1	
2 3	Empirical electronic polarizabilities of ions for the prediction and interpretation of refractive indices.
4	I. oxides and oxysalts.
5	
6	Robert D. Shannon
7	Geological Sciences/ CIRES, University of Colorado, Boulder, Colorado 80309
8	Reinhard X. Fischer
9	Universität Bremen, FB 5 Geowissenschaften, Klagenfurter Str., D-28359 Bremen (Germany)
10	
11	Abstract
12	An extensive set of refractive indices determined at $\lambda = 589.3$ nm (n_D) from ~2600
13	measurements on 1200 minerals, 675 synthetic compounds, ~200 F-containing
14	compounds, 65 Cl-containing compounds, 500 non-hydrogen-bonded hydroxyl-containing
15	compounds, and approximately 175 moderately-strong hydrogen-bonded hydroxyl-
16	containing compounds and 35 minerals with very strong H-bonded hydroxides was used
17	to obtain mean total polarizabilities. These data, using the Anderson-Eggleton relationship
18	$\alpha_T = \frac{(n_D^2 - 1)V_m}{4\pi + \left(\frac{4\pi}{3} - c\right)(n_D^2 - 1)}$ where α_T = the total polarizability of a mineral or compound, n_D =
19	the refractive index at $\lambda = 589.3$ nm, $V_{\rm m} =$ molar volume in Å ³ , and $c = 2.26$, in
20	conjunction with the polarizability additivity rule and a least-squares procedure, were used
21	to obtain 270 electronic polarizabilities for 76 cations in various coordinations, H_2O , 5
22	H_xO_y species $[(H_3O)^+, (H_5O_2)^+, (H_3O_2)^-, (H_4O_4)^{4-}, (H_7O_4)^-]$, NH_4^+ and 4 anions (F ⁻ , Cl ⁻ ,
23	OH ⁻ , O ²⁻).

Revision 1

24	Anion polarizabilities are a function of anion volume, V_{an} , according to $\alpha_{-} = \alpha_{-}^{o} \cdot$
25	$10^{-N_o/V_{an}^{1,20}}$ where α_{-} = anion polarizability, α_{-}^{o} = free-ion polarizability, and V_{an} = anion
26	molar volume. Cation polarizabilities depend on cation coordination according to a light-
27	scattering (LS) model with the polarizability given by $\alpha(CN) = (a_1 + a_2CNe^{-a_3CN})^{-1}$
28	where CN = number of nearest neighbor ions (cation-anion interactions), and a_1 , a_2 , and a_3
29	are refinable parameters. This expression allowed fitting polarizability values for Li^+ , Na^+ ,
30	K ⁺ , Rb ⁺ , Cs ⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Mn ²⁺ , Fe ²⁺ , Y ³⁺ , (Lu ³⁺ -La ³⁺), Zr ⁴⁺ , and Th ⁴⁺ .
31	Compounds with (1) structures containing lone-pair and uranyl ions (2) sterically-strained
32	(SS) structures (e.g., $Na_{4.4}Ca_{3.8}Si_6O_{18}$ (combetie), $\Delta = 6\%$ and $Ca_3Mg_2Si_2O_8$ (merwinite), Δ
33	= 4%), (3) corner-shared octahedral (CSO) network and chain structures such as
34	perovskites, tungsten bronzes and titanite-related structures (e.g., MTiO ₃ (M = Ca, Sr, Ba),
35	$\Delta = 9-12\%$ and KNbO ₃ , $\Delta = 10\%$), (4) edge-shared Fe ³⁺ and Mn ³⁺ structures (ESO) such
36	as goethite (FeOOH, $\Delta = 6\%$) and (5) compounds exhibiting fast-ion conductivity, showed
37	systematic deviations between observed and calculated polarizabilities and thus were
38	excluded from the regression analysis. The refinement for ~ 2600 polarizability values
39	using 76 cation polarizabilities with values for $\text{Li}^+ \rightarrow \text{Cs}^+$, Ag^+ , $\text{Be}^{2+} \rightarrow \text{Ba}^{2+}$, $\text{Mn}^{2+/3+}$, $\text{Fe}^{2+/3+}$,
40	$Co^{2+}, Cu^{+/2+}, Zn^{2+}, B^{3+} \rightarrow In^{3+}, Fe^{3+}, Cr^{3+}, Sc^{3+}, Y^{3+}, Lu^{3+} \rightarrow La^{3+}, C^{4+} \rightarrow Sn^{4+}, Ti^{3+/4+}, Zr^{4+}, Hf^{4+}, Cr^{4+}, Cr^{4+}, Hf^{4+}, Cr^{4+}, Hf^{4+}, Cr^{4+}, Hf^{4+}, Cr^{4+}, Hf^{4+}, Cr^{4+}, Hf^{4+}, Cr^{4+}, Hf^{4+}, Hf^{4+}, Cr^{4+}, Hf^{4+}, Hf^{4$
41	Th^{4+} , V^{5+} , Mo^{6+} , and W^{6+} in varying CN's, yields a standard deviation of the least squares
42	fit of 0.27 (corresponding to an R^2 value of 0.9997) and no discrepancies between
43	observed and calculated polarizabilities, $\Delta > 3\%$.
44	Using $n = \sqrt{\frac{4\pi\alpha}{(2.26 - \frac{4\pi}{3})\alpha + V_m}} + 1$ the mean refractive index can be calculated from the

45 chemical composition and the polarizabilities of ions determined here. The calculated

Revision 1

46	mean values of $< n_D >$ for 54 common minerals and 650 minerals and synthetic compounds
47	differ by less than 2% from the observed values.
48	In a comparison of polarizability analysis with 68 Gladstone-Dale Compatibility Index
49	(CI) (Mandarino 1979, 1981) values rated as fair or poor, we find agreement in 32
50	instances. However, the remaining 36 examples show polarizability Δ values less than 3%.
51	Thus, polarizability analysis may be a more reliable measure of the compatibility of a
52	mineral's refractive index, composition and crystal structure.
53	
54	Introduction
55	Importance of refractive indices
56	Refractive indices (RI's) are important properties of minerals (Feklichev 1992; Nesse
57	2013). They are required for the description of a mineral and they help understand chemical
58	trends in structural families such as andalusites, adularia, cordierites and zeolites (Gunter and
59	Bloss 1982; Selkregg and Bloss 1980; Gunter and Ribbe 1993; Palmer and Gunter 2000) and can
60	help determine H ₂ O content of hydrated minerals and zeolites (Medenbach et al. 1980; Gunter
61	and Ribbe 1993).
62	In addition to being of interest in mineralogy, refractive indices are also widely used in the
63	field of optics to help characterize optical materials. Predicting optical properties from the
64	chemical composition is of value in developing new materials. Specifically, prediction of the
65	refractive indices of borate optical crystals from polarizabilities plays an important role in the
66	search for new linear and nonlinear optical materials (Qin and Li 2011). Refractive index is a
67	fundamental parameter of lasers. It is required for the analysis of the radiative properties of Ln ³⁺

Revision 1

68	ions, for the calculation of the nonlinear and thermal refractive index contributions and for the
69	design of antireflection coatings and optical waveguide structures (Han et al. 2012).
70	
71	Polarizabilities – General
72	Electronic polarizabilities have many uses from calculation of refractive indices to optical
73	activity of polar crystals. Derivation of static polarizabilities, representing polarizabilities at
74	wavelengths extrapolated to $\lambda = \infty$, and references to many of their uses are described in detail in
75	Shannon and Fischer (2006), hereafter referred to as SF2006. Dynamic polarizabilities derived
76	from refractive indices in the visible region of light can be used to predict mean refractive
77	indices in individual minerals. Symbols used in equations and text are listed in Table 1.
78	
79	Total polarizabilities calculated from Lorenz-Lorentz, Gladstone-Dale and Drude
80	relations. Polarizabilities are important properties for characterization of materials and in
81	particular, minerals. Three commonly used expressions that relate polarizabilities to refractive
82	indices (Anderson and Schreiber 1965; Anderson 1975; Eggleton 1991) are: the Lorenz-Lorentz
83	(LL, Lorenz 1880; Lorentz 1880, eqn. 1a), Gladstone-Dale (GD, Gladstone and Dale 1863; Jaffe
84	1988; Fowler et al. 1991) and Drude relationships Many other publications list the expressions in
85	terms of refractivity; for our purposes it is more useful to list them in terms of polarizability, as
86	do Renn (1974), Anderson (1975), Jaffe (1988), Fowler and Tole (1991), Dimitrov and Sakka
87	(1996), and Heaton et al. (2006).
88	Static electronic polarizabilities, α , far below electronic resonances are described by the Lorenz-

89 Lorentz (LL) equation:
$$\alpha_{LL} = \frac{1}{b} V_m \cdot \frac{n_{\infty}^2 - 1}{n_{\infty}^2 + 2}$$
(1a)

with the Lorentz factor, $b = 4\pi/3$ for compounds with cubic symmetry, $V_{\rm m} =$ molar volume in Å³, 90 and n_{∞} = the mean static refractive index at $\lambda = \infty$. It will be shown later that this equation can be 91 92 applied to the visible region of light as well. Anderson (1975) modified the Lorenz-Lorentz relationship to include the effects of electron 93 overlap in a general polarizability equation. Eggleton (1991) expressed this approach in the 94 $\alpha = \frac{(n^2 - 1)V_m}{4\pi + \left(\frac{4\pi}{2} - c\right)(n^2 - 1)}$ following relationship 95 (1b)with the Lorentz factor $4\pi/3$ and c as the electron overlap factor. When c = 0 (no electron 96 97 overlap), we obtain the LL equation (1a); when $c = 4\pi/3$ (strong electron overlap), we obtain Drude's equation (2). For some classes of compounds with partial electron overlap this factor 98 was experimentally determined as c = 3.69 for borosilicate glasses (Ritland 1955), c = 3.5799 (Anderson and Schreiber 1965) and c = 2.99 (Marler 1988) for SiO₂ polymorphs. For 570 rock-100 forming minerals ($n_D = 1.5 - 1.9$), Anderson and Schreiber (1965) obtained c = 2.19 and for 574 101 silicates ($n_D = 1.4 - 1.8$) whereas Eggleton (1991) found c = 2.26. 102 $\alpha_{Dr} = \frac{(n^2 - 1)V_m}{4\pi}$ for $c = 4\pi/3$ in (1b) 103 Drude equation: (2) $\alpha_{\rm GD} = 3\pi/4 V_{\rm m} (n-1)$ Gladstone-Dale equation: 104 (3) $\alpha_{AE} = \frac{(n^2 - 1)V_m}{4\pi + \left(\frac{4\pi}{2} - 2.26\right)(n^2 - 1)}$ Anderson-Eggleton equation¹: 105 (4a)

¹The special case with c = 2.26 determined by Eggleton (1991) and used extensively in this study, will be referred to as the Anderson-Eggleton (AE) relationship. These relations have been discussed by Larsen (1909), Anderson and Schreiber (1965), Anderson (1975), Mandarino (1976, 1978, 1979, 1981), Marler (1988), Eggleton (1991) and Fowler et al. (1991). Although Anderson and Schreiber concluded that (1) from a study of silica polymorphs ($n_D = 1.42 - 1.85$) the Drude equation fits the data slightly better than the LL equation for the silica polymorphs, Anderson later showed from plots of n_D vs. density for a more extensive set of 570 rock-forming minerals that it was not possible to favor the choice between the LL (c = 0), Drude ($c = 4\pi/3$), or

Revision 1

106 Eqn. (4a) solved for n:
$$n_{AE} = \sqrt{\frac{4\pi\alpha_{AE}}{(c-b)\alpha_{AE} + V_m} + 1}$$
(4b)

107 with c = 2.26 and $b = 4\pi/3$.

108 Several aspects of the Gladstone-Dale relation have been questioned (Bloss et al. 1983; 109 Eggleton 1991; Fowler et al. 1991). Mandarino (1981) and Bloss et al. (1983) pointed out the 110 structure dependency of the GD constants. In addition, Fowler et al. (1991) pointed out that "the polarisabilities produced by the LL and GD approaches are different, and clearly cannot both be 111 112 correct". They point out that *ab initio* calculations of LiF, BeO, and MgO polarizabilities agree 113 quite well with the LL equation but show larger discrepancies with the GD and Drude relations. Figure 1 shows the polarizabilities calculated from refractive indices by the different 114 approaches. The α_{LL} values are significantly lower than the α_{GD} values especially towards higher 115 RI's while the α_{AE} values with c = 2.26 are somewhere intermediate. Eggleton (1991) found this 116 value by trial and error methods and described it to approach α_{GD} values but actually it is closer 117 to α_{LL} as shown in Figure 1. The α_{Dr} values are closer to α_{GD} with a crossover point at n = 2. The 118 values are approximately equidistant between n = 1.5 and 1.6 representing a range of RI'stypical 119 for silicate minerals. 120 121 Figure 2 shows what we propose to be a theoretical relationship between covalence and LL, AE, and GD relations. As covalence increases, calculated polarizabilities increase in the order 122

123 $LL \rightarrow AE \rightarrow GD$. The effects of the intermediate nature of oxide and silicate covalence on

intermediate relations (c = 2.2-3.0). The Drude equation has not been used for minerals but the GD equation has been used extensively by mineralogists to evaluate experimental refractive indices (Mandarino 1976; 1978; 1979;1981; Bloss et al. 1983; Jaffe, 1988; Eggleton 1991; Gunter and Ribbe 1993).

Revision 1

124	refractive index was pointed out by Jaffe (1988, p.131). We believe most minerals are best
125	described by the AE relationship although the more covalent carbonates, nitrates, sulfates and
126	perchlorates fall outside the AE region. It will be shown later that an oxygen polarizability
127	correction must be made to obtain a good fit between observed and calculated polarizabilities.
128	

129

Cation and anion polarizabilities.

We assume that the total molar electronic polarizability α_T of a compound can be 130 calculated as a linear combination of individual ion electronic polarizabilities, $\alpha_{e}(ion)$, then it can 131 be expressed as 132

$$\alpha_T = \sum_{i=1}^N m_i \cdot \alpha_{e_i}(ion)$$
⁽⁵⁾

133

Here, *i* varies over the total number (N) of types of ions in the formula unit, and m_i is the number 134 of ions of type *i* in the formula unit. So, as an example, the total polarizability of albite 135 (NaAlSi₃O₈) could be calculated according to $\alpha_{T}(albite) = \alpha_{e}(Na^{+}) + \alpha_{e}(Al^{3+}) + 3\alpha_{e}(Si^{4+}) + \alpha_{e}(Al^{3+}) + \alpha_{e}(Si^{4+}) + \alpha_{e}(Al^{3+}) + \alpha_{e}(A$ 136 $8\alpha_{e}(O^{2})$. Consequently, ion polarizabilities, $\alpha_{e}(ion)$, can be used as a set of refinable parameters 137 in a least-squares procedure that minimizes the function in Eqn (9). Such sets of empirical 138 electronic ion polarizabilities were derived by several authors (e.g., Tessman and Kahn 1953; 139 Pirenne and Kartheuser 1964; Boswarva 1970; Jain et al. 1975; Pohl 1978) and most pertinent to 140 this study including primarily mineral refractive indices by Lasaga and Cygan (1982) who 141 derived a set of electronic polarizabilities from a variety of mineral polarizabilities. 142 143

144 Anion polarizabilities.

145	While cation polarizabilities are strictly additive after taking account of cation
146	coordination, anion polarizabilities are correlated with the volume occupied by the anion which
147	could be expressed by the volume of the unit cell divided by the number of anions, and therefore
148	is related by inference to the interatomic distances.
149	The various approaches that have been used by various authors to correct for the anion
150	polarizabilities are discussed in detail in SF2006. In this paper we use
151	$\alpha_{-} = \alpha_{-}^{o} \cdot 10^{-N_o/V_{an}^n} \tag{6}$
152	with α_{-} = anion polarizability, α_{-}^{o} = free-ion polarizability, and V_{an} = anion molar volume.
153	In SF2006 the exponent $n = 2/3$ was used to be consistent with Fowler and Madden (1984, 1985)
154	and Fowler and Tole (1991). In this work, we tried a variety of exponents from 0.666 to 1.33.
155	The value of $n = 1.20$ yielded the smallest deviations between observed and calculated total
156	polarizabilities and was therefore used throughout the calculations.
157	
158	Cation polarizabilities.
159	Jemmer et al. (1998) analyzed the effects of coordination number and interatomic distance
160	on anion polarizabilities using a light-scattering model with the polarizability given as $a = q/k$
161	where q is a bound charge and k being a function of the nearest-neighbor-distance R according to
	$k(R) = a_1 + a_2 CN e^{-a_3 R} + a_2 CN e^{-\sqrt{2}a_5 R}$

162
$$k(R) = a_1 + a_2 C N_{ca} e^{-a_3 R} + a_4 C N_{aa} e^{-\sqrt{2}a_5 R}$$
(7)

with
$$CN_{ca}$$
 = number of nearest neighbor ions (cation-anion interactions), CN_{aa} = number of
second nearest neighbor ions (anion-anion interactions), and a_{1-5} being constants. Neglecting
second nearest neighbors and considering the approximately linear relationship between CN and
R as shown in SF2006, eqn. (7) can be reduced to

Revision 1

$$\alpha(CN) = (a_1 + a_2 CN e^{-a_3 CN})^{-1} \tag{8}$$

with a_1 , a_2 , and a_3 being refinable parameters. The procedure and further details on the dependence of static polarizabilities on cation coordination is described in SF2006.

170

171 This work

In an earlier study, a set of empirical *static* electronic polarizabilities was developed for use in oxides, hydroxides, oxyfluorides and oxychlorides, using 534 total polarizabilities from 387 compounds. These polarizabilities, derived using the LL equation in conjunction with the polarizability additivity rule and a light scattering model of cation polarizability to give a smooth decrease of polarizability with cation coordination, were useful in calculating a variety of physical properties but they were not useful in predicting the value of the refractive index, *n*_D, at

178 589.3 nm.

