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Abstract

Relations of graphite and diamond have been studied in a garnet-kyanite-

clinopyroxene+sulfide+coesite/quartz+diamond+graphite eclogite xenolith

from the Udachnaya-East kimberlite pipe in the Yakutian diamond province.

Euhedral crystals of diamond and graphite occur in the intra- and intergranular

space. The equilibrium conditions of diamond formation reconstructed by

geothermobarometry for the Grt-Cpx-Ky-Coe mineral assemblage are 1020±40

◦C and 4.7 GPa. Raman imaging of graphite enclosed in diamond shows high

ordering and a 9 cm−1 shift of the ∼1580 cm−1 band. This Raman shift

of graphite, as well as a 5 cm−1 shift of the 1332 cm−1 band of diamond,

indicate large residual stress in graphite and in diamond around the inclusion,

respectively. According to FTIR spectroscopy, nitrogen in diamond is highly

aggregated and exists mainly as the A centers, while no other phases occur

near graphite inclusions. Therefore, diamond in the analyzed eclogite sample

must be quite old: it likely had crystallized long (∼1 Byr) before it became

entrained with kimberlite melt.

New data show that graphite can stay in the upper mantle for billions of
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years without converting to diamond. Crystallization of various carbon poly-

morphs, both in laboratory and natural systems, remains poorly constrained.

Graphite present in mantle and UHP rocks may be a metastable phase crystal-

lized in the diamond stability field. This fact should be taken into consideration

when deducing petrological constrains and distinguishing diamond and graphite

subfacies in upper mantle.
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Introduction1

Graphite and diamond were identified as two upper mantle subfacies pro-2

ceeding from graphite-to-diamond phase change (Dobretsov et al., 1974). The3

crystallization conditions for various polymorph modifications of carbon can be4

inferred from data on diamond- and graphite-bearing mantle rocks. The genesis5

of these rocks has been a subject of discussions for decades (Bobrievich et al.,6

1959; Pokhilenko et al., 1982; Robinson, 1979; Hatton, 1978; Robinson et al.,7

1984; Smyth and Caporuscio, 1984; Field and Haggerty, 1990; Pearson et al.,8

1990; Deines et al., 1991; Pearson et al., 1994; Viljoen, 1995; Korsakov et al.,9

2010; Naemura et al., 2011). According to earlier models (Bobrievich et al.,10

1959; Hatton, 1978; Robinson, 1979; Pokhilenko et al., 1982), diamond- and11

graphite-bearing eclogitic xenoliths entrained with erupting kimberlite magma12

crystallized close to the graphite-diamond equilibrium reaction curve. Pearson13

et al. (1994) hypothesized metastable growth of graphite within the diamond14

stability field and obtained the respective P-T (pressure and temperature) val-15

ues for some graphite-bearing xenoliths.16

Experimental studies of diamond crystallization from C-O-H fluids and in17

non-metallic systems, provide evidence that only diamond crystallizes at high18

temperatures while metastable graphite crystallization occurs at lower temper-19

atures (Fig. 1) (Pal’yanov et al., 1999; Akaishi and Yamaoka, 2000; Akaishi20

et al., 2000; Yamaoka et al., 2000; Sokol et al., 2001b; Pal’yanov et al., 2002;21

Yamaoka et al., 2002a; Davydov et al., 2004; Pal’yanov et al., 2006). Ac-22
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cording to the experiments, carbon polymorphs crystallize in several succes-23

sive steps with increasing temperatures and pressures: nucleation and growth24

of metastable graphite→nucleation and growth of metastable graphite+growth25

of diamond→nucleation and growth of diamond (Sokol and Pal’yanov, 2004;26

Pal’yanov et al., 2005).27

Indeed, some graphite in UHP metamorphic rocks can crystallize within the28

diamond stability field (Korsakov et al., 2010) and survive in the metastable29

state due to very short duration of high-pressure metamorphism. On the other30

hand, diamond in mantle xenoliths crystallized in Archean-Proterozoic time31

(Jacob and Foley, 1999; Pearson et al., 1999), long before kimberlite intrusion,32

and all graphite in such xenoliths would have converted to diamond since then.33

Graphite in mantle xenoliths is commonly found as isolated crystals among34

HP rock-forming minerals or as inclusions in them (Harris, 1972; Sobolev, 1974;35

Hatton and Gurney, 1979). Graphite inclusions in diamond are proto-, syn- or36

epigenetic (Harris and Gurney, 1979; Sobolev, 1974; Glinnemann et al., 2003;37

Nasdala et al., 2005; Bulanova et al., 1998; Meyer, 1987; Harris, 1992). Epige-38

netic graphite results from post-growth graphitization (Kuharenko, 1955) and39

occurs as discs or rosettes around fluid or mineral inclusions in diamond (Har-40

ris, 1972; Efimova et al., 1983). Protogenetic graphite, which serves as seeds for41

diamond crystallization, is euhedral and occurs mainly in the cores of diamond42

crystals (Bulanova et al., 1979; Bulanova, 1995; Glinnemann et al., 2003; Nas-43

dala et al., 2003, 2005). Syngenetic inclusions are multi-phase and appear in44

cubic fibrous diamonds (Orlov, 1977; Zedgenizov et al., 2004) or in dark-gray45

octahedrons (Titkov et al., 2006; Logvinova et al., 2008), as well as in low mantle46

