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Abstract 10 

It is now widely accepted that Earth’s transition zone, located at depth 11 

between 410 km to 670 km is most likely hydrated. However, a definite 12 

conclusion has yet to be reached regarding the nature of the hydrous phase 13 

or phases that have the capacity to efficiently transport water down to such 14 

depths. In their study, Nishihara and Matsukage (2016) show that 15 

(FeH)1-xTixO2 can be stable in wet basalts and sediments in high pressure 16 

and high temperature conditions. These phases allow the subducting 17 

lithosphere to transport far more water to the mantle transition zone than 18 

previously thought possible. 19 

20 



Hydrous minerals are stable in subducting lithospheres composed of 21 

sediments, basalts and peridotite (Figure1). During subducting paths, most 22 

hydrous minerals become unstable at high pressures and dehydrate to 23 

liberate aqueous fluids, thus producing the serpentinized forearc mantle and 24 

arc magmatism (Kawamoto et al., 1996; Tatsumi, 1989). Serpentine and 25 

lawsonite are capable of transferring significant amounts of water into the 26 

mantle, but may only do so to depth of about 250 km even in the coldest 27 

subduction zones (Figure 1, Poli and Schmidt, 1995; Ulmer and Trommsdorff, 28 

1995). At temperature conditions colder than 500°C at 200 km, 29 

corresponding to a very cold mantle, the water released from the 30 

dehydrating serpentine may be taken up by dense hydrous magnesium 31 

silicates such as clinohumite, chondrodite, and hydrous phase A and be 32 

transported further down (Figure 1). Beyond the sub-arc depths greater than 33 

200 km in warm subduction zones, K-richterite can accommodate the water 34 

from dehydrating phlogopite in the subducting lithosphere at H/K atomic 35 

ratio of 1, meaning that peridotite or basalt having 0.1 weight % K2O can 36 

accommodate 0.02 weight % H2O (Sudo and Tatsumi, 1990). Still, the water 37 

transporting capacities of these phases do not sufficiently explain the 38 

potential abundance of water in the transition zone. 39 

40 

As for the high-pressure phases that may retain water in the transition zone, 41 

it is known that there are no truly anhydrous minerals in the Earth and that 42 



all minerals contain water in their structure to some extent (Bell and 43 

Rossman, 1992; Hirschmann et al., 2005). In natural mantle xenoliths, such 44 

nominally anhydrous minerals are found to possess < 0.03 weight % H2O in 45 

relatively wet garnet peridotites beneath the Siberian craton (Doucet et al., 46 

2014) and < 0.0135 weight % H2O at the bottom of the relatively dry 47 

Kaapvaal craton at depth of 200 km (Peslier et al., 2012). Below the upper 48 

mantle, the transition zone may possibly be wetter (Bercovici and Karato, 49 

2003; Hirschmann et al., 2005; Inoue et al., 1995; Kawamoto et al., 1996; 50 

Young et al., 1993). Among the nominally anhydrous minerals, wadsleyite 51 

was the first to be theoretically proposed to be hydrated (Smyth, 1987) and 52 

then experimentally demonstrated to possess up to 3.3 weight % water in 53 

MgO-SiO2-H2O and hydrous peridotite systems (Inoue et al., 1995; 54 

Kawamoto et al., 1996; Kohlstedt et al., 1996). In addition to wadsleyite, 55 

ringwoodite was coincidentally found to have up to 2.7 weight % water 56 

(Kawamoto et al., 1996; Kohlstedt et al., 1996). Recent finding of 1.5 57 

weight % water-bearing ringwoodite in a natural diamond supports the 58 

possibility of a hydrous mantle transition zone (Pearson et al., 2014). 59 

Diamonds are transferred to the surface by kimberlite magmas, which can 60 

be produced only through partial melting of a deep-seated mantle source 61 

anomalously rich in H2O-CO2 fluids, or which may even represent fluids or 62 

supercritical fluids themselves exsolved from such mantle sources 63 

(Kawamoto and Holloway, 1997; Mibe et al., 2007). While the extent of 64 



hydration of the transition zone is still under debate, the transition zone may 65 

