current Hf isotope studies on 186 zircons. They clearly show that Sm-Nd isotope analyses in titanite and apatite allow 187 the estimation of the isotopic composition of the mantle or the crustal sources. 188 Apatite, monazite and titanite have the advantage over zircon in being more 189 widespread in less evolved magmas (e.g. Piccoli and Candela, 2002; Hoskin and 190 Schaltegger, 2003) and being more responsive to igneous processes and crustal 191 metamorphism (e.g. Bruand et al., 2014 for titanite and apatite; Rubatto et al., 2001 192 for monazite).  193 194 
Potential for provenance studies? 195 Correlations detailed in Bruand et al. (2016; Sr-Ap vs SrWr, Sr-Ap vs SiO2, Fig. 196 3) can be used to constrain the host rock composition of the studied minerals, even197 when they are detrital. Making use of such a tool could therefore be extremely 198 valuable for future provenance studies. The majority of apatite provenance studies 199 have focused on detrital thermochronology of apatite using fission track or U-Th/He 200 thermochronometers (Bernet and Spiegel, 2004) and very little on trace elements. 201 With the recent advances on the understanding of trace elements behaviour in 202 apatite (Hoskin et al., 2000; Belousova et al., 2002; Chu et al., 2002; Jennings et al., 203 2011; Bruand et al., 2016), there would be merit to test in more details the 204 robustness of trace elements in apatite during erosion, transport and diagenesis. 205 However, apatite has been shown to be affected rapidly by metasomatism and 206 



alteration (e.g. Zirner et al., 2015) given little hope to use it on a global scale in old 207 terranes. Indeed, acidic groundwater, weathering and limited mechanical durability 208 can affect the stability of apatite during sediment transport (Morton and Hallsworth, 209 2007). This severely limits its use as a detrital provenance tool. A novel way to look 210 at apatite in the sedimentary record is to analyse apatite inclusions armoured 211 within robust accessory minerals (e.g. zircon, titanite; Bruand et al., 2016; Darling et 212 al., 2009; Jennings et al., 2011). The success of the method depends on the ability of 213 apatite inclusions to record similar chemical features to those described above. 214 215 216 
Apatite inclusions 217 Previously, inclusions present within datable accessory minerals such as zircon 218 were viewed as a common problem, since they might introduce mixed ages and 219 common Pb, which could lead to inaccurate and/or imprecise ages. The grains 220 bearing those inclusions (Fig. 4) were therefore discarded. However, recent work 221 has shown that these inclusions provide valuable insights into the history of a rock 222 (e.g. Bruand et al., 2016; Darling et al., 2009; Jennings et al., 2011). While some 223 inclusions (such as feldspar) have been shown to not reflect the original rock 224 composition (Jennings et al., 2011), elements such as Sr has been shown to correlate 225 with SrWR and SiO2WR.  In the first part of this contribution, we have shown that 226 apatite composition gives additional petrogenetic information. In this part, we 227 demonstrate how this petrogenetic history is also available in apatite inclusions 228 



armoured in zircon and titanite, from which we can also recover an estimate of 229 whole rock composition.  230 231 
Apatite inclusions in zircons 232 Apatite, micas, quartz and feldspar are common inclusions in igneous zircon (Fig. 233 5A). However, it has to be noted that careful counting of minerals in a set of samples 234 (Fig. 5A) indicates that the proportions of minerals as inclusions in zircons do not 235 necessary match their modal abundance (Darling et al., 2009). For example, quartz 236 is generally present in greater proportions compared with other phases as an 237 inclusion phase than within the matrix of the same rocks. 238 239 
From apatite inclusions to petrogenesis 240 Apatite inclusions within titanites from a set of high Ba-Sr granitoids in Scotland 241 (Bruand et al., 2016; Fowler et al., 2001, 2008) have been imaged (Fig. 4) and 242 analysed using ion microprobe and electron microprobe techniques. Trace element 243 results confirm that the Sr concentrations of apatite inclusions and the Ce/Y ratios 244 correlate along a 1:1 correlation with those of apatite in the matrix (Bruand et al., 245 2016; Fig. 6). Bruand et al. (2016) further demonstrate that the chemistry of apatite 246 provides important petrogenetic constraints for the plutons studied (e.g. insitu 247 crystal fractionation, mixing) that were not visible using whole rock data (Fowler et 248 al., 2001, 2008). In most cases, Sr in apatite has a homogeneous distribution (no 249 zoning), its concentration in apatite has been shown to be a function of plagioclase 250 fractionation during magmatic differentiation (Belousova et al., 2002). In contrast, 251 



