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Abstract:   17 

Many igneous rocks contain mineral assemblages that are not appropriate for application of 18 

common mineral equilibria or oxybarometers to estimate oxygen fugacity.   Spinel-structured 19 

oxides, common minerals in many igneous rocks, typically contain sufficient V for XANES 20 

measurements, allowing use of the correlation between oxygen fugacity and V K pre-edge peak 21 

intensity.  Here we report V pre-edge peak intensities for a wide range of spinels from source 22 

rocks ranging from terrestrial basalt to achondrites to oxidized chondrites.  The XANES meas-23 

urements are used to calculate oxygen fugacity from experimentally produced spinels of known 24 

fO2.  We obtain values, in order of increasing fO2, from IW-3 for lodranites and acapulcoites, to 25 

diogenites, brachinites (near IW), ALH 84001, terrestrial basalt, hornblende-bearing R chondrite 26 

LAP 04840 (IW+1.6), and finally ranging up to IW+3.1 for CK chondrites (where the ΔIW nota-27 

tion = logfO2 of a sample relative to the logfO2 of the IW buffer at specific T).  To place the sig-28 

nificance of these new measurements into context we then review the range of oxygen fugacities 29 

recorded in major achondrite groups, chondritic and primitive materials, and planetary materials.  30 

This range extends from IW-8 to IW+2.  Several chondrite groups associated with aqueous alter-31 

ation exhibit values that are slightly higher than this range, suggesting that water and oxidation 32 

may be linked.  The range in planetary materials is even wider than that defined by meteorite 33 

groups.  Earth and Mars exhibit values higher than IW+2, due to a critical role played by pres-34 

sure.  Pressure allows dissolution of volatiles into magmas, which can later cause oxidation or 35 

reduction during fractionation, cooling, and degassing.  Fluid mobility, either in the sub-arc man-36 

tle and crust, or in regions of metasomatism, can generate values >IW+2, again suggesting an 37 

important link between water and oxidation.  At the very least, Earth exhibits a higher range of 38 

oxidation than other planets and astromaterials due to the presence of an O-rich atmosphere, liq-39 
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uid water and hydrated interior.  New analytical techniques and sample suites will revolutionize 40 

our understanding of oxygen fugacity variation in the inner solar system, and the origin of our 41 

solar system in general. 42 

43 
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Introduction:   44 

Oxygen fugacity (fO2) has been recognized as an important variable in terrestrial igneous pro-45 

cesses for decades (e.g., Osborn, 1959), and the wide range in terrestrial samples is well docu-46 

mented (Carmichael, 1991).  On a planetary scale, oxygen fugacity can influence critical aspects 47 

of the interior and surficial reservoirs.  For example, core composition is sensitive to fO2 such 48 

that low fO2 favors Si as an alloyed element, whereas higher fO2 may favor O or S (Hillgren et 49 

al., 2000).  The stability of metal is, of course, fO2-dependent, and a reduced mantle may have 50 

metal as a stable phase.  The FeO content or Mg# (Mg/(Mg+Fe)) of a mantle is also dependent 51 

upon fO2 because at low fO2 very little oxidized iron will be present and the Mg# of silicates will 52 

be high, whereas at high fO2, FeO will be more abundant and the Mg# lower.  Atmospheric 53 

composition and evolution is dependent upon fO2 of the atmosphere as well – at low fO2, a C-H-54 

O atmosphere will be dominated by CH4 and CO, whereas at high fO2 it will be CO2 and H2O 55 

(Holloway and Blank, 1994).  Finally, the origin of life may be dependent upon fO2 – the path-56 

ways of complex molecule formation are sensitive to the presence of a reduced versus oxidized 57 

environment (Shock et al., 2000).  Although fO2 clearly influences magma generation processes, 58 

it is also a critical parameter for a broad range of planetary traits, and is important to understand 59 

its effects both at the micro- and macro-scale. 60 

Igneous and metamorphic rocks commonly contain mineral assemblages that allow oxygen 61 

fugacity to be calculated or constrained, such as FeTi oxides, olivine-opx-spinel, or some other 62 

oxybarometer (Frost, 1991).  Some rocks, however, contain a limited mineral assemblage and do 63 

not provide constraints on fO2 from mineral equilibria.  Good examples of the latter are 64 

orthopyroxenites or dunites: meteoritic examples are diogenites, ALH 84001, chassignites, and 65 

brachinites.  In fact, it is no surprise that the fO2 at which many of these samples formed is not 66 
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well known, other than being "reduced" and below the metal saturation value.  In order to bridge 67 

this gap in our understanding, we have initiated a study of V XANES spectra in chromites from 68 

terrestrial and meteorite samples.  Because the V pre-edge peak intensity and energy in 69 

chromites varies with fO2 (Righter et al., 2006a), and this has been calibrated over a large fO2 70 

range, we can apply this relation to rocks for which we otherwise have no fO2 constraints. 71 

In this work, the results of these new measurements are interpreted in light of existing data for 72 

achondrites, as well as what we know about the fO2 of more primitive, undifferentiated materials 73 

such as solar gas, calcium-aluminum-rich inclusions (CAIs), zoned metal grains, chondrites, 74 

cometary (Stardust) grains, cosmic dust and asteroidal (Hayabusa) particles.  Effects of second-75 

ary processes such as thermal metamorphism, aqueous alteration, and low-pressure differentia-76 

tion are assessed, and comparisons are made to redox variations on larger bodies such as Earth, 77 

Mars, Mercury and Moon.   These latter bodies have experienced degassing, volatile solubility, 78 

fractionation, assimilation, and ascent across a wider range of pressures, and direct comparison 79 

to fO2 measured in achondrite bodies will allow the effect of pressure on fO2 to be evaluated.  80 

 81 

Samples 82 

We have selected a suite of samples for which there are no appropriate phases for appli-83 

cation of standard oxybarometers, and for which there are large and accessible chromites.  84 

ALH84001 is a martian orthopyroxenite (Fig. 1a), for which there has been some debate regard-85 

ing its oxygen fugacity; some have argued for a relatively high fO2 near the fayalite-magnetite-86 

quartz (FMQ) buffer (Herd et al., 2001), while others have argued for a more reduced value, well 87 

below FMQ (Righter and Drake, 1996; Righter et al., 2008a).  Brachinites are olivine-rich 88 

achondrites that also contain chromite, plagioclase and pyroxene. They have recently been linked 89 
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to the ungrouped achondrite GRA 06128/129 through similarity of O isotopes, age, and composi-90 

tion (Shearer et al., 2008; Ash et al., 2008; Zeigler et al., 2008).  Chromites in the brachinites 91 

EET 99402 and ALH 84025 (Fig. 1b) were measured and compared to those in GRA 06128 to 92 

assess whether they record comparably oxidized conditions.  Diogenites contain orthopyroxene 93 

and chromite, and have been linked to eucrites and the HED parent body, which is thought to be 94 

at ~ IW-1 (Stolper, 1977; Hewins and Ulmer, 1984).  We have measured chromites in the 95 

diogenites ALH 77256 and GRA98108, and can compare the results to previous estimates relat-96 

ed to the HED parent body.  CMS 04071 is a main group pallasite with coarse-grained chromite 97 

that we analyzed for this study (Danielson et al., 2009).  We have also analyzed chromite from a 98 

lodranite (EET 84302) and acapulcoite (MET 01198) again because the redox conditions in this 99 

parent body have not been discussed in detail, yet are of fundamental importance in understand-100 

ing and constraining the processes that led to their formation.  Among chondrites, we have ana-101 

lyzed chromian magnetites from CK chondrite QUE 99679, and chromite from the amphibole-102 

bearing R chondrite LAP 04840 (Fig. 1c).   103 

In addition to the meteorite samples above, we analyzed spinel inclusions in olivine from 104 

three basalts from the Mexican volcanic belt (MVB) – Michoacan-Guanajuato volcanic field 105 