Because the LL equation has a theoretical basis and the Drude and empirical GD relationships 179 show larger discrepancies (Table 2) from the ab initio polarizabilities of LiF, BeO, and MgO, we 180 181 originally chose to use the LL equation for our derivation of $n_{\rm D}$ polarizabilities. However, the LL 182 polarizabilities did not fit the refractive index data as well as the AE polarizabilities, probably 183 because of the covalent character of borates, silicates, phosphates, arsenates and sulphates [50-90%, Pauling 1939; Allred and Rochow 1958]. We also make the assumption that the LL and AE 184 185 equations are valid for $n_{\rm D}$ as well as for n_{∞} . Although Lorentz (1880) states that the LL equation 186 is valid only for light of infinite wavelengths, Born and Wolf (1975) state that Eqn (1a) is valid for light of any wavelength. 187

188 In this paper with the aid of the AE relationship, [Eqn (4a)], and the polarizability

additivity rule in conjunction with ~2600 total dynamic polarizabilities derived from the

190	refractive indices n_D , at 589.3 nm of ~1200 minerals and 675 synthetic compounds, we develop a
191	universal set of cation and anion polarizabilities. This new set of polarizabilities is useful in
192	calculating the mean refractive index of most minerals and synthetic oxides if the composition,
193	unit cell and crystal structure are known.
194	
195	
196	
197	Experimental
198	Data Base
199	The data necessary for this analysis are the refractive indices, crystal structure, unit-cell
199	The data necessary for this analysis are the remactive indices, crystal structure, unit-cen
200	dimensions and chemical composition. Refractive indices were taken from Gaines et al. (1997),
201	Deer, Howie and Zussman (1963a, 1963b, 1978, 1982, 1986, 1996), Doelter (1914, 1917),
202	Anthony et al. (2015), Hintze (1897, 1915, 1933, 1938, 1960, 1968), Hellwege and Hellwege
203	(1962, 1969, 1979, 1981), Nelson (1996), McLune (1989), Medenbach and Shannon (1997),
204	Shannon et al. (2002), Swanson et al. (1962-1981), Webmineral (2015), Winchell (1931),
205	Winchell and Winchell (1964), the powder diffraction files of the International Centre for
206	Diffraction Data (ICDD), and descriptions of minerals in mineralogical journals (up to the end of
207	2015). In general the above publications were used to locate the refractive indices and the
208	original publications. Original publications were preferred in order to provide refractive indices,
209	crystal structure, unit-cell dimensions and chemical composition on the same sample.
210	Occasionally, unit-cell dimensions and composition were taken from the Inorganic Crystal
211	Structure Database (Belsky et al. 2002).

Revision 1

212	The complete data set (DS1) consists of approximately ~4000 refractive index
213	measurements on 3000 minerals and 1000 synthetic compounds. Included in DS1 are 425
214	compounds containing lone-pair ions and 120 compounds containing uranyl ions, 650 RI
215	measurements on the same mineral, 35 corner-shared octahedral (CSO) network and chain
216	structures such as perovskite (ABO ₃), and tungsten bronze (SrNb ₂ O ₆), 40 compounds containing
217	edge-sharing Fe ³⁺ and Mn ³⁺ octahedra (ESO) such as LiFeO ₂ , goethite (FeOOH), and
218	hausmannite (Mn ₃ O ₄), 40 alkali ion conductors, and 120 sterically-strained (SS) structures with
219	strong bond valence deviations. Some minerals show considerable zoning within individual
220	grains and also significant grain-to-grain compositional differences, depending on details of
221	paragenesis. Where this is the case, there may be significant differences between the average
222	composition given and that of the grain used to determine the refractive indices, unless the
223	composition of that grain is analyzed by electron microprobe. Approximately 100 minerals and
224	compounds were deleted from DS1 because of this problem. Table 3 summarizes the reasons for
225	deletion of minerals from the dataset. Removal of the above compounds from DS1 resulted in
226	DS2 with 2600 entries that were used for derivation of the polarizability parameters. This
227	reduced dataset DS2 contains approximately 1800 minerals and 800 synthetic compounds.
228	Included in DS2 are refractive index measurements on oxides, hydroxides, oxyfluorides,
229	oxychlorides, ~200 F-containing compounds, 65 Cl-containing compounds, 115 carbonates, 20
230	nitrates, ~250 sulfates, 15 perchlorates, 650 non-hydrogen-bonded hydroxyl-containing
231	compounds, ~300 moderately strong hydrogen-bonded hydroxyl-containing compounds, and 35
232	minerals with very strong H-bonded hydroxides.

Revision 1

233	Two separate data sets, DSF, containing refractive index measurements on 36 fluorides
234	and DSCl, containing refractive index measurements on 48 chlorides were used for the
235	refinements of $\alpha(F)$ and $\alpha(CI)$, respectively.
236	The mineral and oxide data set uses the compositions, mean total polarizabilities, molar
237	anion volumes, V_{an} , and the weight given to the compound in the refinement ($w_i = \sigma_i^2$, where σ_i
238	is the estimated % error in the experimental refractive index.

239

240 **Procedure**

Calculations. The calculation and experimental procedure is similar to that described in
 SF2006. The reader can refer to that publication for further details with the proviso that the

considerations specific to "free ion" and "static polarizabilities" do not apply here.

If it is assumed that the total molar electronic polarizability α_T of a compound can be calculated (α_{calc}) as a linear combination of individual ion electronic polarizabilities, α_e (ion), according to the additivity rule [eqn (5)], then the ion polarizabilities, α_e (ion), can be used as a set of refinable parameters in a least-squares procedure that minimizes the function:

248
$$\sum_{i=1}^{M} w_i (\alpha_{obs} - \alpha_{calc})^2$$
(9)

249 where *i* varies over the number of measurements of α_{obs} for a variety of compounds and $w_i =$

250 σ_i^{-2} with σ_i being the estimated % error in the experimental refractive index.

The least-squares refinement program POLFIT originally used for dielectric polarizability analysis (Shannon 1993) was modified and improved to allow simultaneous refinement of α_e

Revision 1

- (ion) for cations and for O^2 , OH^2 , H_2O , F^2 , and CI^2 as a function of anion volume [eqns (6) and
- (8)] using a Levenberg-Marquardt algorithm (Levenberg 1944; Marquardt 1963).

255 The results of least-squares refinements were evaluated by examining the weighted variance of

256 fit (F) representing the residual sums of squares for the final parameter estimates:

257
$$F = \frac{\sum_{i} w_i [(\alpha_{obs})_i - (\alpha_{calc})_i]^2}{\sum_{i} w_i}$$
(10)

258 The square root of the weighted variance, i.e., the standard deviation, SD, of the fit is reported

- 259 further on as an estimate for the goodness of fit.
- 260 The standard deviation of a refined value of α_e (ion) is calculated as:

$$\sigma[\alpha_{a}(ion)] = M_{I}^{-1/2}$$
(11)

where $M_{\rm I}$ is the diagonal element of the inverted normal matrix corresponding to the ion

263 polarizability for ion "I" varied in the least-squares procedure.

In the further discussion we will use the deviation of observed from calculated total

polarizabilities (%) as an additional measure for the quality of the fit. In general, we just consider

deviations less than 3% to be highly significant and do not discuss compounds with deviations

greater than 3% unless they have sterically-strained structures: $Ca_{12}Al_{14}O_{33}$ (mayenite),

germanates with the melilite structure, $Ca_2Al_3Si_3O_{12}OH$ (zoisite and clinozoisite), $CaSO_4$

270 (anhydrite) or are part of a series showing systematic changes, e.g., corner-shared octahedral

- structures such as (1) perovskites including KNbO₃ and KTaO₃, (2) shared-edge covalent
- compounds with Fe^{3+} , Mn^{3+} , Y^{3+} , Ti^{4+} , Mo^{6+} and W^{6+} face and edge-shared polyhedra, and (3)
- 273 certain tungsten bronze compounds e.g., $Sr_{0.5}Ba_{0.5}Nb_2O_6$.

Revision 1

274

Anion parameters in oxides, fluorides, chlorides, hydroxides, and hydrates. As 275 276 discussed in SF2006, ab initio calculations show that anion polarizabilities in crystals are considerably reduced from their "free-ion" values and depend on interatomic distances. For 277 example α_{-} (O²⁻) is smaller in SiO₂ than in BaO. Because it is not practical in complex oxides 278 and fluorides to use interatomic distances as an independent variable, following Tessman and 279 280 Kahn (1953), we have chosen to use the molar anion volume, V_{an} . In most compounds with ions having similar polarizabilities such as Be₂SiO₄, MgAl₂O₄, or Al₂SiO₅, the system provides a 281 282 reasonably accurate correlation to mean interatomic distances, but in those compounds containing a large ion in a matrix of smaller ions, e.g., BaSi₂O₅ where V_{an} (BaO) = 42.5 Å³, 283 $V_{an}(SiO_2) = 18.8 \text{ Å}^3$, and $V_{an}(BaSi_2O_5) = 24.10 \text{ Å}^3$, some uncertainty arises. 284 285 As explained in the chapter on anion polarizabilities in the Introduction we are using eqn. (6) with n = 1.20 in the exponent as being most appropriate for n_D data. Figure 3 shows the 286 dependence of AE polarizabilities on V_{an} for simple oxides. 287 288 289 a. Oxide polarizability. The first step in the refinement procedure was to obtain an ion parameters α_{-} (O²⁻) and N₀ for 290 291 oxygen. Refinements were begun using the small cation oxides BeO, B₂O₃, SiO₂ and P₂O₅ where most of the polarizability is derived from the oxide ion. With α (Be²⁺), α (^[3]B³⁺), α (Si⁴⁺) and α 292

293 (P^{5+}) fixed at their values from SF2006, (0.22 Å³, 0.009 Å³, 0.333 Å³, and 0.266 Å³) an initial

294 value of α_{-} (O²⁻) = 1.76 Å³ with N_o = -1.80 was obtained.

Revision 1

295	Values of calculated "in-crystal" $\alpha_{-}^{o}(O^{2})$ from first-principles range from 1.90 Å ³ (MgO)
296	to 3.35 Å ³ (BaO), (Pearson et al. 1984), 1.83 Å ³ (MgO), (Fowler and Madden 1985), 1.30 Å ³
297	(BeO) (Fowler, Munn and Tole 1991) and 1.68 $Å^3$ (MgO) to 3.54 $Å^3$ (K ₂ O), (Fowler and Tole
298	1991). A more recent analysis of oxygen polarizabilities in complex aluminates, silicates, and
299	sulphates, (Ray et al.1996), indicated α_{-} (O ²⁻) = 1.3 – 2.8 Å ³ . These values are much lower than
300	"free-ion" values but are significantly larger than values of α_{-} (O ²⁻) using methods other than
301	"first-principles" methods. For example, the values of α_{-} (O ²⁻) in Table VII of SF2006 range
302	from 0.55 - 2.40 Å ³ (mean value = 1.3 Å ³) and values obtained from electric field gradient
303	measurements (Kirsch et al. 1974) in spinels range from 0.5 to 1.5 $Å^3$.
304	Using the entire data set of ~2600 polarizabilities resulted in oxygen parameters α_{-} (O ²⁻)
305	= 1.79Å ³ , N _o = -1.776 [in eqn. (6)]. Our oxygen polarizabilities ranging from 1.44 Å ³ in SiO ₂
306	(stishovite) to 1.71 Å ³ in BaO with values for BeO (1.50 Å ³), B_2O_3 (1.53 Å ³), SiO ₂ (1.58 Å ³) and
307	P_2O_5 (1.60 Å ³) fall within the ranges quoted above (1.3 Å ³ -3.35 Å ³) for the calculated $\alpha^{\circ}(O^{2-})$
308	"in-crystal" polarizabilities.

309

310 **b. Fluoride and chloride polarizabilities**.

To obtain initial anion parameters for F⁻, a set of 36 spectral refractive index measurements from 35 fluorides was used. This data set contained the F⁻ anion and 31 cations with approximate polarizabilities obtained from a general least squares fit using the entire ~2600 experimental polarizabilities. This refinement resulted in a refined value of $\alpha_{-}^{o}(F^{-}) = 0.85 \text{ Å}^{3}$ and N_o(F⁻)

- = -1.9. Further refinement using the entire data set of ~2600 polarizabilities resulted in a value of
- 316 $\alpha_{-}^{o}(F^{-}) = 0.82 \text{ Å}^{3} \text{ and } N_{o}(F^{-}) = -3.00$. The fluoride parameters $\alpha_{-}^{o}(F^{-}) = 0.82 \text{ Å}^{3} \text{ and } N_{o}(F^{-})$

Revision 1

317	= -3.00 were retained for subsequent refinements. Although these polarizabilities are valid for
318	oxyfluorides, they are not, in general, valid for the highly ionic pure fluorides.
319	Fowler and Tole (1991) found the empirical values of $0.9 - 2.4 \text{ Å}^3$. Our fluoride
320	polarizabilities ranging from 0.64 \AA^3 in LiF to 0.75 \AA^3 in KF and BaF_2 with values for CaF_2
321	(0.68 Å ³), LaF ₃ (0.66 Å ³), and Cs ₂ SiF ₆ (0.73 Å ³) are all smaller than the ranges quoted above
322	$(0.9 \text{ Å}^3 - 2.4 \text{ Å}^3)$ for the calculated α (F ⁻) "in-crystal" polarizabilities.
323	Using 48 chlorides, a value of $\alpha_{-}^{o}(Cl^{-}) = 4.0 \text{ Å}^{3}$ and $N_{o}(Cl^{-}) = -1.7$ was obtained using
324	cation values found in the fluoride refinement. The final values found to best fit the entire data
325	set of ~2600 polarizabilities data by manually adjusting $\alpha_{-}^{o}(Cl^{-})$ was 3.88 Å ³ and N _o (Cl ⁻) = -1.80.
326	Our chloride polarizabilities ranging from 3.63 Å ³ in LiCl, 3.77 Å ³ in KCl, to 3.79 Å ³ in CsCl
327	with values for Ca ₅ P ₃ O ₁₂ Cl (3.44 Å ³), BaCl ₂ (3.70) Å ³ , and K ₂ SnCl ₆ (3.69 Å ³) are in the range of
328	the Wilson and Curtis (1970) values of 2.9 - 4.8 \AA^3 and in the upper end of the ranges quoted by
329	Pearson et al. (1984), $3.1 - 3.7 \text{ Å}^3$ and by Fowler and Tole (1991), $2.9 - 3.6 \text{ Å}^3$. These
330	parameters are valid for oxychlorides but are not, in general, valid for the highly ionic pure
331	chlorides.

332

333 c. Hydroxide and hydrate polarizabilities.

Initial $\alpha_{-}^{o}(OH^{-})$ values were assumed to be similar to $\alpha_{-}^{o}(O^{2^{-}})$. Later analysis using the complete data set (omitting the 175 moderately strong H-bonded hydroxides) and refinement of all cation parameters showed a good fit for $\alpha_{-}^{o}(OH^{-})$ with the value of 1.79Å³, N₀ = -1.792, similar to α_{-}^{o} ($O^{2^{-}}$) with values of 1.79Å³, N₀.= -1.776. This value is smaller than the value of 2.03 Å³ from SF2006 (which was derived assuming the ionic L-L eqn (1a)) and the calculated "free-ion"

339	values of 2.9 - 6.5 Å ³ in Table III of SF2006. Comparison of the refined values of α_{-}^{o} (OH ⁻) to
340	those of $\alpha_{-}^{o}(O^{2-})$ in Mg(OH) ₂ [brucite] (1.59 Å ³) and MgO (1.58 Å ³) confirms the close identity
341	of $\alpha_{-}^{o}(OH^{-})$ and $\alpha_{-}^{o}(O^{2-})$ but differing from SF2006, where $\alpha_{-}^{o}(OH^{-})$ was found to be slightly
342	greater than $\alpha_{-}^{o}(O^{2})$.
343	At a later stage in the refinement process it was confirmed that using the $\alpha_{-}^{o}(OH)$ value of
344	1.79 Å ³ , for calculation of the polarizability of sassolite $[B(OH)_3]$ results in a calculated
345	polarizability that is higher than the observed polarizability by about 4%. We assumed from this
346	result that hydrogen bonded OH's have a lower polarizability, about 4-5% lower than the normal
347	OH's. Because the same effect was observed in ~175 other H-bonded hydroxyl compounds, we
348	concluded it was a general effect and thereafter assigned the values of α_{-}^{o} (OH ⁻) = 1.73Å ³ and N _o
349	= -2.04 to moderately strong hydrogen-bonded hydroxyls (d(OHO) = $2.6 - 2.9$ Å). Setting of
350	$\alpha_{-}^{o}(OH^{-}) = 1.73A^{3}$ for the many H-bonded hydroxides almost always gives better agreement than
351	the value of 1.79 A^3 .
352	Generally, minerals with OHO distances between 2.6 Å and 2.9 Å require use of α_{-}^{o} (OH
353	$(-) = 1.73 \text{ Å}^3$ However, when the hydroxyl is very strongly H-bonded, such as in cubic HBO ₂
354	(metaborite), AlOOH (diaspore), NaCa ₂ Si ₃ O ₈ (OH) (pectolite), CaHPO ₄ (monetite) and
355	KH ₂ AsO ₄ , α_{-}^{o} (OH ⁻) = 1.79 Å ³ results in a better fit. There are ~35 structures that contain very
356	strongly bonded hydroxyl ions defined here by OHO distances less than $\sim <2.6$ Å >.
357	Wiedemann (1976) shows that very strongly bonded hydroxyls behave differently from
358	moderately H-bonded hydroxyls. It is possible the different values of very strong and moderate
359	H-bonds result from the tendency of the very strong H-bonds to be more symmetrical than

moderate H-bonds.Wiedemann (1976) shows that the polarizability goes up as the bond becomesmore symmetrical.

In SF2006, setting α^{o} (H₂O) to the free ion value of 1.432 Å³ gave good results; variation of N_o resulted in a value of 0.03 indicating little or no dependence of α^{o} (H₂O) on cell volume (interatomic distance). Using the complete data set with the higher AE polarizability values and refinement of all cation parameters, a value of α^{o} (H₂O) = 1.620Å³ was obtained and, as in SF2006, with N_o = 0.0.

367

368 **Cation parameters**.

Using $\alpha_{-}^{o}(O^{2-}) = 1.79$ Å³, refinement of α (Be²⁺), α (Si⁴⁺) and α (P⁵⁺) gave initial values 0.19 Å³, 0.30 Å³, and 0.030 Å³, respectively. In SF2006, we showed that cation polarizabilities are coordination dependent so that further polarizability refinements were made for each ion in a

372 specific coordination.