diamonds (Kaminsky et al., 2013).47

The conditions and mechanisms responsible for the formation of differ-48

ent types of graphite inclusions in diamond long remained unclear until their49

features having implications for their genesis were revealed experimentally50

(Khokhryakov et al., 2009; Nechaev and Khokhryakov, 2013; Khokhryakov and51

Nechaev, 2015; Korsakov et al., 2015).52

Protogenetic graphite inclusions have equant or round shapes (Khokhryakov53
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et al., 2009); their flakes are distributed unevenly over the diamond hosts, while54

round platelets are present in the host center. Diamond-hosted graphite grains55

show irregular or epitactic orientations and unevenly ordered structures.56

Inclusions of syngenetic graphite were found in diamond synthesized57

upon seed crystals in non-metallic systems at different P, T, and h (time)58

(Khokhryakov et al., 2009). Graphite crystals were present all over diamond59

crystals and had euhedral hexagonal or irregular polygonal morphologies con-60

trolled by diamond growth layers. The diamonds were free from cracks and61

strain around the graphite inclusions (Khokhryakov et al., 2009; Khokhryakov62

and Nechaev, 2015). The Raman spectra of diamond-hosted graphite grains63

showed high ordering.64

Epigenetic inclusions were obtained in experiments on ambient pressure high-65

temperature annealing of diamond (Nechaev and Khokhryakov, 2013). Diamond66

crystals enclosing epigenetic graphite were commonly cracked and compressed67

along {111}. Graphite grains occurred as equant hexagonal or round platelets,68

always coexisting with other mineral inclusions, localized along subgrain bound-69

aries and cracks in the diamond-hosts. Their Raman spectra showed an ordered70

structure. The absence of epigenetic graphite inclusions in diamond from many71

deposits was attributed to low temperature (<900 ◦C) of kimberlite crystalliza-72

tion (Nechaev and Khokhryakov, 2013).73

In this study we investigate relations between various carbon polymorphs74

in a diamond- and graphite-bearing eclogitic xenolith from the Udachnaya-East75

kimberlite in the Yakutian diamond province.76

Geological setting77

The Udachnaya pipe belongs to the Daldyn-Alakit field of the Yakutian78

kimberlite province in the Siberian craton (Fig. 2). The craton is a collage of79

2.5 to 3.5 Ga terranes amalgamated by 1.8 - 2.1 Ga. Its Phanerozoic history80

included at least three major events of kimberlite magmatism in Upper Devonian81

to Lower Carboniferous (367 - 345 Ma), Triassic (245 - 215 Ma), and Upper82
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Jurassic (160 - 149 Ma) time (Davis et al., 1980; Brakhfogel, 1984; Kinny et al.,83

1997; Kostrovitsky et al., 2007).84

The Udachnaya kimberlite results from the Middle Palaeozoic activity85

(367±5 Ma). The pipe consists of two bodies, the western and eastern ones,86

which differ in mineralogy, petrography, and in the alteration degree of xeno-87

liths (Bobrievich et al., 1959; Kharkiv et al., 1991; Kostrovitsky et al., 2013;88

Kamenetsky et al., 2014). Mantle xenoliths from the Udachnaya-West kimber-89

lite are commonly strongly serpentinised and more or less uniform, while those90

of Udachnaya-East are mainly fresh and highly diverse.91

Analytical techniques92

Mineral chemistry of main phases was determined at the Institute of Geology93

and Mineralogy (IGM, Novosibirsk, Russia), on a JEOL JXA-8100 electron94

microprobe operated at 20 kV acceleration voltage, 50 nA focused beam current95

and, 20-30 s counting time. A TESCAN MIRA 3 LMU JSM 6510LV equipped96

with an Oxford Instruments INCA energy detector, X-max 80 mm2, was used97

for chemical mapping, at the operating conditions 20 kV, 1 nA, with an interval98

of 0.78 s for each spot (further analytical details can be found elsewhere in99

Lavrentev et al. (2015)).100

Raman spectra in the range from 50 to 4000 cm−1 were recorded using a101

LabRam 800 HR(Horiba Jobin Yvon) spectrometer equipped with a 514.5 nm102

laser (power ×30 mW; beam diameter ∼ 1 μm).103

Raman imaging of inclusions in diamond was performed using a WITec al-104

pha300AR confocal Raman spectroscopy system at the Ural Center of Shared105

Use ”Modern Nanotechnologies” (Ural Federal University, Ekaterinburg, Rus-106

sia), at 488 nm laser wavelength, 70×70 μm mapping domain, resolution107

140×140 points, and acquisition time 0.2 s at each point.108

The isolated diamonds (core, mantle, and rim) were analyzed by FTIR spec-109

troscopy, on a Bruker Vertex 70 FTIR spectrometer equipped with a HYPER-110

ION 2000 IR microscope, in the region 5000-6000 cm−1 (aperture 50×50 μm).111
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Petrography112