(MGV-19; Figure 1d), Sierra Chichinautzin (TMV-6), and San Martin Tuxtla (SMT-1) (Righter 106 

et al., 2008b). 107 

 108 

XANES and EMPA measurements 109 

All major elements in spinels were analyzed with a CAMECA SX100 electron microprobe, 110 

using an accelerating voltage of 20 kV, sample current of 20 nA, and standardization and correc-111 

tions as described in Righter et al. (2006a).  Measurements of the valence of V were made using 112 



7 
 

synchrotron micro-XANES (X-ray Absorption Near-Edge Structure) spectroscopy (SmX), at the 113 

Advanced Photon Source (APS), Argonne National Laboratory (beamline 13-ID, the Consortium 114 

for Advanced Radiation Sources or CARS). SmX measurements are made by focusing a mono-115 

chromatic (cryogenic, Si (111) double crystal monochromator) X-ray beam (3x3 μm) from the 116 

synchrotron onto a spot on the sample and measuring the fluorescent X-ray yield from that spot 117 

as a function of incident X-ray energy.  Changes of fluorescent X-ray intensity and energy of 118 

features in the XANES spectrum (notably the pre-edge peak) depend on oxidation state and co-119 

ordination (e.g., Wong et al., 1984; Sutton et al., 2005; Righter et al., 2006a).   120 

Previous work on XANES-based oxybarometers has utilized correlations between the V K 121 

pre-edge intensity and either V valence (e.g., glasses of Sutton et al., 2005) or oxygen fugacity 122 

(spinels of Righter et al., 2006a).  In this study, the correlation between oxygen fugacity and V 123 

pre-edge peak in spinel documented by Righter et al. (2006a) (Figure 2), is used to calculate fO2 124 

from the pre-edge peak intensity from each spectrum (Table 1).  Most discussions of oxygen fu-125 

gacity in this paper utilize the ΔIW notation which is the logfO2 of a sample (at T) relative to the 126 

logfO2 of the IW buffer (at T).  Because many buffered equilibria are parallel to each other in 127 

temperature-logfO2 space due to the temperature dependence of enthalpy, the ΔIW is largely in-128 

dependent of temperature and is thus a convenient way to compare fO2 conditions of many mate-129 

rials, both solid and liquid (e.g., Carmichael and Ghiorso, 1990).  One fit to the ΔIW and pre-130 

edge peak intensity data uses a five-parameter exponential function to fit the data between IW-1 131 

and IW+9, with a standard error in the estimate of 0.78.  A second fit uses only data with pre-132 

edge peak intensity between 0 and 100 to more closely match the data from the natural samples 133 

measured here, and results in a standard error of 0.62.  Results from both of these fits are tabu-134 

lated in Table 1, in log units relative to the IW buffer.  We use the values from the second fit in 135 
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all of the discussion because of the more focused range, and because of the higher error associat-136 

ed with the first fit which is due to some scatter in data from high fO2 that are not relevant to the 137 

samples in this study.   138 

XANES spectra of single anisotropic crystals can be sensitive to orientation relative to the x-139 

ray beam (e.g., Dyar et al., 2002); however, such effects in spinels are expected to be negligible 140 

because they are isotropic (Righter et al., 2006a).  Extensive work on glasses has shown that the 141 

pre-edge intensities are also dependent upon temperature.  We have no evidence for temperature 142 

dependence in spinels, but a systematic examination is lacking and could be the focus of future 143 

efforts.  Additionally, dependence of V and Cr XANES spectra on compositional variation in 144 

glasses (Sutton et al., 2005) and olivines (Bell et al., 2014) is known to be important.  Crystal 145 

chemical controls on spinel chemistry are well known (e.g., Papike et al., 2004, 2015), but no 146 

such compositional or structural dependence for XANES spectra is known yet for spinels - this 147 

could also be a fruitful avenue for future research.  148 

 149 

Results 150 

The V pre-edge peak intensity for all samples measured ranges from 14 at the low end (de-151 

fined by the acapulcoite-lodranite group) to ~ 75 at the high end (defined by the CK chondrite 152 

QUE 99679).  There is a general progression from reduced to oxidized from the acapulcoites to 153 

diogenites to GRA 06128 to brachinites to ALH 84001 to terrestrial basalts to the CK chondrites 154 

(Fig. 3).  There are several noteworthy points here, including both comparisons to previous re-155 

sults, and new fO2 observations on samples of previously uncharacterized or debated origin.  156 

The values just below the IW buffer for the CMS pallasite are in good agreement with the 157 

calculated and measured fO2 for pallasites reported by Righter et al. (1990), and diogenite ΔIW 158 
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values calculated here are similar to estimates made previously for eucrites (Stolper, 1977), and 159 

for the HED parent body (Righter and Drake, 1996).  The lodranite-acapulcoite suite seems very 160 

reduced, perhaps as much as 2 log fO2 units below the IW buffer, in agreement with previous 161 

estimates (Righter and Drake, 1996; McCoy et al., 1997).  The results for the R chondrite LAP 162 

04840 yield values between IW-0.5 and IW+1.6, in agreement with previous work on R 163 

chondrites, which ranges between IW-0.5 to IW+2.56 (Righter and Neff, 2007).  CK chondrite 164 

spinels are the most oxidized, also in agreement with the calculations of Righter and Neff 165 

(2007).  Finally, the spinel inclusions in terrestrial olivine basalt phenocrysts exhibit a range of 166 

values from IW+3.42 (TMV-6b) to IW+1.1 (SMT-1) to IW+0.4 (MGV-19).  The value for 167 

TMV-6b is close to that expected from olivine-melt equilibria (IW+2.6; Righter et al., 2008b) 168 

suggesting that little to no oxidation occurred between the time of trapping of spinel to later 169 

magma emplacement.  On the other hand, the values measured in SMT-1 and MGV-19 are much 170 

lower than those derived from bulk rock FeO/Fe2O3 (IW+4.7 and IW+4.2, respectively), indicat-171 

ing that these samples became oxidized subsequent to chromite crystallization, perhaps during 172 

emplacement or eruption.   173 

Results for GRA 06128 (IW-0.7 to IW-1.05) and the brachinites (ALH 84025 and EET 174 

99402; IW-0.5 to IW+0.4) are relatively oxidized, but distinctly different from each other, with 175 

the GRA 06128 samples slightly lower than the brachinites.  These samples are all more oxi-176 

dized than the acapulcoites, lodranites, and GRA 98108 diogenite, however, which suggests that 177 

they may have come from a more oxidized parent body.  ALH 84001 is more oxidized (IW+0.5) 178 

than these metal-bearing meteorites, but more reduced than most of the terrestrial basalts that 179 

have equilibrated at IW+0.26 to IW+3.42.  Our results are consistent with values of FMQ-2.7 180 

(IW+0.9) estimated for ALH 84001 by other techniques such as mineral equilibria or Eu/Gd par-181 
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titioning in pyroxenes (Herd et al., 2001), but inconsistent with values as high as FMQ (IW+3.5) 182 

reported by Wadhwa (2008).   183 

Overall, there is a correlation of Mg# with oxidation state of V that is consistent with the gen-184 

eral idea of oxidation in the presence and absence of metal (Fig. 4). At low fO2, there is less FeO 185 

(and more Fe) available so olivines and pyroxenes are more magnesian.  At intermediate fO2 186 

there is ample FeO so that silicates have lower Mg#, but at still higher fO2, FeO becomes less 187 

abundant and Fe2O3 more abundant, again forming magnesian silicates.  This sequence, from Fe 188 

to FeO to Fe2O3 with oxidation, causes the C-shaped trend seen in Figure 4. 189 

 190 

Techniques for estimating oxygen fugacity 191 

Oxygen fugacity has traditionally been defined or calculated using thermodynamic data for 192 

various equilibria such as simple metal-oxide equilibria, or more complicated equilibria involv-193 

ing multiple phases or minerals (Chase, 1986; Robie et al., 1978).  Such equilibria can be studied 194 

using experimental techniques as well, such as electrochemical measurements.  The emf of sim-195 

ple and complex equilibria have been measured for a wide variety of terrestrial and planetary 196 

materials, but results can be compromised by contamination with C or other elements that can 197 

influence the equilibria being studied.  Nonetheless, careful studies have placed important con-198 

straints on oxygen fugacity in some planetary sample suites such as the Skaergaard intrusion 199 