REE are extremely sensitive to changes in magmatic conditions. Prowatke and 252 Klemme (2005, 2006) demonstrated that apatite and titanite partition coefficients 253 for REE are dependent upon SiO2 content. The REE partition coefficients for most 254 felsic rocks are higher than for mafic rocks, particularly for MREE. Therefore, ratios 255 such as Sr/Sm can be particularly helpful to discriminate different magma types. In 256 Figure 7, Sr/Sm of apatite inclusions and their titanite host minerals are reported. 257 They show that Sr/Sm in both minerals can discriminate mafic from felsic 258 (granitoid) compositions.  The chemistries of titanite and apatite from the matrix 259 are also reported and show similar values. The studied samples show two different 260 crystallization histories. In Rogart, apatite and associated titanite zones have similar 261 Sr/Sm ratios and plot within a narrow range (Sr/SmTtn ~ 0.05-0.12 and Sr/SmAp ~ 262 3-10). These results, associated with a continuous decrease of REE from core to rim,263 suggest in-situ crystal fractionation. In Strontian, titanite cores and apatite 264 inclusions located in these cores plot in the same narrow field. On the other hand, 265 apatite inclusions in titanite rims and the associated titanite rims have systematic 266 higher Sr/Sm ratios (Fig. 7; Sr/SmTtn >0.15 and Sr/SmAp ~ 3-27). As discussed 267 above, this is interpreted to reflect a late influx of mafic magma during the 268 crystallization of Strontian granitoid (Bruand et al., 2014, 2016). Apatite and titanite 269 from the Strontian mafic-ultramafic facies (appinite) plot in the same region as the 270 titanite and apatite rims. In Strontian apatite and titanite record a general decrease 271 of REE from the inner toward the outer core of the titanite and then a late mixing 272 event with the local mafic magma within their rims. In summary, a detailed 273 



snapshot of the petrogenetic history of a pluton is preserved within apatite 274 inclusions in titanite or zircon. 275 276 
From apatite inclusions to whole rock chemistry 277 Apatite chemistry is also extremely powerful for recovering information about the 278 whole rock of their original host. For example, a global compilation of granitoids 279 whole rock and apatite chemistry demonstrate a strong correlation between SrAp 280 and SrWR (Fig. 8), from which it is possible to “back calculate” SrWR based on apatite 281 chemistry (Fig. 9). In Figure 8B, a compilation of post Archean samples and three 282 average Archean tonalite trondjhemite granodiorite (TTG, black stars) compositions 283 have been plotted, showing that SrAp correlates with SiO2 (Fig. 8B). As noted above, 284 the studied high Ba-Sr granites (Bruand et al., 2016) systematically plot above the 285 correlation defined by the other samples. This is consistent with whole-rock data. 286 On Fig. 8C, the high Ba-Sr granites and their Archean equivalent (sanukitoids – 287 Fowler and Rollinson, 2012) define an independent correlation. Based on these 288 observations, a two-step method has been developed to recover original Sr and SiO2 289 whole rock composition from Sr concentration in apatite. 290 - First, SrWR is back calculated using SrAp and the correlation defined in Fig. 8A.291 - Second, using this calculated SrWR value, the SiO2 can be estimated (Fig. 8B).292 If SrWR > 650 ppm the correlation based on sanukitoid compilation is used293 and if SrWR < 650 ppm, the correlation based on the post-Archean trend is294 used. The 650 ppm cut off is based on the SrWR value of the most mafic295 endmember of the post-Archean trend.296 