The Uv-567 sample (5×7×5.8 cm) is a medium-grained eclogite with a mas-113

sive structure and a granoblastic texture (Fig. 3), consisting of 60 vol.% round114

garnets, 30 vol.% residual anhedral clinopyroxene (CpxI), and 10 vol.% round co-115

esite/quartz. Primary accessories in the sample are diamond, graphite, kyanite,116

rutile, pentlandite, pyrrhotite, and chalcopyrite; secondary phases are clinopy-117

roxene (CpxII), K-feldspar, spinel, plagioclase, biotite, muscovite, chlorite, ser-118

pentine, quartz, and corundum.119

Clinopyroxene appears in thin sections as two generations (Fig. 4C-D):120

130×60 μm oval light-gray relict grains (CpxI) substituted by clinopyroxene-121

plagioclase symplectite (CpxII). The latter consists of fine milky white122

irregularly-shaped grains of clinopyroxene, plagioclase, and K-feldspar, varying123

in size from 10 to 50 μm away from residual CpxI.124

Garnet exists as heavily cracked 0.8 to 4 mm reddish-orange round grains,125

with CpxII (diopside), plagioclase, amphibole, spinel, and sulfides along cracks;126

reaction rims around garnets are 30 to 50 μm thick.127

All quartz in the sample is pseudomorphic after coesite, judging by typical128

palisade texture (Fig.5). The pseudomorphs are from 0.2 to 1.5 mm in matrix129

and > 200 μm when occur as inclusions in garnet (Fig. 5); some are surrounded130

by chlorite and serpentine (Fig. 5) separated from quartz by a distinct boundary.131

Rutile is the most abundant accessory in the sample, occurring as orange132

prismatic needles, 0.5 to 0.8 mm, most often at the garnet-symplectite boundary;133

it encloses numerous 10 to 15 μm lamelli of ilmenite.134

Elongate prisms of light blue kyanite, 0.3-0.8 mm, occur only as inclusions135

in garnet (Fig. 6, 4A-B). Some kyanites are replaced by plagioclase-corundum136

and plagioclase-spinel symplectites, with pale to dark blue 150 μm long prisms137

of corundum set in a matrix of bluish-white plagioclase (12 to 50 μm). Euhedral138

spinel crystals, 15 to 50 μm, surround residual kyanites (Fig. 6B).139

The sample contains two carbon polymorphs: diamond and graphite. Three140

macroscopic octahedral diamonds isolated mechanically from the central part141
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of the xenolith sample (Fig. 7) belong to variety I in the classification of Orlov142

(1977). Unevenly distributed graphite inclusions are present in all diamond143

crystals (mostly on grain periphery) but are especially abundant in one of them144

(Fig. 7A). They are surrounded by transparent penny-shaped cracks (Fig. 7)145

remaining within diamond grain. No other phases except the host diamond are146

observed in the cracks, as confirmed by FTIR and Raman spectroscopy data.147

Subhedral graphite flakes are mostly localized on {111} faces, together with148

negative oriented trigons.149

The diamond faces have rough surfaces, apparently produced by growth,150

with negative trigons on {111} that form face-parallel chains, shield-shaped151

laminas, and grooves, as well as drop-shaped hillocks, mainly on face margins152

(Khokhryakov et al., 2002).153

Euhedral graphite crystals, from 0.4 to 1 mm, occur as a residual phase154

in symplectite that substitutes for the primary pyroxene, as well as in garnet,155

where they are confined within grain boundaries (Fig. 8). Graphite in the156

sample shows no crystallographic preferred orientation. Most of graphite is157

enclosed in garnet, being surrounded by a fine aggregate of calcite, diopside,158

plagioclase, muscovite, biotite, and spinel. Graphite crystals also occur enclosed159

in diamonds (never in the core) or on their surfaces (Fig. 7C, F). Some round160

or polygonal graphite grains, from 15 to 250 μm in diameter, rise over diamond161

surfaces, being either isolated or less often forming clusters of aligned crystals.162

Graphite grains show different orientations relative to octahedral faces. Some163

have pinacoids (001) parallel to one of diamond faces (111).164

Mineral chemistry165

Garnet166

Garnets span the pyrope-grossular-almandine range167

(Prp37.2−43.3Gross28.4−35.4Alm21.9−25.8), with Mn components (Spess) within168

0.4 mol.%. They are homogeneous within grains and have compositions typical169

of group B eclogites (Coleman et al., 1965). Contents of some elements vary170
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slightly over the sample. All garnets have high Na2O (0.1 to 0.3 wt.%); CaO171

is from 11.8 to 13.5 wt.%; TiO2 and MnO are within 0.1-0.3 and 0.1-0.2,172

respectively (Table 1). Calculated Fe3+ is from 0.28 to 0.6 wt.%; ratio173

Fe3+/Fetot is from 3.2 to 5.5.174

Clinopyroxene175

Clinopyroxene is of two generations, which chemically belong to176

groups C and B (Taylor and Neal, 1989), respectively: omphacite177

(Jd52.9−54.3Di37.8−40.2Hd5.1−5.6CaTs0.2−1.6) and omphacite with a lower178

amount of jadeite (Di48−54.4Jd19.8−34.8Hd4.8−8.5En3.5−6.2). First-generation179

clinopyroxene is homogeneous and its major oxides vary from 0.1 to 0.2 wt.%180

K2O, 7.2 to 7.8 wt.% Na2O and 14 to 14.7 wt.% Al2O3. Later clinopyroxene is181

inhomogeneous and has its composition varying strongly within the sample. It182

has lower Na2O (3.45 wt.%) and Al2O3 (10 wt.%) and lacks K2O (Table 1).183

Feldspars184

Feldspar compositions vary markedly within the symplectite and depend on185

grain size. Plagioclase is albite according to its chemistry, with the compo-186

sitions (Ab93.2An5.1Or2.7) and (Ab82An16,2Or1,8) of the largest and smallest187

grains, respectively. K-feldspar is sanidine (Or85.6Ab10.3An2.7) coarse grains188