(Kersting et al., 1989), CAIs (Kozul et al., 1988), and pallasites (Righter et al., 1990).  Experi-200 

mental studies have been used to constrain or bracket fO2 in certain samples such as eucrites 201 

(Stolper, 1977), angrites (Jurewicz et al., 1993), CAIs (Grossman et al., 2008), or martian mete-202 

orites (Xirouchakis et al., 2002), by investigating phase equilibria at different fO2.  Experimental 203 

studies can also help to constrain the influence of fO2 on trace element partitioning and thus indi-204 
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rectly determine fO2 on the basis of partitioning of these elements in natural systems (Papike et 205 

al., 2013).  For example, Eu partitioning between pyroxene and melt has been used to constrain 206 

fO2 in eucrites, shergottites, and lunar basalts (Shearer et al., 2006a), and Ce has been used to 207 

constrain fO2 in zircon-bearing Archean rocks (Trail et al., 2011). 208 

Modern analytical approaches have provided additional ways to constrain fO2.  X-ray absorp-209 

tion near edge structure (XANES) spectroscopy, which is available at synchrotron facilities 210 

(Bassett and Brown, 1990) has allowed the study of valences of elements, such as Fe, V, Cr, Mn, 211 

Mo, W, Ti, S, and P, that have multiple valence states in many planetary materials.  In particular, 212 

the valences of Fe, Ti, V, and Cr have been applied to planetary materials and provided infor-213 

mation on a microscopic scale.  Transmission electron microscopy can be used with electron en-214 

ergy loss spectroscopy (EELS) to determine the valences of Fe and Mn (e.g., Garvie and Buseck, 215 

1998; Zhang et al., 2010), and this approach has been used to determine fO2 in, for example, 216 

martian meteorites and Stardust comet particles (Herd et al., 2001; Stodolna et al., 2013).   217 

These are a few of the approaches that have been used to constrain fO2 in planetary samples, 218 

and all of them are represented in the comparative discussions below involving nebular and 219 

primitive materials, chondrites, achondrites and planets.  These comparisons will utilize ΔIW, 220 

which is defined above.   221 

 222 

Oxygen fugacity recorded in natural materials 223 

Primitive materials 224 

We can compare the fO2 of the solar nebula to those found for a wide range of materials that 225 

occur in primitive meteorites, cosmic dust and comets (Figure 5).  In this context “primitive” re-226 

fers to materials that have not been thermally or aqueously altered.   Chondrites contain four ma-227 
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jor components: inclusions such as CAIs and AOAs (amoeboid olivine aggregates); chondrules; 228 

matrix; and metal – and they each can place constraints on the fO2 of their formation. 229 

Solar fO2 values 230 

 The fO2 of the solar nebula can be defined using both theory and samples.  The solar C/O 231 

ratio can be used to constrain the fO2 of the solar nebula, and using a value of C/O = 0.5 (Allen-232 

de-Prieto et al., 2002) leads to a nebular fO2 of IW-6.8 (Fig. 5; Grossman et al., 2008).  The fO2 233 

of the solar nebula has also been constrained by experimental studies.  The fO2 of a gas in equi-234 

librium with the liquid from which CAI composition melilite and Ti3+-bearing fassaitic pyroxene 235 

crystallize is about 1 log fO2 unit below the fO2 defined by a solar C/O = 0.50 ratio (Grossman et 236 

al., 2008).  These very low fO2 values will form the basis of a comparison of other primitive ma-237 

terials found in chondrites, comet and primitive dust particles (Fig. 5). 238 

 239 

Refractory Inclusions (CAI/AOA) 240 

Calcium-aluminum-rich inclusions (CAIs) have been used to estimate oxygen fugacity in the 241 

solar nebula, yielding a wide range of values, depending on the meteorite type.  Paque et al. 242 

(2013) found Ti valence between 3.5 and 4.0 in spinel in CV3 chondrites.  Paque et al. (2013) 243 

concluded that although some CAIs show evidence for conditions as reduced as IW-8, there is 244 

also evidence for transient oxidation to values as high as IW-2.5, so that the more reduced, prim-245 

itive values may have been changed during nebular processing (Fig. 5).  Processing may be 246 

common, based on Simon et al. (2005), and additional work of Dyl et al. (2011) and J. Simon et 247 

al. (2011), in which there is evidence for variation within the rims of CAIs (Fig. 5).  Finally, 248 

Ihinger and Stolper (1986) showed that blue hibonite in Murchison contains Ti3+ and that the 249 

hibonite is blue when it is synthesized at 1430 °C between log fO2  = -10.7 and -15.0 (ΔIW = -250 
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5.6 to -1.3).  This range of fO2 extends to nearly solar values, showing that the blue hibonite 251 

could have formed in equilibrium with a gas of nearly solar composition (Fig. 5).  252 

Chondrules 253 

Examining simple equilibria between metal and olivine in chondrules from a wide range 254 

of primitive chondrites (E, C, O), Zanda et al (1994) demonstrated that the fO2 under which these 255 

chondrules formed ranged from IW-4 to IW-0.5 (Fig. 5).  Connolly et al. (1994) proposed that 256 

this range was caused by carbon acting as a reductant across a range of pressures, given the sen-257 

sitivity of graphite saturation to pressure.  Using a similar approach, Schrader et al. (2013) exam-258 

ined Type I and Type II chondrules in CR chondrites and also found a range of values, from IW-259 

4 to IW-0.5 (Fig. 5).   Measurements of the chromium oxidation state in olivine from a chondrule 260 

in an EL3 chondrite showed that it is entirely Cr2+, which implies a very low fO2, certainly lower 261 

than IW-1 (Hanson and Jones, 1998) and possibly even near solar values of IW-6 (McKeown et 262 

al., 2014).   Examination of Ti3+ in olivine in chondrules from ordinary chondrites reveals less 263 

Ti3+, but it is still present (S. Simon et al., 2015) and may indicate that their precursors formed in 264 

reducing environments, and that they contain reduced Ti that survived chondrule formation in an 265 

environment where Fe2+ was stable (Simon et al., 2013).   266 

Finally, the mineralogy of enstatite chondrites - Si-bearing metal, oldhamite, niningerite, 267 

pure silica and albitic plagioclase in addition to enstatite and minor olivine – is traditionally ac-268 

counted for by condensation from a gas of solar composition but at a higher C/O ratio (0.83) and 269 

therefore more reduced than solar gas, at IW-8 to IW-10.5 (Grossman et al., 2008; Grossman et 270 

al., 1979; Lehner et al., 2013).  However, studies of Ti valence in olivine and pyroxene from 271 

enstatite chondrites show a larger stability field for Ti4+ than expected, and Lusby et al. (1987) 272 

observed FeO-rich phases in enstatite chondrites.  Both of these suggest that enstatite chondrites 273 
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may have formed initially from an oxidized reservoir and then become reduced later (Simon et 274 

al., 2013).  It is possible that enstatite chondrites have experienced variable fO2 conditions in 275 

their formation, or contain components with complex histories. 276 

Metal 277 

CH, CR and CB chondrites contain FeNi metal grains that are zoned from core to rim in 278 

many trace siderophile elements. Those patterns are best explained by condensation from a nebu-279 

lar gas at an fO2 of IW-6, about 1 log fO2 unit above solar values (Petaev et al., 2003) (Fig. 5); 280 

metal grains in some CB chondrites may result from condensation from an impact generated 281 

plume rather than solar nebula (Campbell et al., 2002; Fedkin et al., 2015).  In addition, there are 282 

some refractory metal grains in CV3 chondrites that have trace siderophile element abundances 283 

consistent with condensation from a gas of solar composition but at an fO2 (defined by H2O/H2 284 

ratio) of IW-4 (Palme et al., 1994).  Additional grains from the same study also showed evidence 285 

for formation at more oxidized conditions, again (as with some CAI above; Paque et al., 2013) 286 

suggesting more transient and oxidizing conditions in the early solar nebula (Fig. 5). 287 