The next refinement using the small ions Li⁺, Be²⁺, Mg²⁺, B³⁺, Al³⁺, Si⁴⁺, and P⁵⁺ with α_{-}^{o} 373 (O²⁻) fixed at 1.79 Å³, resulted in the provisional polarizabilities α (^[4]Li⁺) = 0.50 Å³, α (^[6]Li⁺) = 374 0.56 Å³, α (Be²⁺) = 0.18Å³, α (^[4]Mg²⁺) = 0.82Å³, α (^[6]Mg²⁺) = 0.72Å³, α (^[3]B³⁺) = 0.12 Å³, 375 α (^[4]B³⁺) = 0.04 Å³, α (^[4]Al³⁺) = 0.40Å³, α (^[5]Al³⁺) = 0.43Å³, α (^[6]Al³⁺) = 0.47 Å³, α (Si⁴⁺) = 376 0.32 Å³, and α (P⁵⁺) = 0.17 Å³. To be in accordance with other cation CN dependences, α (377 $^{[3]}B^{3+}$) of three-coordinated B (based on RI of B₂O₃) was assigned a value of 0.12 Å³ and α 378 $(^{[4]}B^{3+})$ of four-coordinated B a value of 0.03 Å³. The procedure of gradually adding the cations 379 Ca²⁺, Sr²⁺, Ba²⁺, Zn²⁺, Ga³⁺, Ge⁴⁺, Zr⁴⁺, Y³⁺, RE ions, etc., to individual refinements was 380 followed until all 76 cations in various coordinations, H₂O, and the anions F⁻, Cl⁻, OH⁻ were 381

Revision 1

included. During these refinements, α .^o(F⁻), α .^o(Cl⁻), and α ^o(H₂O) were held constant at 0.82 Å³, 382 3.88 Å³, and 1.620 Å³, respectively. In addition to B^{3+} , F^{-} , Cl^{-} , and H_2O , the polarizabilities of 383 the small cations S^{6+} and Cl^{7+} were fixed at their free-ion values of 0.011 Å³ and 0.0075 Å³ 384 (Johnson et al. 1983). In instances when there were not many examples of compounds containing 385 the cations $^{[4-9]}Ag^+$, $^{[6]}As^{5+}$, $^{[6]}Cr^{6+}$, Hg^{2+} , $^{[6]}I^{7+}$, $^{[5]}Mn^{3+}$, $^{[8],[9]}Pu^{4+}$, Rh^{3+} , and $^{[6]}Ti^{3+}$ least-squares 386 analysis was ineffective, and polarizabilities were obtained by manually adjusting α^{o}_{+} to best fit 387 388 each compound and holding them constant in subsequent refinements. As established in SF2006 for static polarizabilities, α decreases upon increasing CN and 389

for isovalent cations with similar electron configurations α increases upon increasing ionic size. We have assumed similar behavior for dynamic polarizabilities. These relationships were used to obtain approximate polarizabilities for some of the cations in the periodic table. In particular, the polarizabilities of the rare earth ions were fitted to the cube of the ionic radius, in Figure 4, in a manner similar to that shown in Figure 1 of SF2006. We have no explanation for the deviation of Y from the regular behavior shown by the rare earth ions also observed in SF2006.

Similarly, α_{+}^{o} (Hf⁴⁺) was adjusted to be smaller than α_{+}^{o} (Zr⁴⁺) in accordance with r³(Hf⁴⁺)

397 = 0.572 Å³ and
$$r^{3}(\text{Zr}^{4+}) = 0.593$$
 Å³: $\alpha_{+}^{o}({}^{[8]}\text{Hf}^{4+}) = 3.10$ Å³ and $\alpha_{+}^{o}({}^{[8]}\text{Zr}^{4+}) = 3.74$ Å³. Note,

however, the polarizabilities are not proportional to r^3 .

In a final step cation polarizabilities were adjusted to be in accordance with the results of the light-scattering (LS) model proposed by Jemmer et al. (1998) applied here in its reduced form [eqn. (8)]. When there are only a few observed data points, a_2 and a_3 of eqn. (8) are based on the two most reliable data points in each data set calculated by least squares fits. In SF2006, the free-ion value, α° , was used as a data point but this procedure is not valid for dynamic

Revision 1

404	polarizabilities. Here we use as an approximate value of α° the value obtained at high CN's
405	andionic radius-CN data from Shannon (1976). The resulting fits for Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ ,
406	Mg^{2+} , Ca^{2+} , Sr^{2+} , Ba^{2+} , Mn^{2+} , Fe^{2+} , Y^{3+} , $(Lu^{3+}-La^{3+})$, Zr^{4+} , and Th^{4+} (see Figure 5a - 5d for plots
407	of α_{AE} vs. CN for Na ⁺ , Ca ²⁺ , La ³⁺ , and Zr ⁴⁺) show reasonably good agreement with the
408	observations although dependent on the accuracy of the α° parameters.
409	The final refinement was carried out on a data set identical to the one above but which excluded
410	the above compounds with either questionable refractive indices or compositions. The results are
411	shown in the last columns of Table 4 utilizing ~2600 measurements on 1550 compounds with
412	SD = 0.273 and all deviations of observed from calculated total polarizabilities <3%. This
413	represents our most complete and accurate set of polarizabilities.
414	
415	Results and discussion
416	Polarizability values
417	Table 4 lists 270 dynamic polarizabilities for 76 cations in various coordinations
418	representing 66 elements, 5 H_xO_y species $[(H_3O)^+, (H_5O_2)^+, (H_3O_2)^-, (H_4O_4)^4, (H_7O_4)^-]$, and NH_4^+
419	derived in this study. No. is a relative measure of the reliability of the polarizability value. For
420	example, ^[4] Al (No. = 227), ^[6] Al (No. = 570), ^[7] Ca (No. = 224), ^[8] Ca (No. = 383), ^[6] Fe ²⁺ (No. = $(1 - 1)^{1/2}$)
421	248), ^[6] Mg (No. = 403), ^[6] Mn ²⁺ (No. = 239), ^[4] P ⁵⁺ (No. = 421), ^[4] Si(No. = 1004) and ^[4] S ⁶⁺ (No.
422	= 304), are found more commonly in minerals than most other ions and their derived
423	polarizabilities are therefore more reliable.
424	

425 Calculation of polarizability and mean refractive index

Revision 1

426	Eqn (4a) can be used to calculate the total polarizability α_{AE} of a mineral and, vice versa,
427	the refractive index $n_{\rm D}$ at $\lambda = 589.3$ nm can be calculated from eqn (4b). Alternatively, where the
428	total polarizability $\alpha_{AE}(calc)$ can be calculated from the sum of ion polarizabilities listed in Table
429	4. The ion polarizabilities in Table 4 in conjunction with accurate chemical analyses and
430	structure determinations, are effective in calculating the total polarizability (Eqn 4a) and the
431	mean refractive index (Eqn 4b). It should be emphasized that to obtain reliable values of α_{AE} and
432	<n _D $>$, accurate chemical analyses with sums that add up to stoichiometric mineral compositions
433	are important as is accurate determination of cation coordination numbers. In some cases cation
434	coordination, especially of alkaline and alkaline earth ions is not well-defined. In general, higher
435	coordinations seem to be more satisfactory yielding a better fit between observed and calculated
436	polarizabilities. A further variable is H ₂ O content of hydrates. Generally, the ideal H ₂ O content is
437	satisfactory.
438	Table 6 lists values of total polarizability, $\alpha_{AE}(obs)$ and $\alpha_{AE}(calc)$, and mean refractive
439	index, $$ (obs) and $$ (calc) for 54 common minerals. Generally, discrepancies, Δ , between
440	observed and calculated polarizabilities are $< 3\%$ and between observed and calculated mean
441	refractive indices, $\langle n_D \rangle$, are $\langle 2\%$. Some common minerals such as calcite, dolomite, anhydrite

442 and gypsum were not included in this list because of steric strain caused by overbonded Ca or

443 Mg. Table A1 [supplementary material²] gives a more complete list of > 600 minerals and

synthetic compounds with corresponding observed and calculated total polarizabilities, $\Delta < 3\%$,

and observed and calculated refractive indices with $\Delta < 2\%$. In Table 6 we have listed values of

446 $\langle n_D \rangle$ (calc) taken from Gladstone-Dale calculations in Webmineral (2015). In many cases, these

447 values are quite accurate but in instances of minerals with variable composition, especially those

² Deposit items are available on the American Mineralogist web site (http://www.minsocam.org or current web address)

Revision 1

448	containing Fe, there is a wide range of calculated $\langle n_D \rangle$: augite (1.71-1.8), and radite (1.73-1.81),								
449	diopside (1.67-1.73), enstatite (1.63-1.68), epidote (1.82-1.91), jarosite (1.76-1.87), and								
450	magnesiohornblende (1.63-1.74) (Webmineral, 2015). To illustrate the application of ion								
451	polarizabilities to calculation of complex mineral total polarizabilities and $\langle n_D \rangle$, we show the								
452	data for 8 minerals (Krivovichev 2013) in Table 7 where the mean deviation of $< n_D >$ (calc) from								
453	$< n_D > (obs) is 0.3\%.^3$								
454	The values, α_{AE} and $\langle n_D \rangle$ can be used for minerals when RI's are not known or to compare								

455 with experimental $\langle n_D \rangle$ values. Alternatively, they could also be used in place of Gladstone-

456 Dale Compatibility Indices where the reader takes $V_{\rm m}$ from mineral data and a calculated value of

457 α_{AE} using ion polarizabilities from Table 4.

458

459 Comparison of polarizability analysis with Gladstone-Dale Compatibility Indices 460 The Gladstone-Dale compatibility index ($CI = 1 - (K_p/K_c)$) allows a measure of the internal consistency of the mean index of refraction, the density and the chemical composition 461 using a set of general oxide parameters to define a specific *chemical* refractivity $K_c = \sum_i \frac{k_i p_i}{100}$ where 462 k_i = Gladstone-Dale constants and p_i = weight percentages. This quantity, K_c, is then compared 463 to an experimental *physical* value defined as $K_p = (\langle n \rangle - 1)/(\text{density})$ (Mandarino 1979, 1981). 464 465 The "compatibility" measures the agreement between the two sides of the equation (n-1)/d = $\Sigma k_i p_i$ where "superior" < 2%; excellent 2% - 4%; good 4% - 6%; fair 6% - 8% and poor >8%. 466 The GD compatibility index has been used often in this regard and to predict the mean refractive 467

 $^{^{3}}$ A manuscript in preparation, "Refractive Indices of Minerals and Synthetic Compounds", (Shannon, Lafuente, Shannon, Downs and Fischer) will describe: composition, mineral name, location, refractive indices, mean refractive index, V_m , V_{anion} and reference CODEN for 2000 minerals and 1000 synthetic compounds.

Revision 1

468	index, $\langle n_D \rangle$, when it has not been possible to measure one or more of the refractive indices. It is
469	a required calculation for approval of new mineral species (Nickel and Grice 1998).
470	However, Bloss et al. (1983) pointed out that the Gladstone-Dale constants, k_i , are
471	<i>structure dependent</i> and that the best values of K_c are derived from values of k_i that are specific
472	for each mineral group as demonstrated in their examples with the silica polymorphs, and alusite,
473	sillimanite, kyanite, kanonaite and plagioclase. They pointed out that, even for the simple SiO_2
474	composition, different structures with varying degrees of covalency require different k_n values
475	that range from 0.188 for stishovite to 0.207 for quartz to 0.222 for silicalite, thus indicating that
476	the greatest weakness of the CI as a measure of internal consistency of physical and chemical
477	data, is the variability of the Gladstone-Dale constants, k_i .
478	Using Mandarino's (1981) values of the Gladstone-Dale constants for nesosilicates, the
479	deviations Δ ($\langle n_D \rangle$, for andalusite, sillimanite and kyanite, respectively, using the Gladstone-
480	Dale values (Mandarino 1981) of $k(SiO_2) = 0.208$ and $k(Al_2O_3) = 0.176$ are 2.5%, 3.2% and
481	2.0%. Using a different set of Gladstone-Dale values $k(SiO_2) = 0.285$ and $k(Al_2O_3) = 0.153$
482	specific to andalusite, sillimanite and kyanite, Bloss et al. (1983) found $\Delta < n_D >$ are 0.6%, 0.5%
483	and 0.7% respectively. These values compare well to the $\Delta < n_D >$ values derived from
484	polarizability analysis in Table A1 (see footnote 2) for andalusite, sillimanite and kyanite of
485	0.2%, 0.5% and 0.1%, respectively. Using polarizability analysis with $\alpha_e(Si) = 0.283 \text{ Å}^3$ from
486	Table 4, deviations, Δ (< <i>n</i> _D >), of obs and calc refractive indices for the silica polymorphs,
487	quartz, cristobalite, coesite, keatite, melanophlogite and stishovite (Tables A1 and 6) are not
488	greater than 0.5%.
489	Polarizability analysis provides similar information on minerals and synthetic compounds

490 but it uses values of empirical ion polarizabilities in conjunction with the chemical composition

491	and crystal structure. Thus, we replace the general oxide parameters, k_i , by specific ion										
492	parameters, α_e , evaluated for specific ion coordinations and apply them to known crystal										
493	structures with specific compositions. This procedure solves, to a large degree, the mineral group										
494	problem noted by Bloss et al. (1983).										
495	Eggleton (1991) revised the Gladstone-Dale constants for H ⁺ , Li ⁺ , Na ⁺ , K ⁺ , Be ²⁺ , Mg ²⁺ , Ca ²⁺ ,										
496	Mn ²⁺ , Fe ²⁺ , Al ³⁺ , Mn ³⁺ , Fe ³⁺ , Cr ³⁺ , Ti ³⁺ , Si ⁴⁺ , and Ti ⁴⁺ using data from 574 silicates [94 garnets,										
497	156 orthosilicates, sorosilicates and cyclosilicates, 54 pyroxenes, 129 amphiboles, 74 layer										
498	silicates and 65 framework silicates] to incorporate the dependence upon the cation coordination										
499	number. These revised values allowed 533 of these silicates (93%) to fall in the Superior										
500	category (Mandarino 1981) with better than 2% agreement. Our results with coordination-										
501	dependent polarizabilities are consistent with Eggleton's findings. Eggleton's results with 574										
502	silicates are significantly better than the Mandarino (1981) results on 505 silicates where only										
503	70% fell in the Superior category. With the exceptions of ^[6] Mg ²⁺ and ^[4] Si ⁴⁺ Eggleton's constants										
504	varied significantly from Mandarino's constants but he did not specify what the corresponding										
505	agreement for his silicates was using Mandarino's constants. Eggleton also stated that his new										
506	GD constants yield agreement between observed and calculated mean refractive indices to within										
507	4% but did not show any of these data. These error limits are, however, significantly greater than										
508	indicated for polarizability analysis of the large number of minerals in Table 6 and Table A1 (see										
509	footnote 2).										
510	In Table 8 we compare the polarizability analysis results for 68 examples for which we										
511	have polarizability data to 68 of the 205 examples tabulated as fair or poor by Mandarino (2006,										
512	2007). Polarizabilities with $\Delta > 3\%$ agree with GD values in 32/68 instances. This is to be										
513	expected when there is an error in either the composition, crystal structure or the RI. In the										
	24										

Revision 1

514	remaining 35 examples, polarizability values are <3%. Many minerals that were deemed to have
515	poor compatibilities showed excellent fits with polarizabilities. The GD poor compatibilities may
516	be the result of different compositions used in the CI calculations. Many minerals have variable
517	compositions and we have no information as to which composition was used in Mandarino's CI
518	calculations. In these instances the disagreement may also result from incorrect GD constants k_n ,
519	as indicated by Eggleton's data and as observed by Bloss et al. (1983) for andalusite, kanonaite
520	and plagioclases. Polarizability calculations, in contrast, are generally made on minerals with
521	specific compositions, unit-cell dimensions and cation coordinations.

522

523 **Deviations from polarizability additivity**

524 In SF2006, systematic deviations from additivity of static polarizabilities were observed in 525 (1) sterically-strained (SS) structures and (2) crystal structures containing corner-shared 526 octahedra (CSO). Similarly, systematic deviations from additivity of dynamic polarizabilities are 527 observed in (SS) and (CSO) structures in this study. However, in addition to these two 528 categories, we also observe systematic deviations in (1) crystal structures containing edge-shared Fe³⁺, Mn³⁺, Ti⁴⁺, Mo⁶⁺ and W⁶⁺ octahedra (ESO) and (2) fast-ion conductors. Examples of the 529 discrepancies in the refinement using polarizability analysis are associated with: (1) sterically-530 531 strained (SS) structures; (2) CSO network and chain structures such as perovskite (ABO₃), and tungsten bronze (SrNb₂O₆) structures; and (3) alkali-rich oxysalts that are frequently associated 532 533 with fast-ion conduction. Examples of (1) are Na_{4.4}Ca_{3.8}Si₆O₁₈ (combete) $\Delta = 6\%$, Ca₃Mg₂Si₂O₈ 534 (merwinite) $\Delta = 4\%$, and the structural families MM'AlO₄ (M = Ca, Sr; M' = Y,La, Nd) $\Delta =$ ~7.5% and Ca₂MSi₂O₇, M = Mg, Zn (åkermanite), Ca₂M₂'SiO₇, M = Al, Ga (gehlenite). 535 Examples of (2) are MTiO₃ (M = Ca, Sr, Ba) Δ = 9-12%, KNbO₃, Δ = 10%, KTaO₃ Δ = 11% and 536

Revision 1

537	Ba _{.5} Sr _{.5} Nb ₂ O ₆ , Δ = 8%. Examples of (3) are the compounds Li ₂ B ₄ O ₇ , Δ = -6%, Li ₂ CO ₃ , Δ = -								
538	11%, Li ₂ Ti ₃ O ₇ (ramsdellite) Δ = -5%, Li ₃ PO ₄ , Δ = -7%, and Na ₂ SO ₄ , Δ = -7%. These systematic								
539	deviations from additivity will be discussed in more detail in a further publication.								
540	Implications								
541	Careful evaluation of more than 2600 sets of refractive indices of minerals and compounds								
542	by regression analyses yielded a unique set of individual electronic polarizabilities of ions. The								
543	polarizabilities can be used for the interpretation of optical properties. Specifically the following								
544	implications arise from this work:								
545	• Refractive indices of minerals and synthetic crystalline compounds can be predicted								
546	within less than 2% deviation from experimentally determined values.								
547	• The contribution of cations in various valence states to the optical properties can be								
548	inferred from the set of polarizabilities. Thus, details in the chemical composition of								
549	minerals like the distribution of Fe^{2+} and Fe^{3+} can be determined.								
550	• The contribution of cations in various coordinations can be inferred from the set of								
551	polarizabilities. Thus, the data set can be used to determine possible coordinations of								
552	cations in the crystal structure.								
553	• The contribution of the anions to the optical properties of a compound can be determined								
554	from an analysis of the polarizability using an exponential function with two parameters								
555	for each anion and the molar volume of the anion per formula unit.								
556	• The polarizability analysis is a more reliable measure of the compatibility (as defined by								
557	Mandarino 1979, 1981) of a mineral's refractive index, density, and chemical								
558	composition.								