297 Following this procedure, appropriate partition coefficients can be chosen (e.g. Luhr 298 et al., 1984; Prowatke and Klemme, 2005, 2006) and the REE of the host magma can 299 be calculated, which is broadly equivalent to that of the whole host rock. For 300 example, results for Rogart are shown in Fig. 9 (whole-rock data from Fowler et al., 301 2008). Apatite and titanite produce similar results and a particularly good fit for 302 sample RHG1. The results from Strontian produce a good fit for sample SR4 for 303 apatite inclusions from the core and the titanite core composition (higher REE 304 contents of the calculated area in Fig. 9). Calculated MREE concentrations for SR1 305 and SR3 are generally lower than that of the whole rock. This could be explained by 306 a slight discrepancy between the partition coefficient for apatite and titanite that we 307 used and our sample. Calculations made with rim compositions plot at much lower 308 REE and their calculated REE patterns give lower values especially for MREE (Fig. 309 9). When this back-calculation method is used on grains that have been affected by 310 the complications of a late influx of mafic magma such as in Strontian (Figs. 1, 7), 311 only the unaffected core composition should be used for calculations. Although 312 clearly not perfect, key elemental ratios such as Ce/Yb and Eu/Eu* are accurately 313 reproduced. Thus, it seems likely that apatite and titanite have the potential to 314 faithfully record their parent melt chemical signature.  315 316 
Apatite inclusions in zircon and titanite – a window to the early Earth? 317 Robust detrital accessory minerals such as monazite and zircon preserved in 318 sandstones are particularly informative as they can be dated and can then be 319 



potentially compared to similar terranes to allow paleogeographic reconstruction 320 (e.g. Samson et al., 2005). Much of what we know about early crustal evolution and 321 the generation of continents is based on such work. However, zircon trace element 322 chemistries have not yet been proven particularly helpful to discriminate different 323 magma compositions and allow a detailed interpretation of their original host rock 324 (e.g. Coogan and Hinton, 2006), which represents a major weakness in the approach. 325 We have shown above that it is possible to reconstruct whole rock chemistry of the 326 parent rock (Belousova et al., 2002; Bruand et al., 2016; Jennings et al., 2011) based 327 on apatite chemistry, even when the crystals are <100 microns inclusions in other 328 accessory minerals. Such work could be applied to inclusions in the detrital zircon 329 archive, such that magmatic composition over time could be recovered. Of particular 330 interest in this regard, is the presence of apatite inclusions reported in the oldest 331 terrestrial zircons from Jack hills (Hopkins et al., 2008; Rasmussen et al., 2011). 332 Rasmussen et al. (2011) report the presence of numerous inclusions that are 333 secondary and have crystallized during one of the later metamorphic events, some 334 of them replacing apatite (e.g. xenotime, monazite, muscovite; Fig. 5B). However, 335 they also report the presence of rare preserved primary apatite, whose petrogenetic 336 affinities would be illuminating. 337 338 
Implications 339 340 Apatite chemistry has the ability to record petrogenetic processes that are not 341 available using whole rock data. It also discriminates different magma composition 342 



that are diagnostic of geodynamic changes during crustal evolution (e.g. distinguish 343 sanukitoids from post-Archean granitoids). Between the Archean (4-2.5 Ga ago) and 344 the Phanerozoic (0.54 Ga to present), the magmatic production system changed 345 from a “hot” Earth, producing TTG suites, to a ‘colder’ Earth, producing mainly calc-346 alkaline andesitic crust (e.g. Martin et al., 2005). This shift of composition has been 347 interpreted by some as reflecting major geodynamic changes of the Earth and 348 ultimately has been linked to the onset of plate tectonic (Martin et al., 2005). 349 Sanukitoids are interpreted as being the product of a metasomatized mantle wedge 350 and have been reported as occurring during the Archean-Proterozoic transition 351 (~2.7-2.5 Ga; Martin et al., 2009). They have been interpreted by various workers 352 (e.g. Martin et al., 2009) as the result of the evolution from a shallow to a steep 353 subduction style in this time interval and therefore might mark the onset of modern 354 plate tectonics. However, there are remaining fundamental unknowns about the 355 conditions of the early Earth as its record is extremely sparse (Bleeker et al., 2005; 356 e.g. composition of the crust, geodynamic regime).  The study of accessory minerals357 and more particularly detailed in-situ work on apatite (trace element and isotopes) 358 provides a potentially pivotal role to gather more information about igneous 359 processes and to interrogate the rock record in ever greater detail (e.g. Hadean 360 zircons, eroded products of ancient cratons). Although there has been a recent 361 increase in work on REE in apatite and other accessory minerals, there is still much 362 to do. For example:  363 
- Studying in greater detail REE behaviour in the whole set of accessory minerals in364 various magma compositions. Most studies focus on one of the accessory phases 365 



