1

Revision 2

2 The crystal structure of nickelskutterudite, (Ni,Co,Fe)As₃, and occupancy of the

3 icosahedral cation site in the skutterudite group

Benjamin N. Schumer^a, Marcelo B. Andrade^b, Stanley H. Evans^a, and Robert T. Downs^a

^aDepartment of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721-0077, USA

^bSão Carlos Institute of Physics, University of São Paulo, Caixa Postal 369, 13560-970, São Carlos, SP, Brazil

Correspondence e-mail: bschumer@email.arizona.edu

6

Abstract

The crystal structure of nickelskutterudite, (Ni,Co,Fe)As₃, cubic, $Im\bar{3}$, Z = 8: a = 7 8.2653(6) Å, V = 564.65(7) Å³, has been refined to $R_1 = 1.4\%$ for 225 unique reflections I > 8 9 $2\sigma(I)$ collected on a Bruker X8 four-circle diffractometer equipped with fine-focus, sealed tube 10 MoKa radiation and an APEX-II CCD detector. This is the first report of the crystal structure of 11 nickelskutterudite. Nickelskutterudite, a member of the skutterudite group of isostructural 12 minerals, adopts a distorted perovskite structure with notably tilted octahedra and an unoccupied to partially occupied icosahedral metal site. In the structure of nickelskutterudite, there is one 13 metal (B) site occupied by Ni, Co, or Fe in octahedral coordination with six As atoms. Procrystal 14 15 electron density analysis shows each As anion is bonded to two cations and two As anions, resulting in a four membered ring of bonded As with edges 2.547 Å and 2.475 Å. The extreme 16 tilting of BAs₆ octahedra is likely a consequence of the As-As bonding. The nickelskutterudite 17 structure differs from the ideal perovskite structure $(A_4B_4X_{12})$ in that As₄ anion rings occupy 18

three of the four icosahedral cages centered on the *A* sites. There are reported synthetic phases isomorphous with skutterudite with the other *A* site completely occupied by a cation (AB_4X_{12}) .

Electron microprobe analyses of nickelskutterudite gave an empirical chemical formula 21 of $(Ni_{0.62}Co_{0.28}Fe_{0.12})_{\Sigma=1.02}(As_{2.95}S_{0.05})_{\Sigma=3.00}$ normalized to three anions. Pure NiAs₃ 22 nickelskutterudite, natural or synthesized, has not been reported. In nature, nickelskutterudite is 23 always observed with significant Co and Fe, reportedly because all non-bonded valence electrons 24 must be spin-paired. This suggests that nickelskutterudite must contain Co^{3+} and Fe^{2+} , consistent 25 with previous models since Ni^{4+} cannot spin-pair its seven non-bonded electrons, Co^{3+} and Fe^{2+} . 26 27 which can spin-pair all non-bonded electrons, are required to stabilize the structure. No anion deficiencies were found in the course of this study so, including the structurally necessary Co 28 and Fe, the chemical formula of nickelskutterudite (currently given as NiAs_{3-x} by the IMA) 29 30 should be considered (Ni,Co,Fe)As₃.

31

Introduction

32 The skutterudite mineral group consists of minerals that exhibit cubic space group symmetry $Im\bar{3}$ with ideal formula BX_3 or B_4X_{12} , where B is Co, Ni, or Fe, and X is As or Sb. 33 Skutterudite group minerals adopt a distorted perovskite structure with unoccupied A sites, 34 constructed from a framework of tilted, corner-linked BX₆ octahedra, bringing together four 35 anions in three-quarters of the otherwise vacant icosahedral cages, where they form rectangular 36 37 four member rings (Aleksandrov and Beznosikov 2007). Numerous synthetic compounds exist which are isomorphous with skutterudite group minerals, and these materials fall into two 38 categories: (1) filled, which follow the general formula AB_4X_{12} , in which A is a large cation 39 40 partially to completely occupying the remaining quarter of the icosahedral cages, B is generally a

transition metal cation, and *X* is a P, As, or Sb anion; and (2) unfilled with the general formula *BX*₃. Synthetic filled skutterudite materials, such as Tl_{0.5}Co₄Sb₁₂ and NdOs₄Sb₁₂, have been
widely studied due to their particular thermoelectric properties including high Seebeck
coefficients, high electrical conductivity, and low thermal conductivity (Aleksandrov and
Beznosikov 2007; Chakoumakos and Sales 2006; Fukuoka and Yamanaka 2009; Návratil et al.
2010). We suspect that the structures of natural skutterudites can accommodate cations within
the icosahedral site.