be quite hydrous, and the mechanism of its hydration is another issue that 66 

must be resolved (Kawamoto et al., 1996). 67 

 68 

In their study, Nishihara and Matsukage (2016) show that (FeH)1-xTixO2 can 69 

be stable in wet basalts and sediments in high pressure and high 70 

temperature conditions. They conducted high-pressure experiments in the 71 

FeOOH-TiO2 system at 16 GPa and confirmed the existence of two stable 72 

hydrous phases: an Fe-rich solid solution (x < 0.23) with ε-FeOOH type 73 

crystal structure and a Ti-rich solid solution (x > 0.35) with α-PbO2 type 74 

structure. The Fe-rich phase is stable up to ~1100ºC, whereas the Ti-rich 75 

phase is stable up to 1500ºC. These iron-titanium-rich phases may 76 

correspond to those whose existence were inferred in some previous 77 

experimental studies conducted in basalt + H2O and sediment-H2O systems. 78 

Ono (1998) described FeTi oxides at 9 GPa, 1200°C and at 15 GPa, 1400°C in 79 

a sediment-H2O system, and at 6 GPa, 900°C, and at 9 GPa and 15 GPa, 80 

1200°C in a basalt + H2O system, but refrained from presenting their 81 

chemical compositions because the grain sizes were too small for accurate 82 

analysis. Such Fe- and Ti-rich phases having chemical compositions similar 83 

to those found in Nishihara and Matsukage (2016) have also been reported 84 

by Okamoto and Maruyama (2004). The total sum of oxides in the latter 85 

study was 83-92%, and in Table 2 of their paper they were conservatively 86 



labeled as an unknown FeTi oxide phase.  87 

 88 

Ono (1998) showed that this FeTi oxide is stable at higher temperature than 89 

lawsonite, which decomposes at 900°C, 7 GPa and 800°C, 9 GPa (Figure 1). 90 

Thus, this (FeH)1-xTixO2 phase can take in and transfer water from the 91 

dehydrating lawsonite down to the transition zone. The water retaining 92 

capacity of the (FeH)1-xTixO2 phase can be calculated as a function of the 93 

whole-rock TiO2 concentrations of the subducting basalt or sediment. 94 

According to Nishihara and Matsukage (2016), the Fe-rich and Ti-rich 95 

phases have compositions close to Fe0.8H0.8Ti0.2O2 and Fe0.5H0.5Ti0.5O2, 96 

respectively. If we assume that the subducting oceanic crusts has 2 weight % 97 

TiO2, the Fe-rich and Ti-rich phases in the crust can transfer 0.9 weight % 98 

H2O and 0.23 weight % H2O, respectively. The amount of water transported 99 

by these phases exceeds the amount that nominally anhydrous minerals are 100 

thought to be capable of possessing in upper mantle conditions (Hirschmann 101 

et al., 2005). The two phases found in Nishihara and Matsukage (2016) allow 102 

the subducting lithosphere to transport far more water to the mantle 103 

transition zone than previously thought possible. 104 

 105 
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Figure caption 171 

Figure 1 172 

Pressure and temperature diagram showing stability of lawsonite (Lws) in 173 

basalt and hydrous minerals/phases in peridotite: pargasite (Par), chlorite 174 

(Chl), orthopyroxene (Opx), antigorite (Atg), phlogopite (Phl), clinopyroxene 175 

(Cpx), K-richiterite (K-ric), clinohumite (Chm), chondrodite (Chn), phase A 176 

(A), phase E (E), superhydrous B (sB), phase D (D), hydrous wadsleyite 177 

(Hy-wd), hydrous ringwoodite (Hy-rg), bridgmanite (Bgm), magnesium 178 

wüstite (Mw), along with water-saturated peridotite solidus and mantle 179 

adiabat. Simplified after Kawamoto et al. (2006).  180 
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