contained within a suite of rocks (e.g. Tepper & Kuehner, 1999; McLeod et al., 366 2011). The comparison of the different accessory phases within a suite of samples 367 is more rarely done (Bruand et al., 20015; Hoskin et al., 2000b). As those minerals 368 all bear REE, systematic comparative studies are essential to understand their 369 behaviour. 370 
- Improving the understanding of redox sensitive elements in apatite (S, Mn; Miles et371 al., 2014; Parat et al., 2011) 372 
- Studying less investigated elements such as Pb, Sr, Th, Nb, U, V and Ta that are also373 sensitive to changes in magma composition. 374 375 
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Figure Captions 534 Figure 1.  Modified after Bruand et al. (2014). Cathodoluminescence images of 535 apatites crystals for granitoids (A-B). A-  Apatites from Strontian granitoids are 536 made up of oscillatory cores and unoscillatory rims. These two zones correspond to 537 a sudden change of apatite chemistry and more particularly a decrease of REE. The 538 rim records a mixing event with local mafic magma. B- Apatites from Rogart 539 granitoids are characterized by an oscillatory zoning. Apatite REE concentration 540 continuously decreases from core to rim reflecting progressive in situ crystal 541 fractionation. 542 543 



 Figure 2. Apatite/ melt partition coefficient for apatite for felsic and mafic 544 compositions (modified after Prowatke & Klemme, 2006).  545 546 Figure 3.   SrAp-SrWR and SrAp-SiO2 compilation. Data from Hoskin et al., 2000b 547 (black dot), Chu et al., 2009 (grey dot), Jennings et al., 2011 (colourless dot), 548 Belousova et al., 2001 (cross) and Bruand et al., 2014 (square). A- SrAp-SrWR 549 showing close correlation. B- SrAp-SiO2WR showing broad correlation. Obvious 550 outliers are the high Ba-Sr granites from Bruand et al. (2014). 551 Figure 4. Apatite inclusions and host minerals (zircon and titanite). Analysis 552 numbers available in tables DR1-DR2 in Bruand et al., (2016). 553 554 Figure 5. Zircon inclusion populations. A- After Darling et al. (2009). Left: relative 555 frequency of main inclusion phases in various rock types. Right: Streckeisen 556 diagram showing rock and inclusion mineralogy for each sample. Arrows indicate 557 different proportion of minerals from whole rock to zircon inclusions. B-After 558 Rasmussen et al. (2011) in repository material. Mineral and mineral inclusions data 559 for the Jack Hills (JH) and the Narryer Gneiss Complex (NGC).  560 561 Figure 6. Inclusions in zircon-titanite versus rock matrix. Data are average 562 compositions given with 2 sigma errors. A) Ce/Y apatite. B) Sr apatite. After Bruand 563 et al. (2016)  564 565 



Figure 7. Petrogenetic processes and the nature of the parent magma (granitoid 566 versus mafic) using Sr/Sm ratios in apatite inclusions and host titanite. For 567 comparison, apatite and titanite average compositions from the matrix have also 568 been reported (error bars are 1σ, Bruand et al., 2014, 2016). 569 570 Figure 8. A- SrApincl. average compositions versus SrWR (error bars are 2σ). Available 571 data on post Archean granitoids (crosses – Jennings et al., 2011; Belousova et al, 572 2002; Chu et al., 2009; Hoskin et al., 2000; square- Rogart locality and diamond- 573 Strontian locality in high Ba-Sr granites from Bruand et al., 2016) have been added. 574 B- SrAp vs SiO2WR with apatite inclusions in the grey field of the studied high Ba-Sr575 samples (sanukitoid-like, 2σ error bars) and two sanukitoids from the Karelian 576 Province analyzed by electron microprobe, and Post-Archean apatite data set in the 577 white field. C- SrWR vs SiO2WR with the sanukitoid compilation (Fowler and Rollinson, 578 2012 ; SiO2WR>46%), the high Ba-Sr granites (Fowler et al., 2001, 2008), average 579 TTG compositions from Martin et al. (2005) and the Post-Archean data set. This 580 Figure is after Bruand et al. (2016). 581 582 Figure 9. Back-calculation of parent magma composition using single apatite 583 inclusions and titanite in host rock analysis (Bruand et al., 2016 dataset). KD values 584 of Luhr et al., (1984) for apatite and titanite. For comparison, sanukitoid data set 585 from Martin et al. (2009) has been added. Chondrite values are from Mc Donough 586 and Sun (1995). 587 588 
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