The skutterudite mineral group currently consists of four members (with current IMA formula): skutterudite (CoAs_{3-x}), nickelskutterudite (NiAs_{3-x}), ferroskutterudite [(Fe,Co)As₃], and kieftite (CoSb₃). The IMA nomenclature commission currently defines the chemical formula for skutterudite and nickelskutterudite as anion deficient, BX_{3-x} , after the work of Palache, Berman, and Frondel (1944). Pauling (1978) suggested that the ideal formula of skutterudite be written Co₄(As₄)₃, emphasizing the four member As rings.

The study of the skutterudite group has a long history, with skutterudite sensu stricto first 54 reported by Breithaupt (1827) and its chemical composition reported as CoAs₃ by Haidinger 55 (1845). Over the course of the next century, a series of mineral species were described in order to 56 account for the diversity of chemical compositions and physical properties exhibited by minerals 57 related to skutterudite (Vollhardt 1888). In particular a nickel-dominant phase was described by 58 Waller and Moses (1893) from the Bullard's Peak Mining District, Grant County, New Mexico, 59 and more recently an iron dominant phase was described by Spridonov et al. (2007). The 7th 60 61 edition of Dana's System by Palache, Berman and Frondel (1944), included a summary of the skutterudite minerals, defining them as consisting of cubic RAs_{3-x} minerals where R = Fe, Co or 62

Ni. The IMA adopted the Palache, Berman, and Frondel (1944) anion deficient ideal chemicalformulas.

$x \leq \frac{1}{2}$	$1/2 \le x \le 1$			
(Co,Ni)As _{3-x}	smaltite	(Co,Ni)As _{3-x}		
(Ni,Co)As _{3-x}	chloanthite	(Ni,Co)As _{3-x}		
(Fe,Ni,Co)As _{3-x}	chathamite	(Fe,Ni,Co)As _{3-x}		
	(Co,Ni)As _{3-x} (Ni,Co)As _{3-x}	(Co,Ni)As3-xsmaltite(Ni,Co)As3-xchloanthite		

Ramsdell (1925) examined smaltite and chloanthite, which he considered to be 65 isostructural members of the series CoAs₂-NiAs₂, respectively, and distinct from skutterudite. 66 67 Ramsdell was, however, unable to solve the structure of either compound. Oftedal (1926) was the first to report the crystal structure of skutterudite, and two years later he compared the 68 crystallography of skutterudite and a sample along the smaltite-chloanthite join (Oftedal 1928). 69 70 The powder diffraction patterns for skutterudite and smaltite-chloanthite observed by Oftedal (1925) showed that they are isostructural, in spite of their chemical differences. Single-crystal 71 72 X-ray diffraction data collected by Oftedal (1925) led him to conclude that skutterudite, and therefore smaltite-chloanthite, must follow the general formula RAs_3 , where R = Co or Ni. 73 Holmes (1947) analyzed and summarized previous studies of the arsenides of cobalt, nickel, and 74 75 iron, and, based on Oftedal's work, concluded that the skutterudite structure is consistent with a general formula of MAs₃, but the observed compositions frequently appeared to be anion 76 deficient. In the course of our study, it became clear that cation excess is more likely than anion 77 78 deficiency in the skutterudite structure, as illustrated by the various synthetic compounds 79 mentioned earlier.

80	Roseboom (1962) studied the chemical variability of the skutterudite minerals by
81	synthesizing a series of crystals. He reported some slightly anion deficient samples, even those
82	synthesized in the presences of elemental As, but no deficiencies large enough to account for
83	many of the analyses of natural skutterudites (references cited in Roseboom 1962). His synthetic
84	Co samples exhibited maximum deficiencies of CoAs _{2.94-2.96} . He concluded that excess metal
85	replaces deficient As. As well, just as observed in the natural samples, he could not synthesize
86	end-member Ni or Fe skutterudite. Roseboom (1962) also concluded that the ubiquitous mixing
87	of safflorite [(Co,Ni,Fe)As ₂] with skutterudite in natural samples precludes any confidence in
88	published chemical analyses done on samples without accompanying X-ray diffraction support.
89	Additional structural refinements of skutterudite have been reported by Ventriglia (1957),
90	Mandel and Donahue (1971), and Kjekshus and Rakke (1974). Ventriglia (1957) is the first to
91	mention distortion of the CoAs ₆ octahedra to a form that more resembles trigonal prismatic than
92	octahedral. This distortion was confirmed by Mandel and Donahue (1971). None of these
93	studies mention occupancy of the icosahedral site.
94	Experimental
95	Four skutterudite group minerals were analyzed in this study: two nickelskutterudite
96	samples (R100194, rruff.info/R100194 from Schneeberg, Germany; R100196,
97	rruff.info/R100196 from Alhambra mine, Bullard's Peak Mining District, Grant County, New
98	Mexico) and two skutterudite samples (R050593, rruff.info/R050593 from Bou Azzer, Morocco;
99	
33	R100195, rruff.info/R100195 from Skutterud, Norway). Chemistry was measured on a Cameca
100	R100195, rruff.info/R100195 from Skutterud, Norway). Chemistry was measured on a Cameca SX100 Electron Microprobe with beam conditions of 20 keV and 20 nA. Standards were NiAs

Sb was detected in sample R100196 at levels slightly lower than the standard deviation, 0.007(8)
weight %. Each formula was normalized to three anions. Results of the electron microprobe are
given in Table 1 and discussed further below. A portion of each sample analyzed by electron
microprobe was removed for structure analysis.