- The set of electronic polarizabilities can be used to design new materials with specific
- 560 optical properties.

561

Revision 1

563	Acknowledgements
564	We thank the Deutsche Forschungsgemeinschaft for financial support under grant
565	FI442/22-1. We gratefully acknowledge William Birch, George Harlow, Tony Kampf, Brian
566	Kosnar, Stuart Mills, Ulf Hålenius, and Ekkehart Tillmanns for help with the search for rare
567	minerals, Gabriele Ebert for providing hundreds of reprints of mineral literature, Bob Downs, Ed
568	Grew, Joel Grice, Frank Hawthorne, David Hobart, Tony Kampf, Olaf Medenbach, George
569	Rossman, and Elena Sokolova for providing innumerable data and advice on minerals and
570	mineralogy, Ruth Shannon for tabulation and sorting of much of the data, and Manfred Burianek
571	for providing single crystals for optical studies. The explanation for the many polarizability
572	deviations of minerals was provided by Frank Hawthorne and Elena Sokolova. We are especially
573	indebted to Frank Hawthorne, George Rossman and Elena Sokolova for encouragement without
574	which this work would never have been completed. We thank Mickey Gunter and an anonymous
575	reviewer for their comments on the manuscript.
576	
577	References cited
578	Abe, M., Nakagawa, H., Gomi, M., and Nomura, S. (1980) A reflection method of determining
579	birefringence and refractive index in orthorhombic crystal. Japanese Journal of Applied
580	Physics, 19, 1077-1082.
581	Allred, A.L. and Rochow, E.G. (1958) A scale of electrongativity based on electrostatic force.
582	Journal of Inorganic and Nuclear Chemistry, 5,264-268.
583	Anderson, O.L. (1975) Optical Properties of rock-forming minerals derived from atomic
584	properties. Fortschritte der Mineralogie, 52, 611-629.

585	Anderson, O.L. and Schreiber, E. (1965) The relation between refractive index and density of
586	minerals related to the earth's mantle. Journal of Geophysical Research, 70, 1463-1471.
587	Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C., Eds. (2015) Handbook of
588	Mineralogy, Mineralogical Society of America. Chantilly, VA 20151-1110, USA.
589	John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh, and Monte C. Nichols, Eds.,
590	Handbook of Mineralogy, Mineralogical Society of America, Chantilly, VA 20151-1110,
591	USA. http://www.handbookofmineralogy.org/.
592	Armbruster, T., Oberhänsli, R., and Kunz, M. (1993) Taikanite, BaSr ₂ Mn ³⁺ ₂ O ₂ [Si ₄ O ₁₂], from the
593	Wessels mine, South Africa: A chain silicate related to synthetic Ca ₃ Mn ³⁺ ₂ O ₂ [Si ₄ O ₁₂]
594	American Mineralogist, 78,1088-1095.
595	Basso, R., Lucchetti, G., Zefiro, L., and Palenzona, A. (2000) Cerchiaraite, a new natural Ba-
596	Mn-mixed anion silicate chloride from the Cerchiara mine, Northern Apennines, Italy.
597	Neues Jahrbuch für Mineralogie Monatshefte, 2000, 373-384.
598	Belsky, A., Hellenbrandt, M., Karen, V. L., and Luksch, P. (2002) New developments in the
599	Inorganic Crystal Structure Database (ICSD): accessibility insupport of materials research
600	and design. Acta Crystallographica, B58, 364–369.
601	Bloss, F. D., Gunter, M., Su, S-C., and Wolfe, H.E.(1983) Gladstone-Dale constants: a new
602	approach. Canadian Mineralogist, 21, 93-99.
603	Bonaccorsi, E. (2004) The crystal structure of giuseppettite, the 16-layer member of the
604	cancrinite-sodalite group. Microporous and Mesoporous Materials, 73, 129-136.
605	Born, M. and Wolf, E. (1975) Principles of Optics. Fifth Ed. Pergamon Press. Oxford, England.
606	Boswarva, I.M. (1970) Semiempirical calculations of ionic polarizabilities and van der Waals
607	potential coefficients for thealkaline-earth chalcogenides. Physical Review B1, 1698-1701. 29

Revision 1

608	Callegari, A., Caucia, F., Mazzi, F., Oberti, R., Ottolini, L., and Ungaretti, L, (2000) The crystal
609	structure of peprossiite-(Ce), an anhydrous REE and Al mica-like borate with square-
610	pyramidal coordination for Al. American Mineralogist, 85, 586-593.
611	Chernov, A.N., Maksimov, B.A., Ilyukhin, V.V., and Belov, N.V. (1970) Crystalline structure of
612	monoclinic modification of K, Zr-diorthosilicate (K2ZrSi2O7). Doklady Akademii Nauk
613	SSSSR, 193,1293-1296.
614	Deer, W.A., Howie, R.A., and Zussman, J. (1963a) Rock-Forming Minerals. vol. 2: Chain
615	silicates.Longman Green & Co., London, England.
616	Deer, W.A., Howie, R.A, and Zussman, J. (1963b) Rock-Forming Minerals. vol.4: Framework
617	silicates. Longman, Green & Co., London, England.
618	Deer, W.A., Howie, R.A, and Zussman, J. (1978) Rock-Forming Minerals. vol. 2A: Single chain
619	silicates, 2 nd ed. Halstead Press, John Wiley, N.Y.
620	Deer, W. A., Howie, R.A., and Zussman, J. (1982) Rock-Forming Minerals Vol.1A.
621	Orthosilicates, 2 nd ed. Longman House, Burnt Hill, Harlow, Essex CM20 2JE, England.
622	Deer, W.A., Howie, R.A., and Zussman, J. (1986) Rock-Forming Minerals Vol.1B. Di-silicates
623	and ring silicates, 2 nd ed. Longman Group, Longman House, Burnt Hill, Harlow, Essex
624	CM20 2JE, England.
625	Deer, W.A., Howie, R.A., and Zussman, J. (1996) Rock-Forming Minerals. vol.5B: Non-
626	silicates: Sulphates, Carbonates, Phosphates, Halides. Longman, Essex CM20 2JE,
627	England.
628	DeWaal, S.A. and Calk, L.C. (1973) Nickel minerals from Barberton, South Africa:VI.
629	Liebenbergite, a nickel olivine. American Mineralogist, 58, 733-735.

630	Dimitrov, V. and Sakka, S. (1996) Electronic oxide polarizability and optical basicity of simple
631	oxides.I. Journal of Applied Physics, 79,1736-1740.
632	Doelter, C.(1914) Handbuch der Mineralchemie, Band II. Abteilung 1. Verlag Th. Steinkopff,
633	Dresden (in German).
634	Doelter, C. (1917) Handbuch der Mineralchemie, Band II. Abteilung 2. Verlag Th. Steinkopff,
635	Dresden (in German).
636	Eggleton, R.A. (1991) Gladstone-Dale constants for the major elements in silicates: coordination
637	number, polarizability and the Lorentz-Lorentz relation. Canadian Mineralogist, 29, 525-
638	532.
639	Feklichev, V.G. (1992) Diagnostic Constants of Minerals, Mir Publishers, CRC Press, London.
640	Fitzpatrick, J. and Pabst, A. (1986) Thalenite from Arizona. American Mineralogist, 71, 188-
641	193.
642	Fowler, P.W. and Madden, P.A. (1984) In-crystal polarizabilities of alkali and halide ions.
643	Physical Review, B29, 1035-1042.
644	Fowler, P.W. and Madden, P.A. (1985) In-crystal polarizability of O ²⁻ . Journal of Physical
645	Chemistry, 89, 2581- 2585.
646	Fowler, P.W., Munn, R.W., and Tole, P. (1991) Polarisability of the oxide ion in crystalline BeO.
647	Chemical Physics Letters, 176, 439-445.
648	Fowler, P.W. and Tole, P. (1991) Anionic polarisability in halides and chalcogenides. Reviews

- 649 of Solid State Science, 5, 149-176.
- Gaines, R.V., Skinner, H.C.W., Foord, E.E., Mason, B., and Rosenzweig, A. (1997) Dana's New
- 651 Mineralogy, The System of Mineralogy of James Dwight Dana and Edward Salisbury
- 652 Dana, 8th ed. John Wiley & Sons, N.Y.

Revision 1

653	Gladstone.	, J.H. and Dale	, T.P. (1	863)	Researches on	the refraction	ı, dis	persion.	, and	sensitivene	SS
-----	------------	-----------------	-----------	------	---------------	----------------	--------	----------	-------	-------------	----

- of liquids. Philosophical Transactions of the Royal Society of London, 153, 317-343.
- Gunter, M. and Bloss, F.D. (1982) Andalusite-kanonaite series: lattice and optical parameters.
- American Mineralogist, 67, 1218-1228.
- Gunter, M.E. and Ribbe, P.H. (1993) Natrolite group zeolites: correlations of optical properties
 and crystal chemistry. Zeolites, 13,435-440.
- Han, X., Lahera, D.E., Serrano, M.D., Cascales, C., and Zaldo, C. (2012) Ultraviolet to infrared
- refractive indices of tetragonal double tungstate and double molybdate laser crystals.
- 661 Applied Physics, B108, 509-514.
- Heaton, R.J., Madden, P.A., Clark, S.J., and Jahn, S. (2006) Condensed phase ionic
- 663 polarizabilities from plane wave density functional theory calculations. Journal of

664 Chemical Physics, 125, 144104-1-144104-10.

- Hellwege, K.H. and Hellwege, A.M. Eds., (1962) Landolt-Börnstein, Band II. Teil 8. Optische
 Konstanten, Springer-Verlag, Berlin (in German).
- Hellwege, K.N., and Hellwege, A.M. Eds., (1969) Landolt-Börnstein, New Series, Group III.
- 668 Crystal and Solid State Physics, Vol. 2. Springer-Verlag, Berlin.
- 669 Hellwege, K.N., and Hellwege, A.M. Eds., (1979) Landolt-Börnstein, New Series, Group III.

670 Crystal and Solid State Physics, Vol. 11. Springer-Verlag, Berlin.

- Hellwege, K.N., and Hellwege, A.M. Eds., (1981) Landolt-Börnstein, New Series, Group III,
- 672 Crystal and Solid State Physics, Vol. 16a: Oxides. Springer-Verlag, Berlin.
- Henmi, C., Kusachi, I, and Henmi, K. (1995) Morimotoite, Ca₃TiFe²⁺Si₃O₁₂, a new titanian
- garnet from Fuka, Okayama Prefecture, Japan. Mineralogical Magazine, 59, 115-120.

- Hess, F.L. and Henderson, E.P. (1931) Fervanite, a hydrous ferric vanadate. American
- 676 Mineralogist, 16, 273-277.
- Hintze, C. (1897) Handbuch der Mineralogie, Band II. Silcate und Titanate. Verlag Veit & Co.,
- 678 Leipzig (in German).
- Hintze, C. (1915) Handbuch der Mineralogie, Band I, Abteilung 2. Verlag-Veit & Co., Leipzig
 (in German).
- Hintze, C. (1933) Handbuch der Mineralogie, Band I. Abteilung 4. Walter De Gruyter & Co.,
 Berlin (in German).
- Hintze, C. (1938) Handbuch der Mineralogie, Ergänzungsband I. Neue Mineralien. Walter De
- 684 Gruyter & Co., Berlin (in German).
- Hintze, C. (1960) Handbuch der Mineralogie, Ergänzungsband II. Neue Mineralien und neue
 Mineralnamen. Walter De Gruyter & Co., Berlin (in German).
- 687 Hintze, C, (1968) Handbuch der Mineralogie, Ergänzungsband III, Neue Mineralien und neue
- 688 Mineralnamen. Walter De Gruyter & Co., Berlin (in German).
- Jaffe, H.W. (1988) Crystal Chemistry and Refractivity. Cambridge University Press, Cambridge,
 England.
- Jain, J.K., Shanker, J., and Khandelwal, D.P. (1975) Electronic polarizabilities and sizes of ions
 in alkali chalcogenide crystals. Philosophical Magazine, 32, 887-889.
- Jemmer, P., Fowler, P.W., Wilson, M., and Madden. P.A. (1998) Environmental effects on anion
- 694 polarizability: variation with lattice parameter and coordination number. Journal of
- 695 Physical Chemistry, A102, 8377-8385.
- Johnson, W.R., Kolb, D., and Huang, K.N. (1983) Electric-dipole, quadrupole and magnetic-
- dipole susceptibilities and shielding factors for closed-shell ions of the He, Ne, Ar,

698	Ni(Cu ⁺), Kr, Pb, and Xe isoelectronic sequences. Atomic Data and Nuclear Data Tables,
699	28, 333-340.
700	Kirsch, R., Gérard, A., and Wautelet, M. (1974) Nuclear quadrupole couplings and polarizability
701	of the oxygen ion in spinel-structure compounds. Journal of Physics, C7, 3633-3644.
702	Krivovichev, S.V. (2013) Structural complexity of minerals: information storage and processing
703	in the mineral world. Mineralogical Magazine, 77, 275-326.
704	Larsen, E.S. (1909) Relations between the refractive index and the density of some crystallized
705	silicates and their glasses. American Journal of Science, 28, 263-274.
706	Lasaga, A.C. and Cygan, R.T. (1982) Electronic and ionic polarizabilities of silicate minerals.
707	American Mineralogist, 67, 328-334.
708	Levenberg, K. (1944) A method for the solution of certain non-linear problems in least
709	squares. The Quaterly of Applied Mathematics, 2, 164-168.
710	Lorentz, H.A. (1880) Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des
711	Lichtes and der Körperdichte. Annalen der Physik und Chemie, 9, 641-665.
712	Lorenz, L. (1880) Ueber die Refractionsconstante. Annalen der Physik und Chemie, 11, 70-103.
713	Mandarino, J.A. (1976) The Gladstone-Dale relationship. Part I: Derivation of new constants.
714	Canadian Mineralogist, 14, 498-502.
715	Mandarino, J.A. (1978) The Gladstone-Dale relationship. Part II. Trends among constants.
716	Canadian Mineralogist, 16, 169-174.
717	Mandarino, J.A. (1979) The Gladstone-Dale relationship. Part III. Some general applications.
718	Canadian Mineralogist, 17, 71-76.
719	Mandarino, J.A. (1981) The Gladstone-Dale relationship. Part IV. The compatibility concept and
720	its application. Canadian Mineralogist, 19, 441-450.
	34

- Mandarino, J.A. (2006) The Gladstone-Dale compatibility of arsenate minerals. Periodico di
 Mineralogia,75,167-174.
- 723 Mandarino, J.A. (2007) The Gladstone-Dale compatibility of minerals and its use in selecting
- mineral species for further study. Canadian Mineralogist, 45,1307-1324.
- Marler, B. (1988) On the relationship between refractive index and density for SiO₂-polymorphs.
- 726 Physics and Chemistry of Minerals, 16, 286-290.
- 727 Marquardt, D. (1963) An algorithm for least-squares estimation of nonlinear parameters. Journal
- of the Society for Industrial and Applied Mathematics, 11, 431-441.
- 729 Mazzi, F. and Tadini, C. (1981) Giuseppettite, a new mineral from Sacrofano (Italy), related to

the cancrinite group. Neues Jahrbuch für Mineralogie Monatshefte, 103-110.

- 731 McClune, W.F., Ed. (1989) JCPDS 1989 reference, Powder Diffraction File, 1989; JCPDS-
- 732 International Centre for Diffraction Data. Swarthmore, PA.
- 733 McDonald, A.M and Chao, G.Y. (2004) Haineaultite, a new hydrated sodium calcium
- titanosilicate from Mont Saint-Hilaire, Quebec: description, structure determination and
- genetic implications. Canadian Mineralogist, 42, 769-780.
- 736 McDonald, A.M and Chao, G.Y. (2010) Rogermitchellite,
- 737 Na₁₂(Sr,Na)₂₄Ba₄Zr₂₆Si₇₈(B,Si)₁₂O₂₄₆(OH)₂₄•18H₂O, a new mineral species from Mont
- 738 Saint-Hilaire, Quebec: description, structure determination and relationship with HFSE-
- bearing cyclosilicates. Canadian Mineralogist, 48, 267-278.
- 740 Medenbach, O. and Shannon, R.D. (1997) Refractive indices and optical dispersion of 103
- synthetic and mineral oxides and silicates measured by a small-prism technique. Journal of
- the Optical Society of America, B14, 3299-3318.

743	Medenbach, O., Maresch, W.V., Mirwald, P.W., and Schreyer, W. (1980) Variation of refractive
744	index of synthetic Mg-cordierite with H ₂ O content. American Mineralogist, 65, 367-373.
745	Menchetti, S. and Sabelli, C. (1976) The halotrichite group: the crystal structure of apjohnite.
746	Mineralogical Magazine, 40, 599-608.
747	Miura, H., Suzaki, H., and Kikuchi, T. (1994) Synthesis and properties of the system Al ₂ (SO ₄) ₃ -
748	Fe ₂ (SO ₄) ₃ . Mineralogical Journal, 17, 42-45.
749	Nelson, D.F., Ed. (1996) Landolt-Börnstein, New Series, Group III, Condensed Matter, Vol. 30.
750	High frequency properties of dielectric crystals.Springer-Verlag, Berlin.
751	Németh, P., Khomyakov, A.P., Ferraris, G., and Menshikov, Y.P. (2009) Nechelyustovite, a new
752	heterophyllosilicate mineral, and new data on bykovaite: a comparative TEM study.
753	European Journal of Mineralogy, 21, 251-260.
754	Nesse, W.D. (2013) Introduction to Optical Mineralogy. 2 nd Ed. Oxford University Press. N.Y.,
755	Oxford.
756	Nickel, E. H. and Grice, J. D. (1998) The IMA commision on new minerals and mineral names:
757	Procedures and guidelines on mineral nomenclature, 1998. Canadian Mineralogist, 36,
758	913-926.
759	Palmer, J.L. and Gunter, M.E. (2000) Optical properties of natural and cation-exchanged
760	heulandite group zeolites. American Mineralogist, 85, 225-230.
761	Pauling, L. (1939) The Nature of the Chemical Bond, 1 st Ed. Cornell University Press, Ithaca,
762	N.Y.
763	Pearson, E.W., Jackson, M.D. and Gordon, R.G. (1984) A theoretical model for the index of
764	refraction of simple ionic crystals. Journal of PhysicalChemistry, 88, 119-128.