Matrix 288 

Many carbonaceous chondrites contain a significant amount of matrix material and recent 289 

studies have shown that the matrix is much more oxidized than some of the other components 290 

such as chondrules, metal and inclusions.  For example, Le Guillou et al. (2015) found that the 291 

matrices of many primitive CR chondrites have Fe3+/ΣFe values from 0.6 to 0.7.  Also, the ma-292 

trices of many aqueously altered CM and some CV meteorites contains fayalite-rich olivine that 293 

is hypothesized to have formed under relatively oxidizing conditions (Zolotov et al., 2006).   294 

 295 

Comets and cosmic dust 296 
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Comet particles returned by the Stardust mission have revealed some interesting features 297 

related to oxidation.  Much of the material characterized from the Stardust mission is relatively 298 

oxidized and fine-grained (e.g., Stodolna et al., 2013; Westphal et al., 2009; Ogliore et al. 2010; 299 

Simon et al., 2008), but equating oxidation states with a specific fO2 has not been done quantita-300 

tively because much of the material is polycrystalline, there has not been a detailed calibration of 301 

the fO2 and Fe3+/ΣFe, and also because some of the materials were modified during the collec-302 

tion process (e.g., Leroux et al., 2008; 2009).  Several Stardust particles have been characterized 303 

in great detail and appear to have formed either close to or just above the IW buffer.  Nakamura 304 

et al. (2008) studied the Torajiro particle and found that it equilibrated at IW+1.4.  Gainsforth et 305 

al. (2015) studied the olivine-chromite aggregate particles Iris and Cali and found evidence sug-306 

gesting an fO2 of formation at IW-0.3 based on thermodynamic calculations of olivine, glass, and 307 

chromite equilibria in Iris, and found chromite in Cali with Fe3+/ΣFe = 0.13.  Similar 308 

mineralogies have been reported in the KOOL (KO = kosmochloric Ca-rich pyroxene, OL = 309 

olivine) particle Puki-B as well (Joswiak et al., 2009).  On the other hand, a CAI-like particle 310 

characterized by Simon et al. (2008) called Inti was estimated to have formed near IW-6 (Fig. 5), 311 

more reduced than many other particles.   312 

Cosmic dust particles examined by Ogliore et al. (2010) also appear to be more oxidized 313 

like some Stardust particles and chondritic matrix.  On the other hand, GEMS (glass with em-314 

bedded metal and sulfides) grains found within cosmic dust particles exhibit overall reduced 315 

phases, with the glass containing iron predominantly as FeO with no Fe2O3 (Keller and Messen-316 

ger, 2011), and ranging from 2.5 to 15 wt% FeO (Bradley, 1994).  Metal-oxide equilibria for 317 

GEMS could thus have equilibrated have equilibrated below the IW buffer, from ΔIW = -1.2 to -318 

2.8 given the range of FeO measured (Fig. 5).  Altogether, the Stardust materials and cosmic dust 319 
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particles exhibit a range of fO2 conditions from near solar (Inti) to very oxidized (GEMS, 320 

Torajiro, and Cali).      321 

 322 

Thermal and aqueous alteration in chondrites 323 

Many chondrite groups exhibit evidence for heating or thermal metamorphism to temper-324 

atures as high as 1000 °C.  Such metamorphism is recorded in the ordinary chondrites (H, L, and 325 

LL 4 to 6; van Schmus and Wood, 1967), in enstatite chondrites (EL4 to EL6; EH4 to EH6; 326 

Zhang et al., 1995) the CK carbonaceous chondrites (CK4 to CK6; Kallemeyn et al., 1991), and 327 

in the R chondrites (R4 to R6; Bischoff et al., 2011).  A systematic study of fO2 in thermally 328 

metamorphosed H ordinary chondrites was done by Kessel et al. (2004), who found that H4 to 329 

H6 chondrites equilibrated at IW-2.2 to 2.5, and that H6 were <0.2 log fO2  units more oxidized 330 

than H4 - a very small effect if any.  LL and L chondrites contain silicates richer in FeO than 331 

those in H chondrites, and they equilibrated at slightly higher fO2s than H chondrites, probably 332 

near IW-1.5 to IW-2 (Righter and Drake, 1996).  Particles were collected from asteroid Itokawa, 333 

which is of LL parentage, by the Hayabusa spacecraft.  The particles exhibit a range of petro-334 

logic type from 4 to 6, and their olivine, low-Ca and high-Ca pyroxene Fe XANES spectra are 335 

identical to those of the LL5 chondrite Tuxtuac (Noguchi et al., 2013).  Similarly, the thermally 336 

metamorphosed EH and EL chondrites share the reduced mineralogic characteristics of their 337 

unequilibrated relatives.   CK chondrites also show a range of textural evidence for petrologic 338 

type 4 to 6, but detailed mineralogic studies show a rather limited mineralogic variation, suggest-339 

ing that either the CK thermal history had a relatively restricted range of temperatures, or that the 340 

higher-grade samples experienced retrograde metamorphism (Righter and Neff, 2007).  Overall, 341 

the CK chondrites are much more oxidized than other chondrite groups – they lack metal, con-342 
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tain magnetite, and have olivine with lower FeO contents than those in LL or other metal-bearing 343 

oxidized chondrites; given the presence of magnetite, this is consistent with the oxidation of FeO 344 

to Fe2O3.  The magnetites exhibit V K pre-edge peak intensities from near 70 to 75, indicating 345 

equilibration near the FMQ buffer (IW+3.5).  In general, thermally metamorphosed chondrites 346 

do not exhibit evidence for oxidation accompanying the metamorphism (e.g., Simon et al., 347 

2015).  CK chondrites are oxidized, but may have started oxidized; hopefully more CK3 samples 348 

will be recovered in the future, and this will become clearer. 349 

 Aqueous alteration products have been documented in CI, CM, CV, CO and CR 350 

chondrites, and can include phases such as fayalite, serpentines, tochilinite, and others (Brearley, 351 

2006). Detailed thermodynamic analysis of aqueous alteration in CI, CM, CV, CO and CR 352 

chondrites (Zolensky et al., 1989; Bourcier and Zolensky, 1992; Zolensky et al., 1993) shows 353 

that these phases can be produced by interaction with fluids at low temperatures and oxygen 354 

fugacities as high as IW+2.6.  More focused studies of fayalite formation (Zolotov et al., 2006) 355 

show that it can occur across a range of conditions from T = 50 °C, P=10.1 bar,  log (fH2/fH2O) 356 

= 3 to 4, which corresponds to log fO2 = -79.3 to -81.3, to T = 150 °C, P=104.8 bar, log 357 

(fH2/fH2O) = 2 to 3, which corresponds to log fO2 = -61.02 to -59.02.  The latter conditions cor-358 

respond to IW-1.3 to IW-3.3.  It is clear that aqueous alteration can produce fayalite at fO2 con-359 

ditions equivalent to those experienced during chondrule-formation and even the transient oxi-360 

dizing environment experienced by CAIs, but formation of some phases, such as smectite, 361 

saponite, phyllosilicates, and magnetite, requires more oxidizing conditions, above the IW buff-362 

er. 363 

 364 

Achondrites 365 
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Our new measurements provide fO2 estimates for several achondrite groups for which 366 

traditional barometry is not possible, and these are compared to previous measurements and cal-367 

culations for achondrite groups (Fig. 6).   The most reduced achondrites are the aubrites, which 368 

contain nearly FeO-free silicates and FeNi metal that has wt% levels of Si (e.g., Fogel, 2005).  369 

Silicate inclusions in some iron meteorites allow use of various redox equilibria to constrain ox-370 

ygen fugacity.  The IAB, IIICD, and IIE irons yield fO2s ranging from IW-4 to IW-2.2 (Fig. 6).  371 