and (Or89.3Ab10.4) fine grains, which lack CaO, with K2O from 10.5 to 14.3189

wt.% (Table 1).190

Raman spectroscopic results and IR191

Typical Raman peaks of graphite from the Uv-567 sample are as in Fig. 9.192

The G-band of graphite inclusions in diamond, exposed on the (111) diamond193

faces, is very sharp at 1579 (±22 at 2 sigma) cm−1 (FWHM= 16-20 cm−1 in194

average) (Fig. 9A). There is a D1-band near 1350 cm−1 and a D2-band from195

1616 to 1622 cm−1. The second order Raman spectra of this type of graphite196

(Fig. 9B-E) show the main S1 peak at 2707-2716 cm−1 (FWHM= 71-80 cm−1
197

on average). The R2 ratio [D1/(G1+D1+D2)] ranges from 0.11 to 0.22. In the198
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second-order region, there is a sharp S1-band at 2713.7 cm−1 (FWHM = 76.5199

cm−1). There are also a sharp G-band at 1589.7 cm−1 (FWHM=21.4 cm−1)200

and a lower D2-band at 1629.1 cm−1 (FWHM=21.4 cm−1) (Fig. 10).201

Diamond shows large residual strain around graphite inclusions as well as202

inside the latter (Fig. 11A). Residual pressure (compressive strain) in diamond203

is recorded in a 5.2 cm−1 shift of the 1331.8 cm−1 peak to 1337 cm−1 (Fig.204

11A); the main diamond peak is shifted also in the central part of diamond205

crystals, to 1335 cm−1. The residual compessive strain in diamond estimated206

by the method of Sharma et al. (1985) corresponds to a pressure of 2.2 GPa,207

and that in enclosed graphite, indicated by a 7 cm−1 shift of the G-band, is208

inferred to be ∼ 2 GPa.209

Raman imaging revealed enclosed calcite next to the graphite inclusions in210

diamond (Fig. 12). Calcite shows peaks at 155 and 284 cm−1 and at 1088211

cm−1. Note that no graphite was observed around the calcite inclusion along212

the calcite-diamond boundary.213

Nitrogen is the main impurity that controls many physical properties in dia-214

mond. The nitrogen content and speciation record the crystallization conditions215

of diamonds and their further thermal history (Boyd et al., 1987; Taylor et al.,216

1990; De Weerdt et al., 2003). Typical absorption bands in all analyzed crystals217

trace nitrogen defects A and B1, as well as a lamellar defect B2 marked by218

two absorption lines: a main line at 1370 cm−1 and a secondary line at 1430219

cm−1. Nitrogen varies in the range 900-1400 ppm, decreasing from core to rim,220

while its aggregation is from 38 % to 42 %. According to the obtained data, the221

diamonds belong to the widespread type IaA/B in the physical classification.222

FTIR spectroscopy of graphite enclosed in diamond (Fig. 13) has not revealed223

mineral or fluid phases within penny-shaped cracks associated with inclusions224

(points 4, 5, 6). At the same time, there are peaks of unknown origin at points225

9, 10 and 11 in the 900-1000 cm−1 region.226
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Geothermobarometry227

The assemblage garnet+clinopyroxene+phengite±kyanite±quartz/coesite is228

quite common in some Al-rich eclogites, and equilibria between these phases229

have successfully been used for independent estimation of pressure (P) and230

temperature (T) of HP and UHP rocks, which is otherwise impossible for most231

bi-mineral eclogites (Ravna and Paquin, 2003). In the kyanite-bearing eclog-232

ites, these reactions define an invariant point in both coesite and quartz stability233

fields, depending on which SiO2 polymorph is stable. The geothermobarometric234

methods based on the net transfer reactions (1) in this system are less affected235

by later thermal re-equilibration than the conventional cation exchange ther-236

mometers, and make the estimation of Fe3+/Fetot in omphacite and garnet less237

problematic (for temperature).238

3 diopside + 2 kyanite = 1 grossular + 1 pyrope + 2 coesite/quartz (1)239

The P-T conditions for eclogite sample Uv-567 with diamond and graphite240

were estimated using this geothermobarometer (Ravna and Paquin, 2003). The241

estimates were obtained using analyses of garnet cores and residual omphacite242

(CpxI). The pressure and the temperature were inferred to be 4.7±0.2 GPa243

and 1020±40 ◦C, respectively (Fig. 1). Interception of 40 mW/m2 geother-244

mal gradients (Pollack and Chapman, 1977) with temperatures estimated by245

geothermometer Ellis and Green (1979) provides very similar P-T conditions of246

4.6 GPa and 1050 ◦C. The P-T conditions of pyroxene-plagioclase symplectite247

formation were estimated from the jadeite content in pyroxene (CpxII) (Hol-248

land, 1980, 1983; Aranovich and Perchuk, 1989). Coarse-grained symplectite249

crystallized at 2.3 GPa and 990 ◦C, while the fine-grained symplectite formed250

at 1.2 GPa and 600 ◦C (Fig. 1). Thus, the symplectite was apparently pro-251

duced by metamorphism during xenolith transport, most likely with erupting252

kimberlite magma.253
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Discussion254