- Peters, Tj. (1965) A water-bearing andradite from the Totalp Serpentine (Davos, Switzerland).
- American Mineralogist, 50, 1482-1486
- Pirenne, J. and Kartheuser, E. (1964) On the refractivity of ionic crystals. Physica, 30,2005-
- 768 2018.
- Pohl, D. (1978) Electronic polarizabilities of ions in doubly refracting crystals. Acta
- 770 Crystallographica A34, 574-578.
- Qin, F.,Li, R.K. (2011) Predicting refractive indices of the borate optical crystals. Journal of
 Crystal Growth, 318, 642-644.
- Ray, D., Anton, H., Schmidt, P.C. and Weiss, Al. (1996) A theoretical modeling of the static and
- dynamic polarizability of O²⁻ in large and complex oxides. Zeitschrift für Naturforschung.
 51A, 825-830.
- Renn, W. (1974) Electronic wave functions of F- and F'-centers in ionic crystals. Phys. Cond.

777 Matter, 17, 233-248.

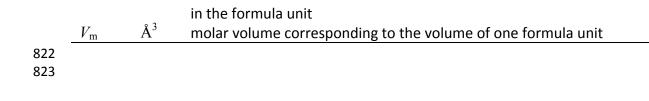
- 778 Ritland, H. N. (1955) Relation between refractive index and density of a glass at constant
- temperature. Journal of the American Ceramic Society, 38, 86-88.
- 780 Selkregg, K.R. and Bloss, F.D. (1980) Cordierites: compositional controls of Δ , cell parameters,
- and optical properties. American Mineralogist, 65, 522-533.
- 782 Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic
- distances in halides and chalcogenides. Acta Crystallographica, A32, 751-767.
- 784 Shannon, R.D. (1993) Dielectric polarizabilities of ions in oxides and fluorides. Journal of
- 785 Applied Physics, 73, 348-366.
- 786 Shannon, R.D. and Fischer, R.X. (2006) Empirical electronic polarizabilities in oxides,
- hydroxides, oxyfluorides, and oxychlorides. Physical Review B73, 235111/1-28

788	Shannon, R.D., Shannon, R.C., Medenbach, O., and Fischer, R.X. (2002) Refractive index and
789	dispersion of fluorides and oxides. Journal of Physical and Chemical Reference Data, 31,
790	931-970.

- Simmons, W.B., Pezzotta, F., Falster, A.U., and Webber K.L. (2001) Londonite, a new mineral
- species: the Cs-dominant analogue of rhodizite from the Antandrokomby granitic
- pegmatite, Madagascar. Canadian Mineralogist, 39, 747-755.
- Smith, M.L. and Frondel, C. (1968) The related layered minerals ganophyllite, bannisterite, and
 stilpnomelane. Mineralogical Magazine, 36, 893-913.
- Sokolova, E. and Hawthorne, F.C. (2001) The crystal chemistry of the $[M_{3\varphi_{11}-14}]$ trimeric
- structures: from hyperagpaitic complexes to saline lakes. Canadian Mineralogist, 39, 12751294.
- Sokolova, E., Hawthorne, F.C., Khomyakov, A.P.(2005) Polyphite and sobolevite: revision of

their crystal structures. Canadian Mineralogist, 43, 1527-1544.

- Swanson, H.E., Morris, M.C., Evans, E.H. and Ulmer, L. (1962-1981) Standard X-ray 802
- B03 Diffraction Patterns, NBS Monograph 25, Sections 1-18.
- Tessman, J.R. and Kahn, A.H. (1953) Electronic polarizabilities of ions in crystals. Physical
 Review, 92, 890-895.
- 807 Webmineral (2015) <u>http://www.webmineral.com</u>.
- 808 Wiedemann, E.G. (1976) In P. Schuster, G. Zundel, and C. Sandorfy, Eds., The Hydrogen Bond -
- 809 Recent Developments in Theory and Experiments. I. Theory, North-Holland, Amsterdam.
- 810 Ch. 5, pp. 245-294.


- 811 Wilson, J.N., and Curtis, R.M. (1970) Dipole polarizabilities of ions in alkali halide crystals.
- Journal of Physical Chemistry, 74, 187-196.

Revision 1

- 813 Winchell, A.N. (1931) The Microscopic Characters of Artificial Inorganic Solid Substances or
- 814 Artificial Minerals. 2nd ed.J.Wiley, New York.
- 815 Winchell, A.N. and Winchell, H. (1964) The Microscopical Characters of Artificial Inorganic
- 816 Solid Substances. Optical Properties of Artificial Minerals. Academic Press, New York.
- Xia, M.J, Li, R.K. (2013) Structure and optical properties of a noncentrosymmetric borate
- 818 RbSr₄(BO₃)₃. Journal of Solid State Chemistry 197, 366-369.

820 821			ed symbols of parameters used here. "Total" refers to the polarizability of contrast to individual polarizabilities of ions.
021	symbol	unit	explanation
	AE	um	Anderson-Eggleton relationship
		${\rm \AA}^3$	dynamic polarizability calculated from eqn. (4)
	α_{AE}	Å ³	dynamic polarizability calculated from eqn. (2)
	$\alpha_{\rm Dr}$	Å ³	dynamic polarizability calculated from eqn. (1a)
	α_{LL}	Å Å ³	
	$lpha_{GD}$	A Å ³	dynamic polarizability calculated from eqn. (3)
	$lpha_{e}$		electronic polarizability experimentally determined at any wavelength in the visible region of light
	α (D) _e	Å ³	total electronic (dynamic) polarizability experimentally determined at 589.3 nm
	$\alpha(\infty)_{e}$	Å ³	total static electronic polarizability; electronic polarizability at $\lambda = \infty$ (see also
		0.7	footnote on p. 2) calculated from n_{∞} using eqn (1a)
	$lpha_{ m e}({ m ion})$	Å ³	individual electronic polarizability of an ion, not to be confused with "ionic
			polarizability" outside of the visible region. Empirically determined by least
		83	squares fits using the additivity rule corresponding to eqn. (3).
	α_{T}	$Å^3$	total electronic polarizabiliity obtained by the sum of $\alpha_{e}(ion)$
	$lpha_{obs}$	$Å^3$	experimentally determined total polarizability from LL or AE equation
	$lpha_{calc}$	$Å^3$	total polarizability calculated by the sum of individual polarizabilities of ions
	α_	$Å^3$	anion polarizability
	α+	$Å^3$	cation polarizability
	α^{o}	Å ³	free ion polarizability; polarizability of a free ion extracted from the structure, determined by <i>ab initio</i> calculations
	α^o	Å ³	free "in crystal" anion polarizability
	CI		compatibility index (Mandarino 1981)
	CN		coordination number
	CSO		corner-shared octahedra
	Dr		Drude relationship
	ESO		edge-shared octahedra
	GD		Gladstone-Dale relationship
	k K _c		Gladstone-Dale constant (Mandarino 1976) chemical refractivity (Mandarino 1979)
	$K_{\rm c}$ $K_{\rm p}$		physical refractivity (Mandarino 1979)
	Λ _p LL		Lorenz-Lorentz
	n_D		dynamic refractive index determined at $\lambda = 589.3nm$
	n_{ω}		static refractive index; refractive index at $\lambda = \infty$, extrapolated from Sellmeier
			fit of dispersion data
	<n></n>		mean refractive index; $\langle n \rangle = (2n_0 + n_e)/3$ for uniaxial crystals and $\langle n \rangle = (n_x + n_y + n_z)3$ for biaxial crystals
	r	Å	effective ionic radius (Shannon 1976)
	R	Å	interatomic distance
	SS		sterically strained
	V _{an}	Å ³	molar volume of an anion, calculated from V_m divided by the number of anions

Table 1: Selected symbols of parameters used here. "Total" refers to the polarizability of 820

Revision 1

824 T	able 2. Ab initio	polarizabilities f	or LiF, BeO	and MgO	compared to	polarizabilities
-------	-------------------	--------------------	-------------	---------	-------------	------------------

determined from the LL, AE, GD, and Drude relationships.

826

	α(<i>ab initio</i>)	$\alpha_{\rm LL}$	α_{AE}	α_{GD}	α_{Dr}
	Fowler et al.	c = 0	c = 2.26	Fowler et al.	c = 4.189
	(1991)	Eqn (1a)	Eqn (4a)	(1991) Eqn (3)	Eqn (2)
LiF	0.91 Å ³	0.921 Å^3	1.06 Å^{3}	1.51 Å ³	1.21 Å^3
BeO	1.26 Å ³	1.305 Å ³	1.66 Å ³	2.38 Å^3	2.16 Å ³
MgO	1.75 Å ³	1.789 Å ³	2.28 Å^3	3.19Å ³	2.99 Å ³

827

828

829

Revision 1

Table 3. Some reasons for not including data in the regression analysis.

1 40	se 5. Some reasons for not meruding data in th	Example	Reference
A.	Chemical composition	1	
	poor or no analysis – composition uncertain	taikanite	Armbruster et al. (1993)
		cerchiaraite-Mn	Basso et al. (2000)
	total amount of elements far below 100 %	haineaultite	McDonald and Chao(2004)
	Rare earth ions not specified	thalenite	Fitzpatrick and Pabst (1986)
	Fe^{2+}/Fe^{3+} ratio not known	morimotoite	Henmi et al. (1995)
	H ₂ O content uncertain	hydroandradite	Peters (1965)
	Crystal not homogeneous, e.g., zoned	morimotoite londonite	Henmi et al.(1995) Simmons et al. (2001)
	OH not found or OH:F variable in		
	hydroxyfluorides		
	Chemical analysis not determined on the samecrystal used for the refractive index		
	measurement		
В.	Crystal structure		
	Structure unknown or incorrect	peprossiite-Ce fervanite	Callegari et al. (2000) Hess and Henderson (1931)
C	Cation CN's or occupancies incorrect Refractive index	khibinskite	Chernov et al. (1970)
C.	inaccurate nD	not common	
	Not all indices measured	liebenbergite	DeWaal and Calk
	The for the marces measured	neoenoergite	(1973)
	wavelength is not $\lambda(D) = 589 \text{ nm}$	$Fe_3BO_6n(\lambda=630$ nm)	Abe et al. (1980)
	crystal reacts with immersion fluid	millosevichite	Miura et al. (1994)
	nD calculated, not measured	RbSr ₄ B ₃ O ₉	Xia and Li (2013)

843

844

Table 4. Dynamic polarizabilities of cations and H_xO_y species. Columns 1-4 show the ion with

- its coordination, the cube of the effective ionic radius r (Shannon 1976) indicating the relative
- size of the ion, the number noof data used in deriving the polarizability and, finally, the AE
- 848 dynamic polarizability $\alpha(D)$.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ion	$r^{3}[\text{Å}^{3}]^{a}$	No. ^b	$\alpha(D)$ (Å ³)
	$^{[4]}Ag^{+}$	1.00		3.50
	$[6] \mathbf{A} \mathbf{\sigma}^+$	1.52	3	3.00
	^[/] Ag ⁺			
	$^{[8]}Ag^{+}$			
	^[9] Ag ⁺			
	$[4]Al^{3+}$	0.06		
	$[6] \Delta s^{5+}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
		0.02		
		1.00		
		1.86		
		• • •		
	$[12]Ca^{2}$			
	$^{[0]}Ce^{3+}$			
	$^{[']}Ce^{3+}$			
		1.95	22	
				3.650
	$[12]Ce^{3+}$			3.550
	$^{[6]}Ce^{4+}$	0.66	2	7.80
	$^{[8]}Ce^{4+}$			
$^{[4]}\text{Cl}^{7+}$ 0.00 14 0.007	$^{[9]}Ce^{4+}$		1	6.90
		1.48		6.00
^[4] Co^{2+} 2 1.9		0.00	14	0.007
	$^{[4]}Co^{2+}$		2	1.9

$[6]Co^{2+}$	0.27	24	1.710
[6]Cr ³⁺	0.23	27	3.020
^[4] Cr ⁶⁺	0.02	7	5.400
$^{[6]}Cs^{+}$	4.66	3	3.800
	4.00		
$^{[7]}Cs^{+}$		1	3.650
$^{[8]}Cs^{+}$	5.27	5	3.500
$^{[9]}Cs^{+}$			
US LINI	5.64	8	3.350
$^{[10]}Cs^{+}$	5.93	6	3.200
$^{[11]}Cs^{+}$	6.33	11	3.000
$^{[12]}Cs^{+}$			
CS	6.64	30	2.900
^[2] Cu ⁺	0.10	1	4.42
$^{[4SQ]}Cu^{2+ c}$	0.19	16	2.300
$^{[5]}Cu^{2+}$			
	0.27	24	2.260
$^{[6]}Cu^{2+}$	0.39	125	2.230
^[6] Dy ³⁺	0.76	2	3.500
[7] D 3+			
$^{[7]}\text{Dy}^{3+}$	0.91	2	3.350
^[8] Dy ³⁺	1.08	3	3.220
$^{[9]}\text{Dy}^{3+}$	1.27	1	3.100
	1.27	1	
$^{[10]}\text{Dy}^{3+}$			2.980
$^{[12]}\text{Dy}^{3+}$		2	2.770
^[6] Er ³⁺	0.71	6	3.280
$^{[7]}\mathrm{Er}^{3+}$	0.84	1	3.130
^[8] Er ³⁺	1.01	6	2.990
^[9] Er ³⁺	1.20	1	2.860
$^{[10]}\text{Er}^{3+}$	1.20	1	
			2.750
$^{[12]}\mathrm{Er}^{3+}$		2	2.550
^[8] Eu ²⁺	1.95	1	3.95
$^{[9]}Eu^{2+}$			
	2.20	1	3.80
^[6] Eu ³⁺	0.85	2	3.880
^[7] Eu ³⁺	1.03		3.750
^[8] Eu ³⁺	1.21	1	
		1	3.600
^[9] Eu ³⁺	1.40		3.470
$^{[10]}Eu^{3+}$			3.330
$^{[12]}Eu^{3+}$		2	3.070
	. . <i>.</i>	2 2	
$^{[4P}\mathrm{Fe}^{2+}$	0.26		2.70
$^{[4SQ]}Fe^{2+c}$	0.25	7	2.30
$^{[5]}\mathrm{Fe}^{2+}$		10	2.110
	o		
$[6]Fe^{2+}$	0.47	248	2.040
$^{[7]}\text{Fe}^{2+}$		4	2.000
[8]Fe ²⁺	0.78	50	1.970
$^{[4]}\text{Fe}^{3+}$			
Fe	0.12	8	3.950
$^{[5]}\text{Fe}^{3+}$	0.20	3	3.900
[6]Fe ³⁺	0.27	234	3.850
^[4] Ga ³⁺			
	0.10	44	1.750
^[6] Ga ³⁺	0.24	34	1.500
[6]Gd ³⁺	0.83	9	3.770
$^{[7]}\text{Gd}^{3+}$			
5 'GU [8] ~ 1 ²⁺	1.00	2	3.620
^[8] Gd ³⁺	1.17	22	3.500
$^{[9]}\text{Gd}^{3+}$	1.36	2	3.390
$^{[10]}\text{Gd}^{3+}$		1	
			3.270
$^{[12]}\text{Gd}^{3+}$		4	3.10
$^{[4]}\text{Ge}^{4+}$	0.06	22	1.65
^[5] Ge ⁴⁺	0.06	-	1.62
		10	
$^{[6]}\text{Ge}^{4+}$	0.15	12	1.580

$\mathrm{H_{3}O^{+}}$		4	1.45
1130			
$H_3O_2^{-1}$		2	2.67
$H_4O_4^{-4}$		14	6.40
$H_5O_2^+$		2	3.10
$H_7O_4^{-1}$		1	9.50
^[6] Hf ⁴⁺	0.36	6	3.400
$^{[7]}\mathrm{Hf}^{4+}$	0.44	2	3.250
$^{[8]}{ m Hf}^{4+}$	0.57	2	3.100
^[6] Hg ⁺	1.68	1	7
ng			
^[6] Hg ²⁺	1.06	3	6
^[6] Ho ³⁺	0.73	1	3.380
	0.75		
^[7] Ho ³⁺		2 2 1	3.240
^[8] Ho ³⁺	1.05	2	3.120
^[9] Ho ³⁺	1.23	1	2.980
[12]11 3+	1.25		
^[12] Ho ³⁺		2	2.640
$[4]$ I^{7+}	0.07	3	3.10
^[6] I ⁷⁺	0.15	1	3.00
[6]In ³⁺	0.51	5	2.52
$[4]K^{+}$	2.57	1	1.600
^[5] K ⁺	2.07		
		2	1.550
$[6]K^{+}$	2.63	28	1.500
$[7]K^{+}$	3.11	19	1.450
$[8]K^{+}$			
	3.44	67	1.400
^[9] K ⁺	3.72	52	1.350
$^{[10]}K^+$	4.02	42	1.300
	4.02		
$^{[11]}K^{+}$		3	1.250
$^{[12]}K^{+}$	4.41	70	1.200
^[6] La ³⁺	1.10	6	4.450
$^{[7]}La^{3+}$	1.33	9	4.320
$^{[8]}La^{3+}$	1.56	28	4.180
$^{[9]}La^{3+}$			
	1.80	30	4.050
$^{[10]}La^{3+}$	2.05	26	3.900
$^{[11]}La^{3+}$		2	3.770
$^{[12]}La^{3+}$	2.52		
	2.52	8	3.650
^[4] Li ⁺	0.21	40	0.44
^[5] Li ⁺		5	0.33
$[6]Li^{+}$	0.44		
	0.44	69	0.24
^[8] Li ⁺	0.78	5	0.15
$^{[6]}Lu^{3+}$	0.64	9	2.940
^[7] Lu ³⁺	0.01	,	
			2.790
^[8] Lu ³⁺	0.93	7	2.650
$^{[9]}Lu^{3+}$	1.10		2.530
	1.10	1	
$^{[12]}Lu^{3+}$		1	2.25
$^{[4]}Mg^{2+}$	0.19	47	0.835
$^{[5]}Mg^{2+}$	0.29	3	0.710
[6] s 2+			
$^{[6]}Mg^{2+}$	0.37	403	0.651
$^{[7]}Mg^{2+}$ $^{[8]}Mg^{2+}$		3	0.615
$[8]$ M_{α}^{2+}	0.71	34	0.600
[4]» c 2+			
$^{[4]}Mn^{2+}$	0.29	2	2.350
$^{[5]}Mn^{2+}$	0.42	7	2.200
$^{[6]}Mn^{2+}$			
- ⁻ IVIII [7] 2+	0.57	239	2.074
$^{[7]}Mn^{2+}$	0.73	13	2.000
^[8] Mn ²⁺	0.88	33	1.950
^[4] Mn ³⁺	0.00		
- JVIII			4.05