Work on other iron groups examining the significance of accessory phases such as chromite, 372 

phosphides and silica show that they formed over a range of fO2 perhaps wider than that defined 373 

by the silicate-bearing irons in Figure 6 (Isa et al., 2015).  Acapulcoites/lodranites and 374 

winonaites record fO2s between IW-3 and IW-1.5 (this study; Benedix et al., 2005), while 375 

ureilites show a slightly wider range, from IW-3.25 to IW-1.5 (Goodrich et al., 2013).  Our re-376 

sults from diogenites and those provided by Stolper (1977) from experiments show that the 377 

HEDs likely formed at fO2 conditions between IW-1.75 and IW-0.5 (Fig. 6).  Based on electro-378 

chemical measurements and redox equilibria, main group pallasites equilibrated between IW-0.5 379 

and IW-1 (Righter et al., 1990; this study).  Brachinites and the GRA 06128/9 ungrouped 380 

achondrites record formation at IW and IW-0.5, respectively, based on our XANES measure-381 

ments.  Finally, angrites exhibit the most oxidized values for achondrites, with equilibration 382 

above the IW buffer at IW+1 (McKay et al., 1994; Jurewicz et al., 1993).  Altogether, these 383 

groups define a range of 8 log fO2 units and exhibit nearly continuous variation from the reduced 384 

aubrites to the most oxidized angrites (Figure 6).  Achondrites span the same range as the primi-385 

tive materials discussed in the previous section (CAIs, chondrules, matrix, dust; Fig. 5), showing 386 

that the same redox conditions were present whether materials were differentiated or undifferen-387 

tiated.    388 
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 389 

Planets 390 

Our knowledge of redox variations within Earth comes from direct samples of the mantle 391 

such as peridotite xenoliths and massif terranes, as well as mantle melts, such as mid ocean 392 

ridge, ocean island, and island arc basalts.  As a result, we have a very detailed understanding of 393 

the variation of oxygen fugacity in Earth’s upper mantle (Figure 7).  For Mars and Moon, we 394 

have no direct samples of the mantle, but there are important constraints from basaltic and cumu-395 

late meteorites that originated from the surface or shallow crust of Mars (shergottites, nakhlites, 396 

ALH 84001), and lunar basalts and volcanic glasses.  We have not recognized meteorites from 397 

Venus or Mercury, so constraints are fewer, but the recent MESSENGER mission provided new 398 

information for Mercury.  Spectroscopy studies showed low FeO contents at the surface of Mer-399 

cury (Emery et al., 1998), and coupled with the knowledge of a large metallic core (e.g., Goettel, 400 

1988), indicates that Mercury may be very reduced.  There have been limited experimental stud-401 

ies of very FeO-poor materials such as enstatite chondrites (Berthet et al., 2009; McCoy et al. 402 

1999), but these, combined with newer studies influenced by MESSENGER results, are reinforc-403 

ing the idea that Mercury may have differentiated under reduced conditions of IW-4 to IW-5.   404 

The similar FeO contents of surficial basalts to terrestrial basalts, and the similarly-sized Fe me-405 

tallic cores of Venus and Earth, suggests an overall oxygen fugacity for the Venusian interior 406 

that is similar to that of Earth.  The lack of an O-rich atmosphere and limited recycling via ter-407 

restrial-style tectonics means interaction between mantle, crust and atmosphere has likely been 408 

much less, and this may have limited the variation in fO2 within Venus.  However, Venus has 409 

been resurfaced in recent geologic time (e.g., Basilevsky et al., 1997) and that may allow chemi-410 

cal reaction between mantle and surface reservoirs.  In addition, there may be a variation pro-411 
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duced by high pressure processes and dissolution of volatiles (possibly different from Earth due 412 

to the high pressure, CO2-rich atmosphere) in magmas.   413 

Comparative planetology lessons from Earth reveal a multitude of processes operating at 414 

a planetary scale that can have a large influence on the oxygen fugacity.  For example, planets 415 

hold more internal energy than small bodies, and therefore heating and melting processes have 416 

occurred over a more extended time period (even to present-day) and to great depths.  As a re-417 

sult, magmas in planets ascend from greater depths than those in smaller, asteroid sized bodies.  418 

The decompression of a silicate melt upon ascent from the mantle can lead to a change in its 419 

Fe3+/ΣFe ratio.  This is a strong effect in the Earth (Kress and Carmichael, 1991), but is more 420 

subtle for Mars due to the properties of FeO-rich melts (Righter et al., 2013).  Also linked to 421 

pressure is the enhanced solubility of volatiles at higher pressures. Terrestrial magmas are known 422 

to have appreciable H2O, CO2 and SO2 contents (Holloway and Blank, 1994; Carroll and Web-423 

ster, 1994), and Mars’ wide fO2 range is due to the influence of volatiles such as S2, H2O, and 424 

CO2 (McCubbin et al., 2010; Righter et al., 2008a, 2009).  High solubility at crustal pressures 425 

allows magmas to be volatile-bearing and, upon ascent, degassing leads to fO2 variations at the 426 

surface.  For example, S2 loss can lead to reduction, as seen in nakhlites (Fig. 7), whereas later 427 

Cl loss can lead to oxidation (Righter et al., 2014; Fig. 7).  Mercury may contain more reduced 428 

species, although the level of understanding for Mercury is currently primitive.    429 

Shallow-level processes on planets, such as may occur in a magma chamber, include 430 

fractionation, degassing, and assimilation.   Closed system fractionation of a basaltic magma can 431 

produce differentiated liquids that also contain more Fe3+ their parent liquids.  Such processes 432 

have been documented in terrestrial magmas (Kelley and Cottrell, 2012) as well as martian 433 

magmas (Peslier et al., 2010).  Degassing of dissolved volatile species can lead to changes in Fe 434 
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redox state in the magma (S2, H2O, Cl; although see Crabtree and Lange, 2012, for discussion), 435 

and finally, assimilation of surrounding rocks by a magma can lead to changes in the Fe redox 436 

state of the magma (e.g., oxidized crust or reduced crust compared to magma). Spectacular ex-437 

amples of the latter are the metal-bearing basalts in Germany and in Greenland (Disko Island), 438 

where assimilation of C-bearing sediment led to reduction and even the precipitation of metal 439 

(Bird et al., 1981).  Concomitantly, assimilation of oxidized rocks can lead to oxidation of the 440 

intruding magma as well (Ague and Brimhall, 1988). 441 

 A final process documented in terrestrial settings is metasomatism.  Deep lithospheric 442 

settings as well as the shallow, sub-arc mantle have been proposed as areas (among others) 443 

where mobile fluids have interacted with relatively dry mantle to cause metasomatism that can 444 

produce oxidized and volatile-bearing assemblages (mica-amphibole-rutile-ilmenite-diamond, or 445 

MARID, assemblages; Zhao et al., 1999).  Such metasomatic processes have been considered for 446 

Mars and even the Moon (Treiman, 2003; Elardo et al., 2012).  447 

When all these processes are accounted for and considered, mantle redox state can be as-448 

sessed.  For Earth, mantle and magmatic samples that have not been influenced by these process-449 

es yield a narrow range of fO2, from IW+1 to IW+2 (Frost and McCammon, 2008).  Some deep-450 

er parts of the mantle may be more reduced (Woodland and Koch, 2003), prompting some to 451 

propose that the lower mantle may be metal-saturated (Rohrbach et al., 2007).  For Mars, there 452 

are two samples that may represent primitive mantle melts, Yamato 980459 and NWA 5789, and 453 

these require a mantle source region that was near IW to IW+1 (McKay et al., 2004; Shearer et 454 

al., 2006b; Herd, 2008; Gross et al., 2011).  Samples from both Earth and Mars have been oxi-455 

dized to values higher than initially present in their source mantle by ascent, fractionation, de-456 

gassing, and assimilation.   Although the origin of the Moon is likely linked to Earth through a 457 
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giant impact, lunar samples are more reduced than terrestrial peridotite and basalt.  XANES stud-458 

ies of lunar glasses (Karner et al., 2006; Sutton et al., 2005), carbon solubility studies of lunar 459 

glasses (Nicholis and Rutherford, 2009; Weitz et al., 1997), and electrochemical studies of lunar 460 

basalt (Sato et al., 1973) all yield values of fO2 between IW-0.5 and IW-2 (Figure 7). Some vari-461 

ability can be attributed to degassing and volatile solubilities, but overall the oxygen fugacity of 462 

the lunar mantle and basalt source regions is well-defined and relatively narrow.   For Venus, we 463 

can assume processes and mantle domains with an overall similarity to Earth due to its moderate 464 