The formation of graphite- and diamond-bearing eclogitic xenoliths is com-255

monly considered in terms of crystallization of carbon polymorphs close to the256

diamond-graphite equilibrium reaction curve (Bobrievich et al., 1959; Hatton,257

1978; Robinson, 1979; Pokhilenko et al., 1982). Crystallization of graphite is258

most often believed to be restricted to its stability field and either precede or259

postdate diamond formation (Bobrievich et al., 1959; Kuharenko, 1955; Hatton,260

1978; Pokhilenko et al., 1982; Pearson et al., 1994; Nasdala et al., 2003, 2005).261

However, there is experimental evidence (Litvin et al., 1997; Pal’yanov et al.,262

1999; Akaishi and Yamaoka, 2000; Akaishi et al., 2000; Yamaoka et al., 2000;263

Sokol et al., 2001b; Pal’yanov et al., 2002; Yamaoka et al., 2002a; Davydov264

et al., 2004; Pal’yanov et al., 2006) that metastable graphite can crystallize in265

the diamond stability field.266

Crystallization of metastable graphite in natural samples was documented267

only in metamorphic rocks of the Kokchetav Massif where graphite survived due268

to brevity of the HP metamorphic event (Korsakov et al., 2010), but no direct269

proof for the possibility of metastable graphite growth in the mantle was found270

until recently.271

Naemura et al. (2011) analyzed graphite-bearing peridotites of the Moldanu-272

bian zone in the Bohemian Massif and suggested two ways of graphite formation,273

either by precipitation from a relatively cold fluid or by graphitization of dia-274

mond. Graphite enclosed in garnet gave Raman peaks at 1350 cm−1 (D-1 band)275

and 1619 cm−1 (D-2 band) indicating low ordering (Naemura et al., 2011). On276

the other hand, Korsakov et al. (2015) showed that euhedral graphite crystals277

of a similar ordering degree could form from C-O-H fluids at 1300-1500 ◦C and278

a pressure of 2 GPa. Therefore, crystallization temperatures for fluid-derived279

graphite cannot be estimated from the graphite thermometer of Beyssac et al.280

(2002).281

There is no literature on epigenetic graphite inclusions in diamond from the282

Udachnaya kimberlite. The Udachnaya kimberlite magma crystallized at tem-283
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peratures in the range 700-800 ◦C (Golovin et al., 2007) to 950-1100 ◦C (Sobolev284

et al., 1989) at the final stage. At such low temperature the graphitization of285

diamond crystal is very unlikely.286

Experiments show that diamond graphitization in vacuum begins at a tem-287

perature no lower than 1150 ◦C and is very slow. As reported by Butenko et al.288

(2000), only small patches of carbon with a graphite structure appear on the di-289

amond crystal surfaces for three hours at 1150 ◦C, which are detectable only in290

SEM images. In the analyzed sample, graphite grains are localized in diamond291

rims and partly rise over the surfaces, indicating that at least some graphite292

crystallized together with diamond.293

The graphite inclusions are surrounded by transparent cracks remaining294

within the diamond grain. The cracks show no orientation along the {111}295

plane in diamond unlike epigenetic graphite inclusions produced by thermal and296

chemical interactions with kimberlite melt (Kuharenko, 1955; Harris and Vance,297

1972; Nechaev and Khokhryakov, 2013; Khokhryakov and Nechaev, 2015). Dia-298

mond that encloses syngenetic and protogenetic graphite is commonly free from299

cracks and strain (Nechaev and Khokhryakov, 2013; Khokhryakov and Nechaev,300

2015), but cracks appear around graphite and other mineral inclusions in nat-301

ural diamond exposed to high temperatures in post-growth conditions (Harris302

and Vance, 1972). Disordered graphite is often present in penny-shaped cracks303

near graphite inclusions Nasdala et al. (2003). Graphitization in experiments re-304

ported by Harris and Vance (1972) began at 900 ◦C in cracks around inclusions305

(on dihedral angles), then proceeded to inclusion surfaces as the temperature306

rose further to 1000 ◦C and on to their margins. In our samples, penny-shaped307

cracks are free from other mineral phases, as follows from FTIR and Raman308

spectroscopy data. The calcite inclusion close to the graphite bears no graphi-309

tization signature at the calcite-diamond boundary. Judging by high nitrogen310

aggregation, the analyzed diamond remained exposed to a high temperature311

(thus staying in the mantle) for a long time (Evans and Qi, 1982).312

Raman spectra of carbonaceous material are highly sensitive to its crys-313

tallinity. In the first-order region, a single Raman mode (G-band) is expected314
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at around 1580 cm−1 (Tuinstra and Koenig, 1970; Nemanich and Solin, 1979;315

Ferrari and Robertson, 2000). The D1-band and a shoulder at around 1620 cm−1
316

(D2) are typically observed in disordered carbonaceous material (Lespade et al.,317