^[5] Mn ³⁺	0.20	1	3.94
$^{[6]}Mn^{3+}$			
[4]= = 6+	0.27	32	3.830
^[4] Mo ⁶⁺	0.07	17	4.560
^[6] Mo ⁶⁺	0.21		3.70
^[3] N ⁵⁺		23	0.001
^[4] Na ⁺	0.97	17	0.760
[5]Na			
^[5] Na ⁺	1.00	27	0.650
^[6] Na ⁺	1.06	207	0.560
^[7] Na ⁺	1.40	97	0.490
^[8] Na ⁺	1.64	197	0.430
^[9] Na ⁺			
[10] n +	1.91	49	0.380
^[10] Na ⁺		25	0.340
^[11] Na ⁺		5	0.300
^[12] Na ⁺	2.69	9	0.270
^[6] Nb ⁵⁺	0.26	42	5.78
[6]Nd ³⁺	0.95	2	4.20
	0.95		
$^{[7]}Nd^{3+}$		4	4.05
^[8] Nd ³⁺	1.36	11	3.900
^[9] Nd ³⁺	1.57	12	3.750
^[10] Nd ³⁺		6	3.600
$^{[11]}$ Nd ³⁺		1	3.45
[12] N T 13+	2.05		
$^{[12]}Nd^{3+}$	2.05	2	3.35
^[6] NH ₄ ⁺		4	2.29
^[7] NH ₄ ⁺		2	2.23
^[8] NH ₄ ⁺		30	2.18
^[9] NH ₄ ⁺		4	2.13
[10] M $+$			
$^{[10]}NH_4^+$		9	2.08
^[11] NH ₄ ⁺			2.03
^[12] NH ₄ ⁺		7	1.98
^[6] Ni ²⁺	0.33	31	1.710
$[4]P^{5+}$	0.00	421	0.036
$^{[6]}{\rm Pr}^{3+}$		421	
[7] = 3 +	0.97		4.24
$^{[7]}Pr^{3+}$		1	4.09
^[8] Pr ³⁺	1.43	1	3.97
^[9] Pr ³⁺	1.64	1	3.82
$^{[10]}$ Pr ³⁺	1.01	•	3.68
$^{[11]}$ Pr ³⁺		1	
		1	3.56
$^{[12]}Pr^{3+}$		1	3.42
^[8] Pu ⁴⁺	0.88	2	4.60
^[9] Pu ⁴⁺		2	4.00
[6]Rb ⁺	3.51		2.370
$^{[7]}Rb^{+}$	3.80	2	2.200
[8]D1 +			
$[8] Rb^{+}$	4.17	19	2.020
^[9] Rb ⁺	4.33	14	1.870
$^{[10]}\text{Rb}^+$	4.57	8	1.700
$^{[12]}Rb^{+}$	5.09	7	1.400
$^{[4]}\text{Re}^{7+}$	0.05	3	3.20
$^{[6]}Rh^{3+}$	0.29	2	4.02
$[4]S^{6+}$	0.00	304	0.011
^[6] Sb ⁵⁺	0.22	24	3.100
[6]Sc ³⁺	0.41	25	2.32
$^{[7]}Sc^{3+}$	0.11	2	2.23
[8]Sc ³⁺	0.00		
⁴ 3C	0.66	1	2.15
^[4] Se ⁶⁺	0.02	20	1.510

^[4] Si ⁴⁺	0.02	1004	0.284
^[6] Si ⁴⁺	0.06	10	0.20
^[6] Sm ³⁺	0.88	10	3.950
^[7] Sm ³⁺		1	
	1.06	1	3.850
$[8]Sm^{3+}$	1.26	4	3.710
^[9] Sm ³⁺	1.45	1	3.600
$^{[10]}$ Sm ³⁺		2	3.480
^[12] Sm ³⁺	1.91	3	3.250
^[6] Sn ⁴⁺	0.33	33	2.910
$[6]Sr^{2+}$	1.64	4	2.640
$^{[7]}Sr^{2+}$	1.77	19	2.420
[8]Sr ²⁺	2.00	26	2.210
$^{[9]}\mathrm{Sr}^{2+}$	2.25	23	2.040
$^{[10]}\mathrm{Sr}^{2+}$	2.52	24	1.900
$^{[11]}\mathrm{Sr}^{2+}$	2.52	5	1.760
	2 00		
$^{[12]}Sr^{2+}$	2.99	14	1.650
^[6] Ta ⁵⁺	0.26	17	5.20
^[6] Tb ³⁺	0.79	1	3.610
^[7] Tb ³⁺	0.94		3.460
^[8] Tb ³⁺	1.12	4	3.350
$^{[9]}\text{Tb}^{3+}$	1.31	т	3.230
$^{[12]}\text{Tb}^{3+}$	1.51	2	
		2	2.860
$[6]{}^{[6]}{}^{T}e^{6+}$	0.18	2	4.43
^[6] Th ⁴⁺	0.83	1	4.70
^[8] Th ⁴⁺	1.16	13	4.44
^[9] Th ⁴⁺	1.30	9	4.35
$^{[10]}$ Th ⁴⁺	1.44	1	4.29
$^{[12]}\text{Th}^{4+}$	1.77	2	4.20
$^{[6]}\text{Ti}^{3+}$			
	0.30	2	3.60
$^{[5]}\text{Ti}^{4+}$	0.13	11	4.350
^[6] Ti ⁴⁺	0.22	118	5.010
^[6] Tm ³⁺	0.68	3	3.130
^[7] Tm ³⁺			3.000
^[8] Tm ³⁺	0.98	2	2.870
^[9] Tm ³⁺	1.16	2	2.770
$^{[10]}\text{Tm}^{3+}$	1.10		
$[12]_{T}$ 3+		•	2.650
[12]Tm ³⁺		2	2.460
$[8]U^{4+}$	1.00	8	5.00
$^{[6]}V^{3+}$	0.26	22	2.960
$^{[5]}V^{4+}$	0.15	4	2.700
$^{[6]}V^{4+}$	0.20	11	2.600
$^{[4]}V^{5+}$	0.04	31	4.450
^[5] V ⁵⁺			4.00
	0.10	1	
$^{[6]}V^{5+}$	0.16	8	3.40
$^{[4]}W^{6+}$	0.07	14	3.960
$^{[6]}W^{6+}$	0.22	3	3.500
$[6]Y^{3+}$	0.73	17	2.820
^[7] Y ³⁺	0.88	7	2.780
^[8] Y ³⁺	1.06	41	2.740
^[9] Y ³⁺			
	1.24	7	2.700
$^{[10]}Y^{3+}$	<u> </u>	1	2.650
$^{[6]}$ Yb ³⁺	0.65	6	3.000
^[7] Yb ³⁺	0.79	2	2.860
^[8] Yb ³⁺	0.96	4	2.730

Revision 1

^[9] Yb ³⁺	1.13	1	2.630	849
^[12] Yb ³⁺		2	2.360	
$^{[4]}Zn^{2+}$	0.22	58	1.720	
$^{[5]}Zn^{2+}$	0.31	17	1.710	
$^{[6]}Zn^{2+}$	0.41	81	1.700	
$^{[6]}Zr^{4+}$	0.37	61	4.220	
$^{[7]}Zr^{4+}$	0.47	4	3.960	
$^{[8]}Zr^{4+}$	0.59	12	3.740	
^[9] Zr ⁴⁺	0.70	4	3.560	

^aempty fields are not listed in Shannon (1976)

851 ^bnumber of ions > 0.3 a.p.f.u in minerals and compounds

852 ^c4SQ indicates a square planar cooradination

853	Table 5. Dynamic	polarizabilities	of anions a	and H ₂ O. '	The values	in columns α_{-}^{α}	and N _o refer to
-----	------------------	------------------	-------------	-------------------------	------------	----------------------------------	-----------------------------

854

eqn (6).		
ion	\pmb{lpha}^{o}_{-}	No 855
Cl	3.88	1.800 856
F	0.82	3.000 857
H ₂ O	1.62	0.000 858
O^{2-}	1.79	1.776 859
O ²⁻ in sulfates	1.76	^{1.780} 860
O^{2-} in perchlorates	1.63	^{1.900} 861
$O^{2^{-}}$ in nitrates	1.73	1.700
O^{2-} in carbonates	1.72	1.730
O^{2-} in borates	1.75	1.580 863
OH-	1.79	1.792 864
OH ⁻ H-bonded	1.73	2.042 865

Revision 1

Mineral / Compound	Composition	Origin	$\begin{array}{c} \alpha_{\rm obs} \\ ({\rm \AA}^3) \end{array}$	$\begin{array}{c} \alpha_{calc} \\ (\text{\AA}^3) \end{array}$	Δα	<n<sub>D> calc^a</n<sub>	<n<sub>D> obs</n<sub>	<n<sub>D> calc</n<sub>	Δn
SILICA			()	()					
POLYMORPHS [6									
melanophlogite	SiO ₂	Racalmuto, Sicily	3.551	3.57		1.45	1.425	1.427	-0.2%
cristobalite	SiO ₂	alpha-cristobablite	3.460	3.51	-1.5%	1.48	1.485	1.492	-0.5%
keatite	SiO ₂	synthetic	3.468	3.48	-0.4%		1.519	1.521	-0.1%
quartz	SiO_2	synthetic Bell Labs	3.441	3.46	-0.5%	1.55	1.547	1.550	-0.1%
coesite	SiO ₂	synthetic	3.401	3.41	-0.2%		1.596	1.598	-0.1%
stishovite	SiO ₂	synthetic	3.114	3.09	0.9%	1.89	1.808	1.801	0.5%
OXIDES [3]									
periclase	MgO	synthetic	2.284	2.24	2.1%	1.75	1.735	1.719	0.9%
corundum	Al ₂ O ₃	synthetic	5.393	5.47	-1.4%	1.84	1.765	1.778	-0.7%
ice 1h			1.647	1.62	1.6%	1.31	1.305	1.300	0.4%
HYDROXIDES [3]								
gibbsite	Al(OH) ₃	Chester, Massachusetts	5.088	5.09	0.5%	1.60	1.574	1.575	0.0%
ooehmite	Alooh	Ratnapura, Ceylon	3.544	3.48	1.8%		1.658	1.646	0.7%
diaspore	$Al_{0.99}Fe_{0.01}OOH$	Turkey	3.562	3.54	0.5%	1.77	1.725	1.722	0.2%
BORATES [4]									
kernite	$Na_2B_4O_7 4H_2O$	Kern Cnty, California	18.743	19.04	-1.6%	1.47	1.471	1.479	-0.5%
oorax	Na ₂ B ₄ O ₅ (OH) _{4.8} H ₂ O		28.635	28.84	-0.7%	1.46	1.463	1.466	-0.2%
colemanite	CaB ₃ O ₄ (OH) ₃ H ₂ O	Death Valley, California	13.970	14.30	-2.3%	1.58	1.597	1.611	-0.8%
ulexite	CaNaB ₅ O ₆ (OH) ₆ 5H ₂ O	Boron, California	29.018	29.21	-0.7%	1.50	1.505	1.508	-0.2%

Table 6. Polarizabilities and mean refractive indices of 52 minerals and compounds. Numbers in brackets refer to the number of minerals in the respective group.

CARBONATES [2]

Revision 1

thaumasite	Ca ₃ Si(SO ₄)(CO ₃)(OH) ₆ 12H ₂ O	Tschwinning mine, So. Africa	44.084	44.62	-1.2%	1.49	1.485	1.490	-0.4%
malachite	Cu ₂ [CO ₃](OH) ₂	Copper Queen Mine, AZ	12.229	12.18	0.4%	1.74	1.813	1.809	0.2%
SILICATES [32]									
spodumene	$Li_{0.95}Na_{0.05}AlSi_2O_6$	Maharitra, Madagascar	10.822	10.59	2.1%	1.68	1.667	1.653	0.9%
nepheline	$Na_{0.69}K_{0.16}Ca_{0.06}Al_{0.98}Si_{1.02}O_4$	Monte Somma, Mt. Vesuvius, xtal #2	8.141	7.93	2.6%	1.53	1.537	1.524	0.9%
albite	$Na_{0.97}K_{0.02}Ca_{0.01}Al_{0.97}Fe_{0.01}Mg_{0.02}Si_3O_8$	Rischuna Alp, Switzerland	14.804	14.80	0.1%	1.54	1.534	1.533	0.0%
labradorite	$Na_{0.312}K_{0.01}Ca_{0.657}Fe_{0.01}Fe^{3+}_{0.01}Al_{1.657}Si_{2.335}O_{8}$	Lake County, Oregon	15.850	15.78	0.5%	1.57	1.567	1.564	0.2%
aegirine	$Na_{0.959}K_{0.011}Ca_{0.013}Fe^{3+}{}_{0.955}Fe_{0.021}Ti_{0.018}Al_{0.006}Si_{1.997}O_{6}$	Gout Creek, So. Westland, New Zealand	14.087	14.27	-1.3%	1.86	1.792	1.802	-0.6%
aegirine-augite	$Na_{0.77}Ca_{0.14}K_{0.02}Fe^{3+}_{0.52}Fe_{0.24}Al_{0.08}Ti_{0.08}Mn_{0.03}Mg_{0.02}$ $Nb_{0.02}Si_{1.95}Al_{0.03}Be_{0.02}O_{5.85}(OH)_{0.09}F_{0.06}$	Seal Lake, Labrador	13.834	13.72	0.8%		1.764	1.758	0.4%
elbaite	$Na_{0.74}Ca_{0.01} AI_{8.11}Li_{1.05}Fe_{0.01}Mn_{0.01}(BO_3)_3 Si_{5.94}O_{18}$ (OH) _{3.63} O _{0.32} F _{0.05}	San Diego, California	54.481	54.47	-0.0%	1.65	1.635	1.635	0.0%
dravite	$\begin{array}{l} Na_{0.73}K_{0.12}Ca_{0.07}Mg_{2.70}Al_{6.35}Mn_{0.08}Fe_{0.04}Ti_{0.02}(BO_3)_3\\ Si_{5.88}O_{18}(OH)_{3.70}O_{0.20}F_{0.10} \end{array}$	Dobrowa,Slovenia	55.354	55.87	-0.9%	1.65	1.628	1.634	-0.4%
cordierite	$Na_{0.04}Mg_{1.72}Fe_{0.27}Al_{3.97}Fe^{3+}_{0.03}Si_5O_{18.}(H_2O)_{0.49}$ (CO ₂) _{0.07}	Madagascar	35.048	35.44	-1.1%	1.54	1.540	1.546	-0.4%
marialite	$Na_{2.664}K_{0.243}Ca_{0.870}Fe_{0.028}Ti_{0.005}Al_{3.767}Si_{8.232}C_{0.016}O_{24.5}$ Cl _{0.843}	Los Molles, Argentina	50.403	50.80	-0.8%	1.54	1.547	1.552	-0.3%
meionite	$Na_{0.195}Ca_{3.666}K_{0.094}Mg_{0.018}Sr_{0.01}Fe_{0.02}Al_{5.73}Si_{6.27}O_{24}$ (CO ₃) _{0.93} (SO ₄) _{0.026} Cl _{0.027}	Monte Somma, Mt. Vesuvius	55.061	54.52	1.0%	1.56	1.586	1.580	0.4%
orthoclase	$K_{0.92}Na_{0.08}Al_{0.97}Fe_{0.03}Si_3O_8$	Madagascar	15.708	15.74	-0.2%	1.52	1.522	1.524	-0.1%
microcline	$K_{0.82}Na_{0.18}Al_{1.02}Si_{2.98}O_8$	Bedford, New York	15.651	15.72	0.4%	1.53	1.522	1.524	0.1%
sanidine	$K_{0.90}Na_{0.07}Ca_{0.03}Al_{0.84}Fe_{0.13}Mg_{0.03}Si_{3}O_{8}$	Wasatch Mt., Utah	16.099	16.12	-0.2%	1.52	1.530	1.531	0.0%
muscovite 2M	$K_{1.856}Na_{0.29}Ca_{0.015}Mg_{0.142}Fe_{0.261}Cr_{0.226}Ti_{0.172}Al_{3.113}Al_{1.967}Si_{6.033}O_{20}(OH)_4$	Acworth Township, New Hampshire	45.169	45.13	0.1%	1.59	1.584	1.583	0.0%
enstatite	$Mg_{1.962}Ca_{0.036}Na_{0.001}Fe_{0.007}Al_{0.013}Si_{1.987}O_{6}$	Hvittis meteorite	11.432	11.33	0.9%	1.65	1.657	1.651	0.4%
pyrope	$Mg_{1.95}Fe_{0.99}Ca_{0.09}Mn_{0.01}Al_{1.98}Si_{3}O_{12}$	Madagascar	23.730	23.57	0.7%	1.76	1.752	1.747	0.3%
forsterite	$Mg_{1.80}Fe_{0.225}Ni_{0.01}SiO_4\\$	San Carlos, AZ	8.219	8.24	-0.2%	1.67	1.675	1.677	-0.1%