FeO contents, similar core size, and some evidence for alkaline basalts at the surface (Treiman, 465 

2007).  For Mercury, the ground-based observations and MESSENGER mission data has led to 466 

the general interpretation that Mercury is reduced and its mantle could be at IW-5 or IW-6 (Fig-467 

ure 7). 468 

 469 

Cause of variation in fO2 470 

a) Nebular chemistry and transport 471 

 The fO2 range defined by nebular or primitive materials starts at low fO2 (near IW-6), as 472 

evident in solar nebular gas C/O ratios (Allende Prieto et al., 2002) as well as CAIs, enstatite 473 

chondrites, and some chondrules (Fig. 5).  Higher fO2s in primitive materials are also recorded 474 

by inclusions in CM2 chondrites, CAIs, FeO-bearing chondrules, and matrices in a wide range of 475 

chondrites, and range up to near the IW buffer.  Because most of these objects are ancient, and 476 

formed within the first 5 Ma of solar system inception, it is clear that fO2 variations were signifi-477 

cant in the nebula.  Evidence from meteorites and cometary (Stardust) materials also indicate 478 

that some of these objects record a wide range of fO2, implying transport of material large dis-479 

tances within nebula.  Variations in fO2 in the solar system may arise from physical or chemical 480 
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factors, or both.  For example, there could have been both vertical and radial transport in the so-481 

lar nebula and both may have contributed to mobility of materials in the early solar system (e.g. 482 

Grossman et al., 2008).  The nebula was likely heterogeneous initially, so chemical variation, 483 

such as in C/O ratios (Allende Prieto et al., 2002) or the relative proportions of H, C, and O in 484 

the solar nebula could have varied and contributed to fO2 variation.  The solar ratio of dust to gas 485 

in the nebula cannot produce FeO-bearing olivines, but increasing this ratio to 100x to 300x so-486 

lar values results in a larger stability field for fayalite in condensing olivine (Grossman et al., 487 

2008).  Tenner et al. (2015) document a correlation between Δ17O and olivine Mg# in chondrules 488 

from CR3 chondrites, and explain the variation with chondrule-melt equilibria involving dust 489 

enrichments of 100-200x for Type I chondrules and 2500x for Type II chondrules; they further 490 

speculate that the early Type I chondrules may have been produced in a dry environment, where-491 

as the later, oxidized chondrules formed in a water-bearing environment (see also Grossman and 492 

Fedkin, 2015).  Finally, Clayton (2005) argued that photo-dissociation of CO could have created 493 

a more oxidizing environment in the solar nebula.  This idea gained some support from meas-494 

urements of the composition of solar oxygen from the Genesis mission (McKeegan et al., 2011).  495 

It is fair to say that the chemical environment of the solar nebula, and its spatial heterogeneity, 496 

are fields of intense study and many questions remain unanswered. 497 

b) Planetesimal formation (heat and fluids and impacts) 498 

The range of fO2 defined by achondrites is nearly the same as that in primitive materials, 499 

suggesting that the heating processes that formed the achondrites through melting and accumula-500 

tion did not alter the fO2 substantially, with an overall range of approximately IW-6 to IW.   501 

Aqueous alteration, on the other hand, has affected most carbonaceous chondrites (CI, CM, CV, 502 

CR, CK; Brearley, 2006) and is associated with oxidation.  Although some alteration does not 503 
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require high fO2 (e.g., production of fayalite), some phase equilibria suggest IW+3 to IW+7 at 504 

low temperatures.  Similarly, CK chondrites show evidence for oxidation (exsolution lamellae of 505 

FeTi oxides; Righter and Neff, 2007), and V XANES data reported here indicate fO2s as high as 506 

IW+3.5 to IW+6.  Fluids may have been Cl-bearing (Cl-phosphates) and oxidized, but not neces-507 

sarily water-rich.  These results indicate that, in some asteroids, oxidation can produce materials 508 

locally with oxidized values outside the range defined by primitive materials.  Studies of matrix 509 

and some fine grained dust particles also record high Fe3+/ΣFe values (LeGuillou et al., 2015; 510 

Ogliore et al., 2010; Stodolna et al., 2013), consistent with oxidation above IW, but specific val-511 

ues are not yet defined. 512 

c) Planet building: building blocks and planetary processes 513 

Some terrestrial samples exhibit values as high as IW+8, and some Mars samples IW+3.5 to 514 

4 (Fig. 7), and both can be explained by roles for tectonics, pressure, and volatile abundances 515 

and speciation, which are typically not as relevant or influential for asteroids and smaller bodies. 516 

In the case of Earth, mantle and crustal melting occurs at pressures between 8 and 0 GPa, and the 517 

high pressures allow for dissolution of significant volatile species such as H2O, CO2, SO2, and 518 

H2S into melts.  Upon decompression and degassing, the redox state of a magma can become 519 

more oxidized or reduced, depending on which species are lost and the overall composition of 520 

the magma.  Tectonics can also provide opportunities for oxidation.  Although island arc basalts 521 

may show evidence for slightly greater fO2 than ocean basin (MORB, OIB) basalts, the sub-arc 522 

mantle can be oxidized by fluid release from subducted slabs.  The fluids react with overlying 523 

mantle to cause metasomatism or form oxidized peridotite.  Some sub-arc mantle has been doc-524 

umented with evidence for equilibration at fO2 values as high as IW+7 (McInnes et al., 1994).  525 

On Mars, polybaric melting, ascent and degassing of CO2-rich melts can produce melts with a 526 
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wide range of fO2, from IW to IW+3, and additional fractionation and degassing in shallow 527 

magma bodies can produce both oxidation and reduction, with the former up to IW+4 to 5 (e.g., 528 

Righter et al., 2008; Peslier et al., 2010; Righter et al., 2014).  529 

The potential for pressure and volatile loss to widen the range of fO2 recorded in plane-530 

tary materials is significant, and such effects must be accounted for when comparing planetary 531 

materials to meteoritic or nebular samples.  Additionally, the fO2 conditions of core formation 532 

for Mars, Earth and Vesta (EPB) are consistently lower than that defined by mantle and basalt 533 

samples from these bodies.  The disparity between conditions for terrestrial core formation and 534 

basalt production is clearly evident in Figure 7, whereas for Mars and Vesta it is more subtle.  535 

Core formation in Mars is thought to have occurred near IW-1.5, whereas the most reduced 536 

shergottites are near IW.  Similarly, core formation modelling for siderophile elements in Vesta 537 

show conditions near IW-2, yet eucrites, diogenites, and possibly related pallasites all exhibit 538 

higher fO2 near IW-1 or IW-1.5 (Fig. 6).  Overall, there must be some oxidation during melting 539 

and ascent of magmas on these three bodies.  When all secondary processes are considered (as-540 

cent, volatile exsolution, degassing), and fO2 is defined for those samples unaffected by volatiles 541 

or degassing, the range of fO2 of planetary mantles is IW-6 (Mercury) to IW-2 to IW-1.5 (Earth), 542 

to IW-1 to IW (Mars).  This range is similar to that defined by primitive materials and 543 

achondrites.  Implications are that a significant oxidized reservoir (>IW) was likely not present 544 

in the solar system available for planet building.  Even though such high values are encountered 545 

in asteroidal materials, they did not apparently have a large influence on outcomes.   546 

Finally, the planets grew by large impacts between differentiated proto-planets.  This 547 

process has been modelled as merging of two bodies, usually with differing mantle FeO content 548 