1982; Wang et al., 1990; Wopenka and Pasteris, 1993; Pasteris and Wopenka,318

2003). The Raman shift of the G-band towards higher frequencies records in-319

clusions affected by compressive strain, as it happens in most diamond-hosted320

inclusions (Nasdala et al., 2003, 2005). The obvious inconsistency between rem-321

nant pressure 3.8 GPa (at P=4.7 GPa; T=293 ◦C; T0=1020 ◦C) estimated322

for graphite inclusions using the model of Zhang (1998) and the respective es-323

timates for graphite (2 GPa) and diamond (2.2 GPa) indicates partial stress324

release (Stepanov et al., 2011). This hypothesis agrees with the presence of325

transparent penny-shaped cracks around graphite inclusions in diamond crys-326

tals. Graphite in the sample we studied has a highly ordered structure (see327

above) and lacks D-1 and D-2 bands, which rules out poor ordering as a cause328

of G-band shifting (Beyssac et al., 2003).329

According to the model of Zhang (1998), the shift of the main diamond peak330

to 1335 cm−1 may indicate diamond growth in several stages. This idea is con-331

sistent with rimward decrease in nitrogen ordering shown by FTIR spectroscopy.332

Nitrogen in the analyzed diamond crystals is quite highly aggregated, which is333

commonly attributed to high temperature during the post-growth history or to334

their prolonged exposure to the conditions of lithospheric mantle (Evans and335

Qi, 1982).336

Experimental graphitization of synthetic diamonds in ”dry” and ”wet” sys-337

tems at 2.0-2.5 GPa and different temperatures Korsakov et al. (2015) was338

uneven in different crystal faces. Graphitization in a ”wet” system produced339

negative oriented trigons with sporadic euhedral flakes on {111} while coarse340

hexagonal graphites were localized on {100} and {110}. In the samples we stud-341

ied, polygonal graphite grains mostly occur on {111}, together with negative342

oriented trigons and rounded edges and corners. Thus, the origin of graphite343

on diamond surfaces by graphitization via the coupled dissolution-precipitation344

process is unlikely, even in the presence of fluid, and cannot account for the345
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existence of graphite inclusions inside diamonds and in other minerals from the346

sample.347

Finds of coarse graphite crystals in garnet (Fig. 8) likewise indicate that348

at least some graphite grains crystallized before garnet or simultaneously with349

it and other main phases at 4.7 GPa and 1020 ◦C (Fig. 1). The presence350

of graphite in interstitials, at garnet-symplectite boundaries, may testify for351

graphite crystallization together with a fine secondary phase aggregate at 1.2-352

2.3 GPa and 600-990 ◦C. The aggregate formed around graphite grains at a353

late stage, most likely during kimberlite intrusion rather than during C-O-H354

fluids percolation. Similar secondary products detected near diamond crystals355

free from graphite signatures indicate that graphite likely formed together with356

primary minerals of eclogite: garnet, pyroxene, coesite and kyanite. Note addi-357

tionally that graphite grains are about ten times larger than those of secondary358

phases and thus must have formed simultaneously with other main minerals at359

higher pressures and temperatures. If graphite crystallization occurred together360

with the formation of spongy texture, its rate was several times as high as for361

low-pressure rock-forming minerals. Given that the ascent of kimberlite melt362

from a depth of 200 km takes 72 hours (Spera, 1984; Pearson et al., 1997; Meyen,363

1985; Canil and Fedortchouk, 1999), the graphite crystallization rate must ex-364

ceed 0.016 mm/hr (or 0.012 mm/hr at 100 hours of ascent). The presence of365

diamond in the eclogite sample may be due to percolation of C-O-H fluids (Tay-366

lor et al., 1998; Anand et al., 2004; Stepanov et al., 2007, 2008; Shatsky et al.,367

2008; Liu et al., 2009) and thus may be associated with metasomatism. Inas-368

much as the host mineral fails to buffer all graphite (Fig. 8), the latter hardly369

can be expected to survive in metasomatism, judging by the results of experi-370

ments by Yamaoka et al. (2002b) where all graphite converted to diamond for371

8-10 hours at 7.7 GPa and 1500 ◦C. Preservation of graphite in diamond was372

also possible if the zones with graphite eluded the effect of the C-O-H fluids,373

which only partly penetrated into the rock.374

Thus, graphite inside garnet, clinopyroxene and diamond crystals and, pos-375

sibly, also on their surfaces, crystallized in the diamond stability field rather376
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than being a product of partial graphitization of diamond. It remains unclear377

why different carbon polymorphs crystallize, both in natural and laboratory378

conditions. Diamond formation is most often predicted to occur at upper man-379

tle pressures and temperatures and at moderate fO2 (Sobolev, 1974; Haggerty,380

1986, 1999; Meyer, 1987; Harris, 1992; Schrauder and Navon, 1994; Navon, 1999;381