Single-crystal X-ray diffraction data were collected on a Bruker X8 APEX2 CCD X-ray diffractometer equipped with graphite-monochromatized Mo*K* α radiation using frame widths of 0.5° in ω and 30 s counting time per frame. All reflections were indexed on the basis of a cubic unit cell. The intensity data were corrected for absorption effects by the multi-scan method using the Bruker programs TWINABS for R100196 and SADABS for the remaining samples (Bruker 2007). Crystal and refinement data for all samples are presented in Table 2.

The crystal structure of nickelskutterudite was solved and refined using SHELX97 (Shel-112 drick 2008) based on space group $Im\overline{3}$ (no. 204), yielding a reliability factor R of 1.4%, from 113 data collected on a twinned crystal $(0.05 \times 0.05 \times 0.04 \text{ mm})$ removed from R100196. The 114 crystal is twinned according to a reflection on (110) with matrix $0 \mid 0 \mid 0 \mid 0 \mid 0 \mid 0 \mid 1$. This is a 115 116 {110} merohedral twin of index 1, forming a "penetration twin" similar to the "iron cross" twins seen in pyrite. Arsenic was assigned to the Wyckoff position 24g [x y 0]. Due to the inability 117 118 of X-ray data to distinguish Ni, Co, and Fe from one another, the three elements were assigned to 119 M at the 8c position $[\frac{1}{4}, \frac{1}{4}, \frac{1}{4}]$, and the ratios of Ni, Co, and Fe were constrained to the empirical formula generated from microprobe data. Note, refining site 8c without constraining the ratios of 120 Ni, Co, and Fe to the empirical formula, but keeping the sum of the cations at 1.00, resulted in 121 differences of up to 16% from the microprobe generated formula. Constraining either Co or Fe, 122 123 not both, to the value of the empirical formula resulted in differences of only 3%.

124	The positions of all atoms were refined with anisotropic displacement parameters. The
125	refined coordinates and displacement parameters are listed in Table 3, and selected bond
126	distances and angles are in Table 4. Negligible residual electron density at the icosahedral site, A
127	(0, 0, 0), indicated that nickelskutterudite R100196 is unfilled. However, residual electron
128	density was seen at A for skutterudite R050593 and nickelskutterudite R100194. Site occupancy
129	refinement of A showed 0.01 metal (Co, Ni, or Fe) atom per formula unit in R050593 and
130	R100194.

131

Results

132 As shown in Fig. 1, the structure of nickelskutterudite consists of corner-sharing MAs_6 133 octahedral groups (M = Ni, Co, or Fe), similar to the octahedral groups in the α -ReO₃ structure (space group $Pm\bar{3}m$, no. 221). However, the NiAs₆ octahedra are tilted about [111] from the 134 ideal orientation of octahedra in the ReO₃ structure, thereby emplacing As atoms into three 135 quarters of the icosahedral cages (Aleksandrov and Beznosikov 2007, Návratil et al. 2010). Each 136 of these "stuffed" icosahedral cages contains four As atoms that are close enough to bond, 137 138 forming a rectangular As₄ ring (Fig. 2). In filled skutterudite compounds, the remaining quarter of the icosahedral cages accommodate filling cations. In the ideal perovskite structure, ABX_{3} , 139 each icosahedral cage is occupied by an A cation, and there are no X_4 rings "stuffed" into the 140 141 cages. In such a way, the filled skutterudite compounds, AB_4X_{12} , can be thought of as intermediaries between the ReO₃ and perovskite structures. Interestingly, Aleksandrov and 142 Beznosikov (2007) reported that at pressure (~0.52 GPa), the ReO₃ structure deforms to the 143 skutterudite structure. It would be interesting to demonstrate bonded O₄ rings in high-pressure 144 145 ReO₃.