(and thus oxygen fugacity), creating a new body with a new oxidation state.  Fischer and Ciesla 549 
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(2014) have shown that, in some cases, FeO contents of the Earth-sized planets created in these 550 

simulations increase with time.  However, when large impacts occur, an oxidized impactor does 551 

not necessarily cause oxidation of a more reduced target body.  This has been assumed in the 552 

modelling done, perhaps due to the simplified chemical systems being considered, but a more 553 

realistic situation is that a more massive, reduced body will convert some of the oxidized materi-554 

al to a more reduced state.  The modelling should also consider silicate liquids and high P-T 555 

conditions, since most proto-planets were likely at least partially molten, and would be again 556 

during and after the impact.  The oxidation of the target body may be negligible, rather than in-557 

cremental as frequently modelled (Bond et al., 2010; Fischer and Ciesla, 2014).  The Fe redox 558 

equilibria in such major impacts must be modelled more realistically to know whether bodies in 559 

the last stages of accretion can become more oxidized, more reduced, or stay constant during 560 

planet building.   561 

 562 

Summary and Future 563 

There are many new techniques that can be applied to astromaterials to determine the redox 564 

state of elements and to determine oxygen fugacity.  Electron energy loss spectroscopy (EELS) 565 

and x-ray absorption spectroscopy (XANES and EXAFS) both offer high spatial and energy res-566 

olution measurements that have just begun to be applied to natural samples.  The focus of this 567 

study – redox state of V in spinels – has been carried out at relatively high fO2 conditions, but 568 

could be quantified for low-fO2 samples of IW-3 and below.  Our results imply that there may be 569 

substantial V2+ in spinels formed at low fO2s.  However, the vanadium valence calibration for 570 

spinel at these very low pre-edge peak intensities may not be well-constrained.  As the pre-edge 571 

peak intensity decreases going from V3+ to V2+, there should be an accompanying energy shift to 572 



27 
 

lower energies in the main edge region and the main edge spectral shape should change to some 573 

extent.  For example, comparing VO and V2O3 in Wong et al. (1984), the main edge shifts by 574 

about 1 eV.  Energy shifts of that magnitude were not observed for spinels in the current study, 575 

and the main edge regions of all spectra are pretty similar to each other.  Spinel may behave dif-576 

ferently in this regard compared to other oxides. It is possible that the relation between pre-edge 577 

peak intensity, octahedral site asymmetry, and disordering is not well understood yet at reducing 578 

conditions.  It seems there are some important issues to resolve and explore for application of V 579 

XANES to spinels equilibrated at low fO2 (< IW-3).  Finally, many measurements of Fe3+/ΣFe 580 

on dust, reduced glasses, matrix and amorphous materials have not been correlated with oxygen 581 

fugacity in a quantitative way, only qualitatively.  Quantitation will allow more direct compari-582 

sons between astromaterials collections and types of samples and could enhance our understand-583 

ing of more primitive solar system materials. 584 

The oxygen fugacity record in primitive materials, chondrites, achondrites and planets 585 

spans a wide range of fO2 from IW-8 to IW+8, 16 orders of magnitude.  The range within each 586 

group is similar and largely between IW-8 and IW+2, with the exception of Earth and Mars and 587 

a few oxidized chondrites.  Earth exhibits the most oxidized mantle and magmas, presumably 588 

due to the influence of an O2-rich atmosphere, liquid water oceans at the surface, and a hydrated 589 

deep interior.  Mars is slightly oxidized, but its range is much more restricted than Earth’s, sug-590 

gesting a lesser or less-widespread role for water and oxygen in the magmatic evolution of the 591 

planet, consistent with its O-poor atmosphere and lack of oceans or large water masses (water is 592 

not unknown on Mars, just of lesser abundance relative to Earth; Villanueva et al., 2015).  Of 593 

course, this assessment may need to be revised when Mars is more thoroughly sampled.  Simula-594 

tions of planet formation currently show Earth-like planets becoming more FeO-rich during ac-595 
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cretion, but the simplified chemical systems considered may yield different results than multi-596 

component, volatile-bearing, more realistic systems; this should be pursued in future modeling 597 

efforts. 598 

Overall, we currently enjoy access to samples from a wide range of near-Earth objects, 599 

Moon, Mars, a Jupiter Family comet (Wild 2), solar wind, and cosmic dust.  Although this is a 600 

broad range of materials, there are sampling gaps that will be addressed in future missions.  601 

OSIRIS-REx will launch in 2016 and return as much as 2 kg of carbonaceous asteroid material 602 

from Bennu in September 2023 (Lauretta et al., 2015).  Hayabusa 2 launched in 2014 and will 603 

return samples of carbonaceous asteroid 162173 Ryugu in December 2020 (Tsuda et al., 2013).  604 

Comet sample return and lunar sample return have been featured as top prospects for sample re-605 

turn missions for the Discovery and New Frontiers programs.  Technically challenging sample 606 

return missions to Venus and Mercury, or identification of venusian or mercurian meteorites 607 

among world collections, would revolutionize our understanding of planet formation in our and 608 

other solar systems.  New samples from any or all of these bodies would help to elucidate the 609 

range of fO2 recorded in astromaterials and ultimately better constrain the origin of our solar sys-610 

tem. 611 
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Figure Captions 1022 

Figure 1: Chromite occurrences in various samples measured in this study. A) chromites (black 1023 

grains indicated by yellow arrows) from the martian orthopyroxenite ALH 84001, transmitted 1024 

light; b) chromites (yellow arrows) from the olivine-rich brachinite ALH 84025; transmitted 1025 

light, crossed polarizers; c) Backscattered electron image of chromite enclosed by pentlandite, 1026 

plagioclase and olivine in R chondrite LAP 04840; d) chromite inclusions (red arrows) in an oli-1027 

vine phenocryst from an olivine basalt (MGV-19) from the Mexican volcanic belt; transmitted 1028 

light, crossed polarizers. 1029 

Figure 2: Correlation of V K pre-edge peak intensity with oxygen fugacity for spinels in the ex-1030 

periments of Righter et al. (2006a).  A) Fit to data is of the form ΔIW = y0+a*(1-exp(-1031 

b*x))+c*(1-exp(-d*x)), with y0 = -8.6441, a = 11.6711, b=0.0360, c=14.0316, and d=0.0009.  R 1032 

= 0.9698, R2 = 0.9404, and standard error of estimate is 0.78.  B) Fit to the data in a more fo-1033 

cused range, appropriate to the natural samples measured here; exponential fit with data between 1034 

IW-1 and IW+4 (or pre-edge peak intensity between 0 and 100); standard error of estimate for 1035 

this fit is 0.62. 1036 

Figure 3: V K pre-edge peak intensity for acapulcoites, lodranites, diogenites, brachinites, mar-1037 

tian orthopyroxenite ALH 84001, two terrestrial basalts (MGV and SMT), and CK chondrites. 1038 

FMQ refers to the fayalite-magnetite-quartz buffer. Arrows on the vertical axis show the pre-1039 

edge peak intensities corresponding to V3+/V2+ ratios of spinel and the FMQ buffer (IW is not 1040 

shown but is near a pre-edge peak intensity value of 32), the former determined by a glass/spinel 1041 

calibration (Righter et al., 2006a) and the latter determined by synthetic spinels as part of this 1042 

work (Figure 2). 1043 
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Figure 4: V K pre-edge peak intensity and Mg# in olivines from samples measured in this study.  1044 

The variation in Mg# with oxidation is as expected in the metal-present field, with Mg# increas-1045 

ing as more FeO is reduced to Fe at fO2 below IW. This trend reverses in the metal-free field 1046 

above IW, as more FeO is oxidized to Fe2O3 at fO2 above IW (Righter and Neff, 2007).  The 1047 

similarity of V oxidation state in GRA 06128 and brachinites, but different Mg# could be the 1048 

result of differentiation processes. 1049 

Figure 5: Histogram of ΔIW values from various chondrites, components (CAI, chondrules, met-1050 

al, matrix), and primitive materials from the literature.  Solar values are from Allende Prieto et 1051 

al. (2002), based on a C/O ratio of 0.5; CAI fassaite and CH metal are from Grossman et al. 1052 