Luth, 1999, 2001), while graphite crystallizes in more reduced settings (Sokol382

and Pal’yanov, 2004; Sokol et al., 2004). Graphite and diamond crystallization383

may be controlled by fO2 (Sokol and Pal’yanov, 2008). Nevertheless, graphite384

is always the earliest phase to crystallize in the diamond stability field, among385

carbon polymorphs, in experimental diamond synthesis in non-metallic systems386

(Sokol and Pal’yanov, 2008). Unlike HP metamorphic rocks, where metastable387

graphite survives due to brevity of HP metamorphism, diamond with highly388

aggregated nitrogen from eclogitic xenoliths had formed about 1 Byr before the389

latter became entrained with kimberlite magma (Stepanov et al., 2007).390

Experimental studies of diamond crystallization in non-metallic systems re-391

veal that fO2 play important role in diamond formation, in addition to pressure392

and temperature the (Fig. 1) (Pal’yanov et al., 1999; Akaishi and Yamaoka,393

2000; Akaishi et al., 2000; Yamaoka et al., 2000; Sokol et al., 2001b; Pal’yanov394

et al., 2002; Yamaoka et al., 2002a; Davydov et al., 2004; Pal’yanov et al.,395

2006). Diamond crystallization occurs from C-O-H fluids at moderately oxi-396

dized conditions, while only graphite precipitated in reduced conditions even397

in the diamond stability field (Sokol et al., 2001b; Pal’yanov and Sokol, 2009).398

However, as it was recently demonstrated by Sverjensky and Huang (2015),399

diamond crystallization is possible without redox change. Graphite-diamond400

crystallization requires higher pH, which occurs naturally upon water-mantle401

interaction at certain conditions. This new model of reactions in the lower crust402

and upper mantle calls for revision of the global carbon cycle patterns. Unfor-403

tunately, the estimation of pH for natural samples remains almost impossible,404

and we cannot test this model for our sample. Furthermore, FTIR-spectroscopy405

of the diamond crystal did not reveal H2O. The presence of calcite inclusions in406

diamond close to graphite may indicate that carbon polymorphs were derived407
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from carbonatite melt.408

Stagno et al. (2015) discussed the role of oxygen fugacity in carbonate melts409

in eclogites during diamond and graphite crystallization in their own stability410

field and constrained the stability fields for carbonate melt, graphite and dia-411

mond, depending on the depth and oxygen fugacity. The calculated Fe3+/Fetot412

ratios for the eclogitic garnets from sample the Uv-567 are in good agree-413

ment with the estimated values of fO2 for eclogite assemblages obtained by414

Stagno et al. (2015) for diamond/graphite precipitats. In general, primary om-415

phacitic clinopyroxene of the kyanite-bearing eclogites are completely replaced416

by clinopyroxene-plagioclase symplectites, which makes fO2 estimation for these417

samples more complicated. In the presence of kyanite and SiO2 polymorphs,418

cabonates may also change oxygen fugacity, as it was recently proposed by Frez-419

zotti et al. (2014). We have not measured Fe3+ concentration in our eclogite420

sample yet, but expect to do it in the nearest future.421

Implications422

The reported finds of graphite inclusions in diamond from the eclogitic xeno-423

lith sample provide the first evidence of metastable graphite crystallization in424

the diamond stability field in the upper mantle, much below (±20 km) the425

graphite-diamond equilibrium. Proceeding from high nitrogen aggregation, the426

presumed old age of graphite-bearing diamond crystals indicates that graphite427

can stay in the upper mantle within the field of diamond stability for a long428

time. This fact has to be taken into account in petrological reconstructions and429

in identification of upper mantle facies.430
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Beyssac, O., Goffé, B., Chopin, C., and Rouzaud, J. N. (2002) Raman spectra455

of carbonaceous material in metasediments: a new geothermometer. Journal456

of metamorphic Geology, 20, 859–871.457
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Figures880