Revision 1

magnesio- hornblende	$\begin{array}{l} Mg_{2.91}Na_{0.30}K_{0.10}Ca_{1.90}Fe_{1.29}Mn_{0.08}Al_{0.14}Ti_{0.10}Fe^{3+}_{0.49}\\ Si_{7.03}Al_{0.97}O_{22}(OH)_{1.85}F_{0.08}Cl_{0.01} \end{array}$	Mt.Givens granodiorite Sierra	50.666	50.92	-0.5%		1.661	1.664	-0.2%
phlogopite	$Mg_{3}K_{0.77}Na_{0.16}Ba_{0.05}Al_{1.05}Si_{2.95}O_{10}(OH)_{0.70}F_{1.30}$	Nevada batholith Franklin, New Jersey	22.340	22.50	-0.7%	1.57	1.549	1.553	-0.3%
lizardite	$Mg_{2.884}Al_{0.036}(Fe_{3}+)_{0.042}Si_{1.916}O_{5}(OH)_{4.124}$	New Idria, San Benito County, California	16.975	16.94	0.2%	1.58	1.564	1.563	0.1%
antigorite	$Mg_{2.806}Fe_{0.02}Fe^{3+}{}_{0.03}Si_{1.95}Al_{0.05}O_5(OH)_{3.68}$	Cross River, Kokonui, New	16.141	16.20	-0.4%	1.56	1.562	1.564	-0.1%
anorthite	$CaAl_2Si_2O_8$	Zealand Vesuvius	16.262	16.21	0.3%	1.57	1.581	1.580	0.1%
tremolite	$Ca_{1.79}Na_{0.04}K_{0.07}Na_{0.11}Mg_5Si_8O_{22}(OH)_2$	Gouverneur, N.Y.	46.448	46.63	-0.4%	1.64	1.614	1.616	-0.1%
diopside	$CaMg_{0.92}Fe_{0.08}Si_2O_6$	Ala Valley,Italy	12.499	12.38	1.4%		1.683	1.676	0.4%
grossular	$Ca_{2,92}Mn_{0.04}Fe_{0.135}Al_2Si_3O_{12}$	Asbestos, Quebec	25.525	25.52	0.0%	1.74	1.738	1.738	0.0%
andradite	$Ca_{3.00}Fe_{1.99}Mg_{0.02}Al_{0.01}Si_{2.98}O_{12}$	Val Malenco, Italy	32.071	32.19	-0.4%		1.886	1.890	-0.2%
epidote	Ca _{1.90} Mg _{0.04} Fe _{0.06} Al _{2.4} Fe _{0.6} Si ₃ O ₁₂ OH	Pfarreb, Zoptau	27.957	27.55	1.4%		1.738	1.727	0.6%
staurolite	Fe _{1.48} Mg _{0.44} Mn _{0.01} Al _{8.78} Zn _{.01} Ti _{0.06} Si _{3.878} O ₂₂ (OH) ₂	Galax, Virgina	45.659	45.89	-0.5%	1.76	1.742	1.746	-0.2%
almandine	$\begin{array}{l} Fe_{2,207}Ca_{0.441}Mn_{0.200}Mg_{0.139}Al_{1.814}Fe^{3+}{}_{0.113}Ti_{0.071}Al\\ T_{0.106}Si_{2.894}O_{12} \end{array}$	Pizzo Robone, Ali area, Peloritani Mtns,Sicily	26.419	26.62	-0.7%	1.83	1.821	1.827	-0.4%
zircon	ZrSiO ₄	Chantaboon, Thailand	10.234	10.24	0.0%		1.945	1.946	0.0%
kaolinite	$Al_{42.005}Si_{1.97}Fe_{0.01}Fe^{3+}{}_{0.02}Mg_{0.01}Ca_{0.02}O_5(OH)_4$	Mikawo mine, Niigata, Japan	15.570	15.79	-1.4%	1.59	1.565	1.573	-0.5%
PHOSPHATES [2]									
vivianite	Fe ₂ P ₂ O ₈ 8H ₂ O	Catavi, Llallagua, Bolivia	31.209	31.89	-2.3%	1.61	1.603	1.617	-0.8%
fluorapatite	$Ca_{10}P_6O_{24}F_{1.96}Cl_{0.02}(OH)_{0.02}$	Kiglapait intrusion Labrador	55.454	56.02	1.0%	1.62	1.634	1.641	-0.4%
SULFATES [2]									
alunite	$KAl_3(SO_4)_2(OH)_6$		23.673	23.84	-0.7%		1.579	1.583	-0.3%
jarosite	$KFe^{3+}_{3}(SO_{4})_{2}(OH)_{6}$	Cyprus	35.011	34.27	2.1%		1.793	1.776	1.0%

^a mean refractive index <nD> taken from Webmineral (2015)

Table 7. Selected minerals (Krivovichev 2013) with a complex chemical composition.

Mineral / Compound	Composition	Origin	α_{obs} (Å ³)	$\begin{array}{c} \alpha_{calc} \\ (\text{\AA}^3) \end{array}$	Δα	<n<sub>D> obs</n<sub>	<n<sub>D> calc</n<sub>	Δn	ref.
rogermitchellite	$\frac{Na_{12}Sr_{21.16}Na_{1.17}Ca_{0.21}Ba_4Zr_{25.33}Ti_{0.93}Si_{77.02}}{B_{0.98}B_{12}O_{246}(OH)_{24}\cdot 18H_2O}$	Mt. St. Hilaire, Quebec,Canada	655.788	661.51	-0.9%	1.648	1.653	-0.3%	McDonald et al. 2010
bannisterite	$K_{0.4}Na_{0.1}Ca_{0.4}Mn_{6.2}Fe_{1.4}Mg_{1.4}ZnFe^{3+}_{0.2}$ $Si_{14.4}Al_{1.4}O_{38}(OH)_8 \cdot 6H_2O$	Franklin, NJ	107.148	107.82	-0.6%	1.573	1.576	-0.2%	Smith et al. 1968
giuseppettite	$\begin{array}{l} Na_{5.3}K_2Ca_{0.67} \ Al_6Si_6O_{24}(SO_4)_{1.25}Cl_{0.25} \cdot 0.625 \\ H_2O \end{array}$	Sacrofano, Italy	62.518	61.28	2.0%	1.496	1.487	0.6%	Mazzi et al. 1981;Bonac corsi, 2004
sobolevite	$\begin{array}{l} Na_{13,62}Ca_{1.63}Sr_{0.03}Mg_{0.39}Mn_{1.02}Fe_{0.1}Ti_{2.42}\\ Nb_{0.51}Zr_{0.09}Si_4P_4O_{33.08}F_{2.92} \end{array}$	Khibina-Lovozero complex, Kola Peninsula, Russia	86.419	86.06	0.4%	1.668	1.665	0.2%	· · ·
polyphite	$\begin{array}{l} Na_{8.72}Ca_{1.4}Sr_{0.03}Mg_{0.3}Mn_{0.68}Fe_{0.07}Ti_{1.41}Nb_{0.19}\\ Zr_{0.19}P_{2.96}Si_{2.04}O_{20.94}F_{2.06}\end{array}$	Khibina-Lovozero complex, Kola Peninsula, Russia	53.626	54.47	-1.6%	1.643	1.653	-0.6%	Sokolova et al. 2005
quadruphite	$\begin{array}{l} Na_{13.59}Ca_{1.44}Sr_{0.06}Mg_{0.5}Mn_{0.85}Fe_{0.10}Ti_{2.55}\\ Nb_{0.44}Zr_{0.47}Si_4P_4O_{33.89}F_{2.11} \end{array}$	Khibina-Lovozero complex, Kola Peninsula, Russia	86.742	87.35	-0.7%	1.668	1.668?	?0.0%	Sokolova et al. 2001
nechelelyustovite	$\begin{array}{l} Na_{4.2}Ca_{0.5}Ba_{1.3}Sr_{0.5}K_{0.3}Mn_{1.4}Ti_{4.1}Nb_{1.4}Fe^{3+}_{0.1}\\ Si_80_{28}(OH)_{2.9}F_{1.1}^{\cdot} 6H_2O \end{array}$	Lovozero alkaline massif, Kola peninsula, Russia	108.952	108.79	0.1%	1.715	1.714	0.0%	Németh et al. 2009
apjohnite	$Mn_{0.64}Mg_{0.28}Zn_{0.06}Fe_{0.02}Al_2(SO_4)_4\cdot 22H_2O$	Terlano, Bolzano, Italy	63.315	63.48	-0.3%	1.481	1.482	-0.1%	Menchetti and Sabelli 1976

871

Table 8. Comparison of polarizability analyses for 68 out of 205 examples where the

compatibility index (CI) is listed as fair or poor by Mandarino (2006, 2007). Numbers in

875 brackets refer to the number of minerals in the respective group.

		CI from Webmineral	CI from Manda-	α_{AE}	α_{AE}	
Mineral	Composition	2015	rino 1981	(obs)	(calc)	Δα
CARBONATES	[5]					
tuliokite	$Na_6BaTh_{0.95}Fe^{3+}_{0.05}(CO_3)_6$ · $8H_2O$	CI calc= 0.09 (Poor) CI calc= -0.146	fair	48.194	47.36	1.7%
mguinnessite	$Mg_{1.06}Cu_{0.94}(CO_3)(OH)_2$	$\begin{array}{c} \text{(Poor)} \\ \text{(Poor)} \\ \text{CI calc} = 0.068 \end{array}$	poor	10.249	10.28	-0.3%
comblainite	Ni _{6.1} Co _{2.9} (CO ₃)(OH) ₁₈ · 4H ₂ O	(Fair) CI calc= 0.081	fair	55.679	55.76	-0.29
nullaginite	$Ni_{1.93}Mg_{0.05}Cr_{0.01}(CO_3)(OH)_2$	(Poor) CI calc= -0.08	poor	10.584	10.84	-2.59
azurite	Cu ₃ [CO ₃ OH] ₂	(Poor)	poor	19.495	19.05	2.39
BORATES [9]						
		CI calc= -0.04				
hambergite	$\begin{array}{l} Be_2BO_3(OH)_{0.96}F_{0.04}\\ Mg_{1.82}Fe_{0.13}Fe^{3+}{}_{0.37}Ti_{0.36}Mg_{0.25} \end{array}$	(Good) CI calc= 0.092	poor	6.513	6.54	-0.5%
azoproite	BO ₅	(Poor) CI calc= 0.095	poor	11.665	12.77	-9.59
wightmanite	$Mg_{4.7}Ca_{0.2}Fe_{0.1}BO_4(OH)_5 \cdot 2H_2O$	(Poor)	poor	18.892	21.21	-12.39
				19.475	21.28	-9.2
pinakiolite	$\begin{array}{l} Mg_{1.75}Mn_{0.25}Mn^{3+}{}_{0.75}Sb^{3+}{}_{0.22}Al_{0.01}\\ BO_5 \end{array}$	CI calc= -0.323 (Poor) CI calc= 0.241	poor	14.676	13.64	7.0
warwickite	$Mg_{1.33}Al_{0.21}Ti_{0.34}Fe^{3+}{}_{0.12}OBO_{3}$	(Poor) CI calc= 0.029	poor	8.963	9.45	-5.4
nordenskioldine	$CaSnB_2O_6$	(Excellent) CI calc= 0.185	excellent	13.457	14.42	-7.19
solongoite	$Ca_2B_3O_4Cl(OH)_4$	(Poor) CI calc= 0.066	poor	15.762	18.69	-18.59
garrelsite	$\begin{array}{l} Ba_{3}NaSi_{2}B_{7}O_{16}(OH)_{4}\\ Ce_{0.4}La_{0.32}r_{0.09}Nd_{0.05}Th_{0.02}Ca_{0.09} \end{array}$	(Fair) CI calc= 0.019	fair	40.007	41.95	-4.8
peprossite-Ce	$Al_2B_3O_9$	(Excellent)	poor	20.281	20.27	0.19
SILICATES [4]						
lomonosovite	$\begin{array}{l} Na_{9.5}Mn_{0.16}Ca_{0.11}Ti_{2.83}Nb_{0.51}\\ Mn_{0.27}Zr_{0.11}Mg_{0.11}Fe_{0.1}Fe^{3+}_{0.06}\\ Si_4O_{14}\ P_2O_8\ O_{3.5}F_{0.5} \end{array}$	CI calc= 0.064 (Fair) CI calc= 0.118		66.577	67.44	-1.39
baghdadite	$\begin{array}{l} Ca_{3}Zr_{0.83}Ti_{0.15}Si_{1.99}Al_{0.01}Fe_{0.01}O_{9}\\ Al_{13}Si_{4.69}Ti_{0.13}P_{0.12}O_{20}(OH)_{14.29} \end{array}$	(Poor) CI calc= 0.069		24.206	24.29	-0.39
zunyite	$F_{3.59}Cl_{0.96}$	(Fair) CI calc= 0.279		66.935	66.76	0.39
huttonite	$Th_{0.96}U_{0.01}Y_{0.01}Ce_{0.02}SiO_4$	(Poor)		11.166	11.02	1.3
PHOSPHATES						
kidwellite	$Na_{0.7}Fe_9(PO_4)_6(OH)_{10}5H_2O$	CI calc= 0.093 (Poor)	poor	92.144	95.13	-3.2
		CI calc= 0.087 (Poor)	fair	11.816	12.18	-3.1

		CI calc = -0.047				
kosnarite	$K_{0.9}Na_{0.2}Zr_{1.8}Mn_{0.1}(PO_4)_3$	(Good)	fair	28.820	28.83	0.0%
	$K_2Li_{2.88}Na_{1.68}Ca_{0.66}(Be_6(PO_4)_6)$	CI calc = -0.064				,.
tiptopite	$(OH)_2 \cdot 4H_2O$	(Fair)	fair	51.028	49.10	3.8%
jahnsite	$Mg_{3.5}Ca_{2.0}Mn_{2.3}Fe_{3.3}Al_{0.8}(OH)_{4.1}$	CI calc= 0.019 (Excellent)	superior	108.778	106.50	2.1%
Jannishe	$(PO_4)_8 \cdot 15.8H_2O$ Ca _{0.8} Sr _{0.2} MnAl _{3.6} Fe ³⁺ _{0.4} Si _{0.7} P _{0.3} O ₃	CI calc= 0.062	superior	100.770	100.50	2.170
attakolite	(PO4) ₃ (OH) ₅	(Fair)	fair	36.604	37.50	-2.4%
	$Ca_4Mn_{0.8}Mg_{0.1}Fe^{3+}_{2.2}Al_{1.8}(PO_4)_6$	CI calc= 0.142				
zodacite	$(OH)_4 \cdot 12H_2O$	(Poor)	fair	77.444	77.58	-0.2%
wilhelmvierlin- gite	$Ca_{0.85}Zn_{0.13}MnFe^{3+}_{0.95}(PO_4)_2(OH)$ · 4H ₂ O	CI calc= -0.087 (Poor)	poor	27.710	28.39	-2.4%
gite	41120	CI calc = 0.005	poor	27.710	20.59	-2.470
kastningite	$Mn_{0.7}Fe_{0.3}Al_2(PO_4)_2(OH) \cdot 8H_2O$	(Superior)	poor	31.922	31.86	0.2%
	2+	CI calc= 0.096				
metaswitzerite	$Mn_{2.2}Fe_{0.6}Fe^{3+}_{0.2}(PO_4)_2$ · $4H_2O$	(Poor)	poor	24.776	25.92	-4.6%
switzerite	Mn _{2.8} Fe _{0.2} (PO ₄) ₂ · 7H ₂ O	CI calc= 0.031 (Excellent)	excellent	29.970	30.51	-1.8%
Switzerite		CI calc= 0.119	excentent	29.910	50.51	1.070
barbosalite	FeFe ³⁺ ₂ (PO ₄) ₂ (OH) ₂	(Poor)	poor	23.701	25.53	-7.7%
	$Fe_{2.64}Ca_{1.2}Mn_{0.04}Be_{2.5}(PO_4)_3$	CI calc = -0.055				
roscherite	$(OH)_3 \cdot 3H_2O$ Sr _{0.67} Ba _{0.16} Pb _{0.07} Fe ³⁺ _{2.90} Al _{0.03} P _{1.48}	(Good) - CI calc= 0.053	poor	33.138	36.51	-10.2%
benauite	$S_{0.67}Ba_{0.16}PO_{0.07}Pe_{2.90}AI_{0.03}P_{1.48}$ As _{0.04} S _{0.48} O ₇ (OH) ₇	(Good)	poor	36.975	35.35	4.4%
oonaano	100.0400.480 /(011)/	CI calc = 0.038	poor	50.575	50.50	1.170
strengite	FePO ₄ · 2H ₂ O	(Excellent)	fair	13.099	13.44	-2.6%
, <u>,</u>		CI calc= 0.073	c :	11.000	11.07	0.50/
tavorite	LiFePO ₄ OH	(Fair)	fair	11.909	11.96	-0.5%
	$\begin{array}{c} Ca_{1.027}Th_{1.15}U_{0.148}Ce_{0.71}La_{0.306}\\ Nd_{0.338}Sm_{0.100}Pr_{0.07}Gd_{0.02}P_{3.67} \end{array}$	CI calc= 0.14				
cheralite-Ce	Si _{0.333} O ₁₆	(Poor)	poor	38.767	38.78	0.0%
	$Y_{0.41}Ce_{0.28}Nd_{0.23}Sm_{0.13}La_{0.11}Fe_{0.20}$	CI calc = -0.079	-			
petersite-Y	$Ca_{0.79}Cu_{12.07}(PO_4)_6(OH)_{12} \cdot 6H_2O$	(Fair)	fair	51.869	50.35	2.9%
	$Sm_{0.18}Gd_{0.16}Th_{0.15}Ce_{0.15}Ca_{0.12}$	CI calc= -0.005				
monazite-Sm	$\frac{Nd_{0.09}La_{0.03}Y_{0.03}Pb_{0.02}Pr_{0.02}Tb_{0.02}}{Dy_{0.02}P_{0.94}Si_{0.06}O_4}$	(Superior)	poor	9.569	9.91	-3.6%
ARSENATES[1	• • • • • • • • • • • • • • • • • • • •	(Superior)	poor		<i></i>	2.070
	$Ce_{0.32}Ca_{0.22}La_{0.15}Nd_{0.15}Y_{0.08}Sm_{0.03}$					
	$Gd_{0.03}Eu_{0.02}Dy_{0.01}Cu_{5.62}Fe_{0.05}As_{2.8}$	CI calc= -0.108				
agardite-Ce	$Si_{0.17}S_{0.05}O_{12.08}(OH)_6 \cdot 3H_2O$	(Poor)	fair	58.971	52.97	10.2%
0.82.0.9.0	$Ca_{0.61}Sr_{0.29}Ba_{0.14}Bi_{0.05}Al_{2.79}Cu_{0.11}$	CI calc= 0.249				
arseno- crandallite	$Fe^{3+}_{0.07}Zn_{0.02}A_{.0.99}P_{0.75}Si_{0.26}O_4$ (OH) ₅ H ₂ O	(Poor)	poor	26.062	27.51	-5.6%
crandanite	(011)3 1120	CI calc = -0.035	poor	20.002	27.31	-5.070
weilite	CaHAsO ₄	(Excellent)	poor	9.391	9.65	-2.28%
	$Ca_{0.81}Y_{0.13}Al_{0.05}La_{0.01}Cu_{5.75}Ca_{0.15}$					
1	$As_{1.95}P_{0.05}O_4AsO_3OH(OH)_6$	CI calc = -0.079	6	55 707	52 55	2.00/
zalesiite	$3H_2O$ Sr _{0.5} Ca _{0.25} Ba _{0.25} Al ₃ As _{1.2} P _{0.6} O ₈	(Poor) CI calc= 0.025	fair	55.707	53.55	3.9%
arsenogoyazite	$(OH)_4F H_2O$	(Excellent)	poor	26.661	26.21	1.7%
		CI calc= 0.023	I			
dussertite	$BaFe^{3+}_{2.52}Sb^{5+}_{0.483}As_2O_8(OH)_6$	(Excellent)	fair	39.233	39.34	-0.3%
hende analaite	$Na_{1.16}K_{0.05}Cu_{3.74}Zn_{0.07}Fe^{3+}_{0.03}As_{3}$	CI calc = -0.01	2007	24 000	22.20	1 (0/
bradaczekite	O ₁₂	(Superior)	poor	34.899	33.29	4.6%
		56				