(2008) and Petaev et al. (2003), respectively.  ‘EL3 olivine’ is based on XANES measurements 1053 

of Cr in olivine by McKeown et al. (2014).  Ranges of oxygen fugacity defined in refractory in-1054 

clusions are from Ihinger and Stolper (1986), Paque et al. (2013) and Simon et al. (2007). Esti-1055 

mates for ordinary chondrites are from Ti valence (Simon et al., 2013) and metal-olivine-1056 

orthopyroxene equilibria (Righter and Drake, 1996; 112 H (blue), L (light blue), and LL samples 1057 

(medium blue)).  Constraints from chondrules are from Zanda et al. (1994) and Schrader et al. 1058 

(2013).  Estimates from Stardust (Inti, Iris, and Torajiro) and GEMS particles from Simon et al. 1059 

(2008), Gainsforth et al. (2015), and data from Bradley (1994) and Keller and Messenger (2011).  1060 

R chondrite estimates are from Righter and Neff (2007) and this study.  All data and references 1061 

used in this figure are summarized in Table S2.  “Fassaite” refers to a Ti and Al-rich variety of 1062 

clinopyroxene; Dowty and Clark, 1973.  1063 

Figure 6: Histograms of ΔIW values from this work (solid histograms; brachinites, 1064 

GRA06128/129, pallasite CMS04071, diogenites, lodranites, and acapaulcoites) and values from 1065 

previous work determined by experimental petrology (angrites; McKay et al., 1994; Jurewicz et 1066 
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al., 1993), thermodynamic calculations (acapulcoites and winonaites, Righter and Drake, 1996; 1067 

Benedix et al., 2005; silicate-bearing irons, Righter and Drake, 1996; aubrites, Righter et al., 1068 

2006; Fogel, 2005), electrochemical measurements (pallasites, Righter et al., 1990; diogenites, 1069 

Hewins and Ulmer, 1984), and Cr XANES (ureilites, Goodrich et al., 2013).  A complete listing 1070 

of references for this figure is presented in Table S2. 1071 

Figure 7: Histograms of ΔIW values from planetary samples.  Terrestrial samples (blues and 1072 

greens) include continental xenoliths, abyssal peridotite, MORB, Kilauea basalt, andesites and 1073 

lamprophyres from arcs all from Righter and Drake (1996).  Mexican basalt samples are from 1074 

this study.  Martian samples (shades of red) include shergottite basalts from Righter and Drake 1075 

(1996) as well as the range of oxidation recorded in cooling processes in shergottite LAR 06319 1076 

(Peslier et al., 2010), and the range of reduction recorded in nakhlite cumulates from Righter et 1077 

al. (2014).  ALH 84001 is from this study.  Lunar samples (greys) include XANES studies of 1078 

lunar glasses (Karner et al., 2006; Sutton et al., 2005), carbon solubility studies of lunar glasses 1079 

(Nicholis and Rutherford, 2009; Weitz et al., 1997), and electrochemical studies of lunar basalt 1080 

(Sato et al., 1973).  Mercury samples are the range defined in studies by Zolotov et al. (2013) 1081 

and McCubbin et al. (2012) based on low FeO and high S contents of the mercurian surface 1082 

measured by MESSENGER.  The range for Venus is a conservative estimate based on the size of 1083 

its core, composition of surface basalts, but could be wider depending upon what planetary pro-1084 

cesses (volatile dissolution, degassing, and fractionation) may have operated on Venusian melts.  1085 

The green and pink vertical bands represent the ΔIW thought to be associated with core for-1086 

mation in Earth and Mars, respectively.  The vertical dashed line is the IW buffer, and the verti-1087 

cal dotted line at IW+2 represents the upper axis scale in the previous two plots illustrating the 1088 
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relatively oxidized nature of terrestrial and martian samples. Complete listing of references in 1089 

Table S2. 1090 
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Table 1: Results of V XANES measurements for individual spinel-structured oxides  

sample Section 
# 

type Pre-edge peak 
intensity 

ΔIW� 1 ΔIW� 2 

      
ALH77256_1.002-4 116 olivine diogenite 28(3) -0.88 -0.75 
ALH77256_2.001-3 116 olivine diogenite 28(3) -0.88 -0.75 
ALH77256_3.001-3 116 olivine diogenite 30(3) -0.56 -0.51 
ALH77256_4.001-3 116 olivine diogenite 31(3) -0.41 -0.41 
GRA98108_md2.001-3 17 olivine diogenite 22(2) -1.98 -1.53 
GRA 98108_md1.001-3 17 olivine diogenite 22(2) -1.98 -1.53 
GRA98108_brd1.001-3 17 olivine diogenite 22(2) -1.98 -1.53 
GRA 98108_ah1.001-3 17 olivine diogenite 22(2) -1.98 -1.53 

      
ALH84025_1.004-5 12 brachinite 35(4) 0.15 0.05 
ALH84025_2.001-3 12 brachinite 30(3) -0.56 -0.51 
EET99402_1.003-4 33 brachinite 37(4) 0.41 0.26 
EET99402_2.001-3 33 brachinite 36(4) 0.28 0.16 
EET99402_3.001-3 33 brachinite 34(3) 0.02 -0.06 
CMS04071_2.001 9 pallasite 27(3) -1.05 -0.88 
      
QUE99679_1.002-4 7 CK4 chondrite 74(7) 3.11 3.06 
QUE99679_2.001,2,4 7 CK4 chondrite 65(7) 2.70 2.55 
QUE99679_3.001,2,3 7 CK4 chondrite 70(7) 2.94 2.84 
QUE99679_4.001,2,3 7 CK4 chondrite 74(7) 3.11 3.06 
      
SMT-1_grain1.004-6 - Basalt 52(5) 1.07 0.85 
MGV-19_ol_1.001-3 - Basalt 37(4) 0.41 0.26 
MGV-19_ol_3.001-3 - Basalt 43(4) 1.08 0.85 
TMV-6b_ol_3.001-3 - Basalt 82(8) 3.42 3.46 
      
ALH84001_op1.001-2 382 Martian opx 37(4) 0.41 0.26 
ALH84001_ht1.001-2 382 Martian opx 38(4) 0.53 0.37 
ALH84001_ht2.001-2 382 Martian opx 38(4) 0.53 0.37 
ALH84001_cy1.001-3 382 Martian opx 37(4) 0.41 0.26 
ALH84001_cy2.001-3 382 Martian opx 38(4) 0.53 0.37 
      
GRA 06128_wnr2.001-3 52 Ungr. achondrite 27(3) -1.05 -0.88 
GRA 06128_wnr2.001-3 52 Ungr. achondrite 29(3) -0.72 -0.63 
      
MET01198_wdg.001 14 acapulcoite 20(2) -2.40 -1.81 
MET01198_nja2.001 14 acapulcoite 18(2) -2.85 -2.11 
MET01198_nja1.001 14 acapulcoite 17(2) -3.09 -2.25 
EET84302_vst.002-3 44 lodranite 27(3) -1.05 -0.88 
EET84302_crg.002 44 lodranite 21(2) -2.19 -1.68 
      



2 
 

LAP04840_wty1.003-6 24 R6 chondrite 30(3) -0.56 -0.51 
LAP04840_tub1.002-4 24 R6 chondrite 39(4) 0.64 0.47 
LAP04840_snd1.001-3 24 R6 chondrite 49(5) 1.63 1.38 
LAP04840_lzy1.001-3 24 R6 chondrite 37(4) 0.40 0.26 
LAP04840_ftd1.001-3 24 R6 chondrite 41(4) 0.87 0.66 
LAP04840_flndr1.001-3 24 R6 chondrite 46(5) 1.36 1.13 
      
  
  
1 - fit to a five parameter exponential function across IW-1 to IW+9; std error = 0.78. 
2 - fit to exponential function between IW-1 and IW+4; std error = 0.62. 
  
� - ΔIW refers to the logfO2 of a sample (at T) relative to the logfO2 of the IW buffer (at T).  
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