Figure 1: P-T conditions of formation for diamond- and graphite-bearing xenoliths from world-
wide occurrence (Pearson et al., 1994; Nimis and Taylor, 2000) and the diamond- graphite-
bearing eclogite sample Uv-567 of this study (red star). Symplectites I (SymI) and Sym-
plectites II (SymII) are coarse- and fine-grained symplectites after omphacite, respectively.
Metastable graphite crystallization field in experiments (Pal’yanov et al., 1999; Akaishi et al.,
2000; Yamaoka et al., 2000; Akaishi and Yamaoka, 2000; Sokol et al., 2001a; Pal’yanov et al.,
2002; Palyanov et al., 2002; Sokol and Pal’yanov, 2004)are shown as dark gray gradient areas.
The stability fields of carbon-bearing phases are in different colors after Thomson et al. (2016).
The melting curve of carbonated MORB compared to hot and cold subduction geotherms is
according to (Syracuse et al., 2010). Quartz-coesite equilibrium is after Bose and Ganguly
(1995); graphite-diamond equilibrium is after Kennedy and Kennedy (1976). Continental
geotherm of 40 mW/m2 heat flow is from Pollack and Chapman (1977).
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Figure 2: 1. Simplifed geology of the Siberian craton, showing craton boundaries (1), outcrops
of Precambrian rocks (2), locations of Mesozoic (3) and Paleozoic (4) kimberlite fields, and
the Udachnaya kimberlite pipe (5). Modifed after Pokhilenko et al. (1999).
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Figure 3: A polished fragment of graphite- and diamond-bearing eclogitic xenolith (sample
Uv-567) from Udachnaya-East kimberlite.
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Figure 4: BSE images of plagioclase-spinel symplectite around primary kyanite inclusion in
garnet (A-B) and fine diopside-plagioclase symplectite around residual omphacite (C-D) from
Uv-567 eclogite. Note that secondary phases increase in size away from omphacite. Mineral
abbreviations are Ky = kyanite; CpxI = omphacite; CpxII = diopside; Pl = plagioclase; Grt
= garnet; Spl = spinel; Crn = corundum.
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Figure 5: BSE images of secondary mineral assemblages around quartz (quartz pseudomorphs
after coesite). A: coarse quartz grain at the boundary of garnet with diopside-plagioclase sym-
plectite; B: quartz inclusion in garnet with typical alteration features. Mineral abbreviations
are Qtz = quartz; p = chalcopyrite; Kfs = K-feldspar; Po = pentlandite; Chl = chlorite; CpxI
= omphacite; CpxII = diopside; Pl = plagioclase; Grt = garnet; Spl = spinel; Rt = rutile; Bt
= biotite; Cal = calcite; Ms = muscovite.
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Figure 6: Photomicrographs of Plagioclase-spinel symplectite around residual kyanite (inclu-
sion in garnet). Mineral abbreviations are Ky = kyanite; Pl = plagioclase; Grt = garnet; Spl
= spinel; Crn = corundum.
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Figure 7: Photomicrographs of diamond crystals from sample Uv-567 (A, B, D); enlarged
fragment with most abundant graphite inclusions (C); polished section of diamond crystal
with large graphite inclusions (E); a graphite grain on a chip of a diamond crystal (F).
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Figure 8: BSE images of a large euhedral graphite inclusion in garnet. Note that graphite is
not fully buffered by garnet; there are secondary phases around primary graphite. Mineral
abbreviations are Gr =graphite; CpxI = omphacite; CpxII = diopside; Pl = plagioclase; Grt
= garnet; Spl = spinel; Rt = rutile; Bt = biotite; Cal = calcite; Ms = muscovite.
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Figure 9: Representative Raman spectra of graphite crystals identified in eclogite xenolith
Uv-567. A: graphite enclosed in diamond; B-E: graphite on diamond surfaces.
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Figure 10: Raman spectra of graphite inclusion in diamond.
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Figure 11: Raman map of a diamond crystal with graphite inclusions with the same area as
shown in Figure A, based on the frequency of the LO=TO phonon. Areas without notable
strain are visualized dark-blue (measured Raman shift 1335 cm−1). Micro-areas affected by
compressive strain (i.e., remnant internal pressure) are pink-yellow, and those affected by
strong dilative strain (close to the ends of fractures) are red-yellow.
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Figure 12: Raman image and individual Raman spectra inclusions of diamond, calcite and
graphite. A: Raman map of diamond crystal with a graphite inclusion and a calcite inclusion
next to it; B: Raman spectra of a diamond around graphite and calcite inclusions; C: Raman
spectra of calcite inclusion in the range 0 to 1200 −1; D: Raman spectra of graphite and calcite
inclusion in the range 1500 cm−1 to 3600 −1.
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Figure 13: A: FTIR spectra of diamond with most abundant graphite inclusions in eclogite
sample UV-567; B: FTIR data points in a diamond crystal that encloses graphite (with FTIR
spectra points). Green circles mark points with peaks at 900-1000 cm−1.
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Table 1. Mineral major-element  (wt.%) compositions of Uv-567

SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O Nb2O5 BaO Cl Total

Grt-R 40.5 0.2 22.3 0.06 12.5 0.2 11.3 13.0 0.1 0.01 -- -- -- 100.2

Grt-C 40.8 0.2 22.6 0.07 12.5 0.2 11.5 12.9 0.1 0.00 -- -- -- 100.9

Grt-R 40.0 0.2 22.8 0.07 12.3 0.2 10.6 12.9 0.2 0.03 -- -- -- 99.3

Cpx-R 56.3 0.2 14.2 0.02 1.7 0.02 7.4 11.8 7.8 0.07 -- -- -- 99.5

Cpx-C 56.3 0.2 14.1 0.04 1.8 0.02 7.3 11.7 7.8 0.08 -- -- -- 99.3

Cpx-R 56.3 0.2 14.1 0.05 1.7 0.03 7.4 11.7 7.7 0.1 -- -- -- 99.2

Pl 66.1 0.3 15.4 0 1.4 0.2 1.0 0.5 0.1 14.4 -- -- -- 99.4

Pl 66.4 0.05 20.1 0.00 0.1 0.01 0.01 1.2 10.8 0.7 -- -- -- 99.4

Spl 3.2 0.03 63.9 0.12 19.0 0.2 14.3 0.1 0.0 0.4 -- -- -- 101.2

Crn 0.2 0.3 97.1 0.23 0.4 0.00 0.15 0.00 0 0 -- -- -- 98.4

Crn 0 0.00 97.4 0.15 0.33 0.02 0.01 0.03 0 0 -- -- -- 97.9

Ms 32.2 0.00 25.1 0.00 4.6 0.00 21.9 0 0.2 8.1 0.5 6.3 0 99.0

Bt 40.4 0.3 23.4 0.00 11.4 0.3 8.9 6.0 0.3 6.1 0 0 0.2 97.3

Kfsp 63.9 0.00 15.6 0.00 1.8 0.00 6.6 0 0.2 13.0 -- -- -- 101.1

Rt-C 100 0.00 0 0.44 0 0.00 0 0 0 -- -- -- -- 100.4

Note:  С, core; R, rims; Grt, garnet; Cpx, clinopyroxene; Pl, plagioclase; Spl, spinel; Crn, corundum; Ms, muscovite; Bt, biotite;Kfsp, potassium feldspar; Rt, rutile.
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