		CI calc= 0.18				
symplesite	$Fe_3As_2O_8$ · $8H_2O$	(Poor) CI calc= -0.068	fair	36.243	35.17	3.0%
clinoclase	Cu ₃ AsO ₄ (OH) ₃	(Fair) CI calc= -0.047	fair	19.884	19.48	2.0%
olivenite	Cu ₂ AsO ₄ OH	(Good)	fair	14.100	14.09	-0.1%
SULFATES [15]					
		CI calc = 0.268				
alunite	$KAl_3(SO_4)_2(OH)_6$	(Poor) CI calc= 0.214	poor	23.673	23.84	-0.7%
caminite	Mg ₃ (SO ₄) ₂ (OH) ₂	(Poor) CI calc= 0.214	fair	15.943	17.72	-11.0%
caminite	$Mg_7(SO_4)_5(OH)_4$ · H_2O	(Poor) CI calc= -0.026	fair	15.896	17.52	-10.0%
bassanite	$2CaSO_4$ · H ₂ O	(Excellent)	fair	8.257	8.71	-5.6%
bentorite	$\begin{array}{c} Ca_{5.88}Cr_{1.61}Al_{0.32}Fe^{3+}{}_{0.02}(SO_4)_{3}\\ (OH)_{12}\cdot 26H_2O \end{array}$	CI calc= 0.033 (Excellent) CI calc= 0.084	poor	92.726	95.69	-3.2%
argentojarosite	AgFe ₃ (SO ₄) ₂ (OH) ₆ Ca _{2.92} Sr _{0.06} Na _{6.98} K _{0.04} (SO ₄) ₆	(Poor) CI calc= -0.081	fair	36.401	36.06	1.0%
cesanite	$(OH)_{0.88}Cl_{0.12}$ · 0.88H ₂ O	(Poor) CI calc= -0.076	fair	50.433	49.81	1.2%
chalcocyanite	CuSO ₄	(Fair) CI calc= -0.117	poor	8.300	8.37	-0.7%
dolerophanite	Cu ₂ OSO ₄	(Poor) CI calc= 0.047	poor	12.748	12.31	3.4%
chalcoalumite	$CuAl_4SO_4(OH)_{12}$ · $3H_2O$	(Good) CI calc= -0.054	fair	34.151	33.57	1.7%
fedotovite	$K_2Cu_3O(SO_4)_3$	(Good) CI calc= -0.068	poor	29.699	29.79	-0.3%
kamchatkite	KCu ₃ (SO ₄)OCl	(Fair) CI calc= 0.144	poor	26.414	25.85	2.1%
millosevichite	$Al_{1.5}Fe_{0.5}(SO_4)_3$	(Poor) CI calc= 0.064	fair	21.924	21.35	2.6%
felsobanyite	$Al_4(SO_4)(OH)_{10}$ · $4H_2O$	(Fair) CI calc= 0.01	poor	30.627	30.54	-0.1%
walthierite	Ba _{0.5} Al ₃ (SO ₄) ₂ (OH) ₆	(Superior)	fair	24.073	24.11	0.2%
CHROMATES	[1]					
chromatite	CaCrO ₄	CI calc= 0.072 (Fair)	poor	11.204	12.46	-11.2%
MOLYBDATE						
	$Na_{1.2}K_{1.1}CaFe^{3+}_{0.5}Ca_{0.4}Fe^{3+}_{2.9}Al_{0.1}$	CI 1 0.102				
mendozavilite	$Mo_{7.77}P_{1.95}O_{31.62}(OH)_2Cl_{0.09}$ 19.6H ₂ O	CI calc= 0.193 (Poor) CI calc= -0.011	poor	151.403	139.48	7.9%
obradovicite	$\begin{array}{l} K_{1.72}Cu^{2^+}{}_{0.58}Na_{0.38}Cu^{2^+}Mo_8As_{1.53}\\ Fe^{3^+}{}_{2.64}O_{31.11}(OH)_{5.89}\cdot 18.25H_2O\\ Ca_{1.89}Na_{0.42}K_{0.09}Cu^{2^+}{}_{0.03}Mg_{1.01} \end{array}$	(Superior)	poor	163.741	144.50	11.7%
betpakdalite	$Fe^{3}_{3.01}Mo_8As_{1.8}P_{0.06}Si_{0.04}O_{36}$ (OH)1·23H ₂ O	CI calc= -0.071 (Fair)	poor	169.427	144.02	14.9%
bamfordite	$\mathrm{Fe}^{3+}\mathrm{Mo}_{2}\mathrm{O}_{6}(\mathrm{OH})_{3}$ · H ₂ O	CI calc= -0.067 (Fair)	fair	31.438	27.15	13.6%
lindgrenite	Cu ₃ Mo ₂ O ₈ (OH) ₂	CI calc= -0.087 (Poor)	poor	33.784	31.90	5.7%

Revision 1

TUNGSTATES [4]

TUNGSTATES	[4]					
		CI calc= 0.152				
scheelite	CaWO ₄	(Poor)	poor	11.887	11.91	-0.2%
	Ca _{1.64} Y _{1.13} Gd _{0.03} Dy _{0.08} Er _{0.07} Yb _{0.03}	CI calc= 0.143	•			
paraniite-Y	$As_{1.07}W_{0.93}O_{12}$	(Poor)	poor	32.661	30.76	5.8%
•		CI calc= 0.067	•			
yttrotungstite-Y	$YW_2O_6(OH)_3$	(Fair)	poor	26.439	23.99	9.3%
	$Y_{1.1}Nd_{0.17}Ce_{0.15}Dy_{0.09}RE_{0.3}Al_{0.2}$	CI calc= 0.067	1			
yttrotungstite	W _{3.7} O _{11.4} (OH) _{6.6}	(Fair)	poor	53.074	47.54	10.4%
		CI calc = -0.091	•			
tungstibite	Sb_2WO_6	(Poor)	poor	27.796	23.34	16.0%
COMPLEX STI	RUCTURES [10]					
	$Na_{36,43}K_{9,18}Ca_{8,75}Si_{42,50}Al_{41,50}$	CI calc= 0.038				
farnesite	$O_{213,72}F_{0.16}Cl_{0.48} \cdot 3H_2O$	(Excellent)		443.929	430.65	3.0%
iui nesite	$Na_5K_{1.8}CaAl_{6.05}Si_{5.95}O_{24}(SO_4)_{1.8}$	CI calc= -0.029		113.929	150.05	5.070
giuseppetite	Cl _{0.25}	(Excellent)		62.518	61.24	2.0%
8FF		CI calc= -0.016				
megacyclite	Na ₈ KSi ₉ O ₁₈ (OH) ₉ · 19H ₂ O	(Superior)		86.600	84.23	2.7%
nechelelyrusto-	$Na_4Ba_2Mn_1 5Ti_5NbSi_80_{28}(OH)_3F$	CI calc= 0.113				
vite	6H ₂ O	(Poor)		108.952	108.73	0.2%
	$Na_{8.72}Ca_{1.4}Sr_{0.03}Mg_{0.3}Mn_{0.68}Fe_{0.07}$	`				
	$Ti_{1,41}Nb_{0,19}Zr_{0,19}P_{2,96}Si_{2,04}O_{20,94}$	CI calc= 0.004				
polyphite	F _{2.06}	(Superior)		53.626	54.47	-1.6%
	$Na_{13.59}Ca_{1.44}Sr_{0.06}Mg_{0.5}Mn_{0.85}$	CI calc= 0.059				
quadruphite	Fe _{0.10} Ti _{2.55} Nb _{0.44} Zr _{0.47} Si ₄ P ₄ O ₃₃ F _{2.6}	(Good)		86.742	86.54	0.2%
	Na ₁₂ Sr _{21.16} Na _{1.17} Ca _{0.21} Ba ₄ Zr _{25.33}					
roger-	Ti _{0.93} Si _{77.02} B _{0.98} B ₁₂ O ₂₄₆ (OH) ₂₄ ·					
mitchellite	18H ₂ O			655.788	661.85	-0.9%
	$Na_{13.62}Ca_{1.63}Sr_{0.03}Mg_{0.39}Mn_{1.02}$					
	$Fe_{0.1}Ti_{2.42}Nb_{0.51}Zr_{0.09}Si_{4.1}P_4O_{33.08}$	CI calc= 0.013				
sobolevite	F _{2.92}	(Superior)		86.419	86.02	0.5%
	$Ca_{0.40}K_{0.44}Na_{0.05}Mn_{6.22}Fe_{1.45}$	-				
	$Mg_{1,43}Zn_{1,01}Fe^{3+}_{0,18}Si_{14,42}Al_{1,43}O_{38}$	CI calc= 0.02				
bannisterite	$(OH)_8$ · $6H_2O$	(Excellent)		107.148	107.83	-0.6%
	$Mn_{0.64}Mg_{0.28}Zn_{0.06}Fe_{0.02}Al_2(SO_4)_4$	CI calc= -0.009				
apjohnite	· 22H ₂ O	(Superior)		63.315	63.48	-0.3%

885 Figure captions

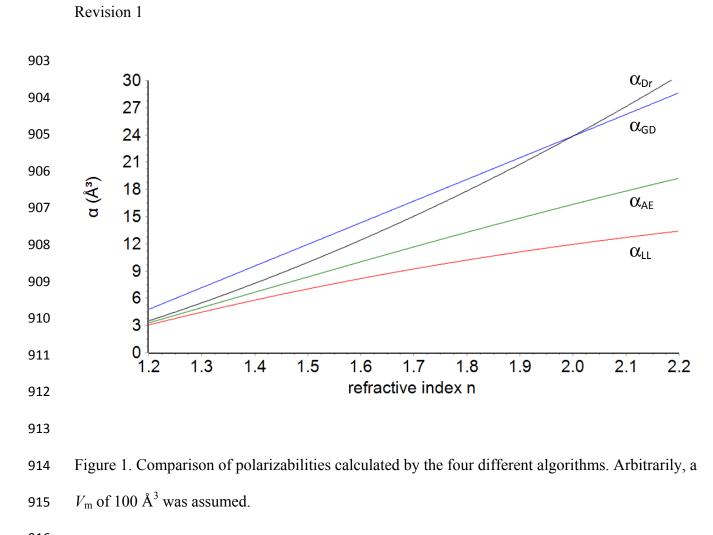
886

- Figure 1. Comparison of polarizabilities calculated by the four different algorithms. Arbitrarily, a
- 888 $V_{\rm m}$ of 100 Å³ was assumed.

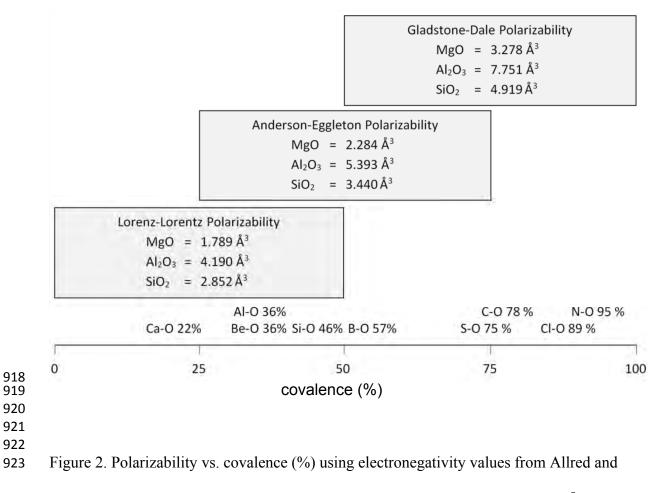
889

- Figure 2. Polarizability vs. covalence (%) using electronegativity values from Allred and
- 891 Rochow (1958). Covalence is calculated according to $\operatorname{cov}[\%] = 100 \cdot e^{-\frac{1}{4}(X_a X_b)^2}$

892


- Figure 3. Relationship between AE polarizabilities (eqn. 1b) and anion volume V_{an} of simple
- 894 oxides.

895


- Figure 4. Relationship between polarizabilities α and the cube of the ionic radii (Shannon 1976)
- 897 of rare earth ions.

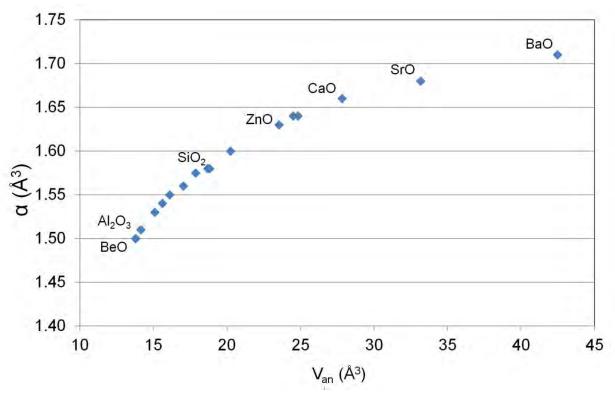
898

- Figure 5: Cation polarizabilities α plotted vs. coordination number CN. a) Na, b) Ca, c) La, d)
- 900 Zr. Numbers above the curves refer to the numbers of examples of minerals and compounds
- 901 containing ions in specific coordinations on the abscissa.

Revision 1

Rochow (1958). Covalence is calculated according to cov $[\%] = 100 \cdot e^{-\frac{1}{4}(x_a - x_b)^2}$ 924

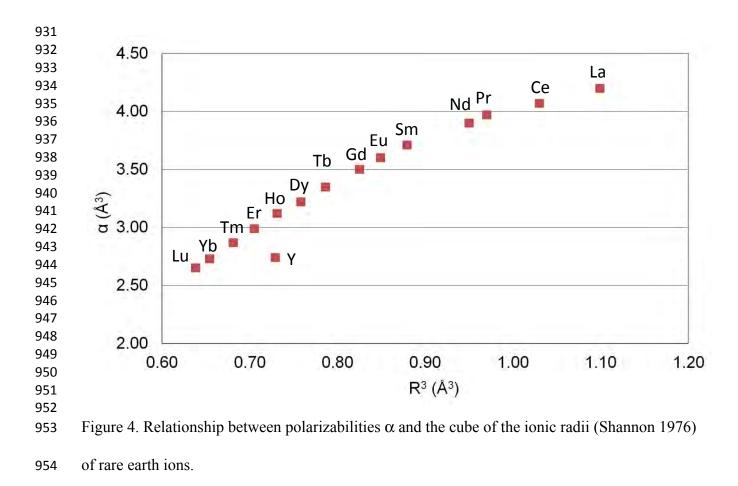
925

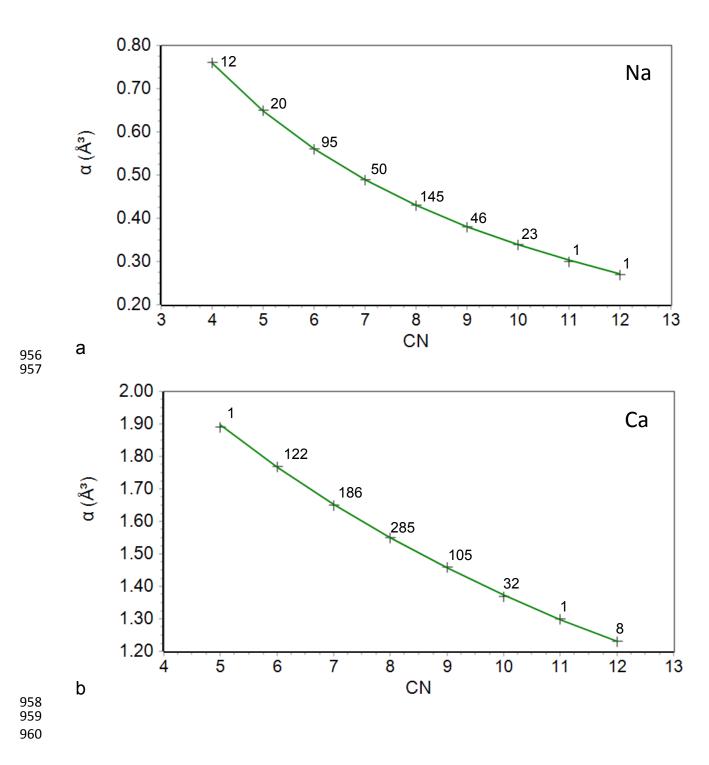

918

919

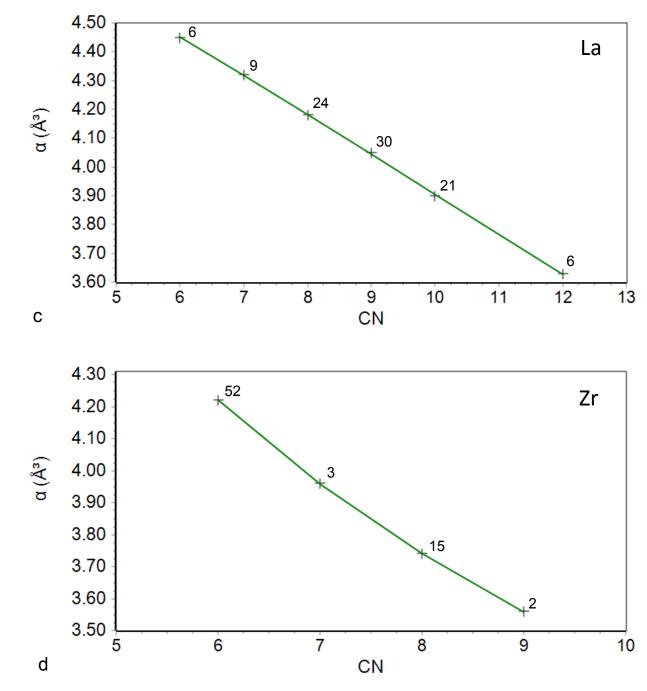
921 922

923


Revision 1



927 928 Figure 3. Relationship between AE polarizabilities (eqn. 1b) and anion volume V_{an} of simple


929 oxides.

Revision 1

Revision 1

961 962

Figure 5: Cation polarizabilities α plotted vs. coordination number CN. a) Na, b) Ca, c) La, d)
Zr. Numbers above the curves refer to the numbers of examples of minerals and compounds
containing ions in specific coordinations on the abscissa.