146	Concomitant with tilting of the octahedra is distortion of the octahedra. Measured As-Ni-
147	As angles for NiAs ₆ octahedra in nickelskutterudite deviate significantly (~6°) from 90° (Table
148	3), resulting in Ni coordination polyhedra that resemble trigonal prisms, as previously noted by
149	Ventriglia (1957). Mitchell (2002) and Chakoumakos and Sales (2006) both describe octahedral
150	distortion as a function of both octahedral tilt and anion-anion bonding within the skutterudite
151	structure, dependent on composition. Consequently, octahedral distortion increases as anion-
152	anion distances within the X_4 ring decreases from Sb to P.
153	A system for the classification of octahedral tilt in perovskite derivative structures was
154	developed by Glazer (1972), and is applicable to the skutterudite structure (Mitchell 2002). A
155	brief summary of Glazer's classification is presented here; for an in-depth discussion of
156	octahedral tilt, the reader is referred to Glazer (1972). According to Glazer (1972), octahedral tilt
157	may be thought of as the combination of tilts about the three 4-fold axes of an octahedron. This
158	overall tilt is characterized according to magnitude and direction. Magnitude is the amount of tilt
159	about the three 4-fold axes, denoted a relative to [100], b relative to [010], and c relative [001],
160	and equality of tilt is shown by repeating the appropriate letter. Direction refers to tilt of
161	octahedra in successive layers along a given 4-fold axis, denoted as a superscript 0 for no tilt, +
162	for tilt in the same direction, and – for tilt in the opposite direction (Glazer 1972). NiAs ₆
163	octahedra in nickelskutterudite (and MAs ₆ octahedra in all other skutterudite structures) have
164	equal tilt about all three 4-fold axes, and the tilt of NiAs ₆ octahedra in successive layers along
165	each axis is the same (Aleksandrov and Beznosikov 2007), so the Glazer tilt notation is $a^+a^+a^+$.
166	The angle of tilt φ is 36.20°, calculated according to the equation $\cos(\varphi) = 3a/(8d - 0.5)$, given in
167	Návratil et al. (2010), where a is the unit cell edge and d is the metal-arsenic bond distance.

168	Distances between P, Sb, and As in X_4 rings within various synthetic skutterudite
169	compounds were noted by Chakoumakos and Sales (2006) as comparable to distances between
170	nearest neighbor atoms in elemental P, Sb, and As, consistent with X-X bonding. Distances
171	between As atoms in As ₄ rings in nickelskutterudite measure 2.5467(6) Å and 2.4749(5) Å
172	(average = 2.511 Å), similar to nearest neighbor distances of 2.517 Å within native arsenic
173	(hexagonal As; Schiferl and Barrett 1969) and 2.493 Å in arsenolamprite (orthorhombic As;
174	Smith et al. 1974), consistent with As-As bonding. Although the As ₄ ring in skutterudite was
175	described by Oftedal (1926) as having four equal sides, nickelskutterudite and skutterudite
176	(Mandel and Donohue 1971) have rings with two different As-As distances, forming rectangles.
177	In order to test whether or not the As atoms are bonded in skutterudite, the procrystal
178	electron density distribution was calculated using the experimental space group, unit cell
179	dimensions, and atomic coordinates obtained from the single crystal x-ray diffraction data
180	gathered in this study, as outlined by Gibbs et al. (2008), using the software SPEEDEN (Downs
181	et al. 1996). Fig. 3 shows an electron density contour map in the plane of the As_4 ring. Bond
182	paths and saddle points are located in the electron density along the sides of the ring. These
183	saddle points represent (3,-1) bond critical points that satisfy the conditions of Bader (1998): a
184	bonded pair of atoms exists if and only if a bond path and a saddle point exist in the electron
185	density between them, demonstrating As-As bonded interactions in the As ₄ ring of
186	nickelskutterudite.

187

Discussion

188 To check for anion deficiency in our skutterudite samples, microprobe data were 189 normalized to a cation-site sum of 1.00 and compared to the formulas generated by normalizing 190 to an anion-site sum of 3.00 (Table 1). When the empirical formulas were normalized to a cation-

191 site sum of 1.00, the formulas were slightly anion deficient. The same formulas, when normalized to an anion-site sum of 3.00, showed a slight cation surplus. Site-occupancy 192 193 refinement was used to check the validity of each result. Occupancy refinement of the anion site in all four samples showed full occupancy. Occupancy refinement of the *B* cation site showed 194 full occupancy, while residual electron density was seen at the A site of R050593 and R100194, 195 196 and refined to 0.01 metal atoms (Co, Ni, or Fe) per formula unit. Thus, the formulas normalized to 3.00 cations represent the observed structural state, and no anion deficiency is present in our 197 198 samples.

A relationship was noticed between the degree of octahedral tilt and bond lengths within 199 the X_4 rings. Mitchell (2002) and Chakumakos and Sales (2006) briefly mention the inversely 200 proportional relationship between X-X interatomic distances and octahedral tilt, and when we 201 202 calculated octahedral tilt for various skutterudite phases using the equation given by Návratil et 203 al. (2010), it was seen that as the shortest X-X interatomic distance decreases, and therefore the 204 smaller the ionic radius, the greater the octahedral tilt. Table 4 and Fig. 4 show this relationship for various skutterudite type compounds. Phosphides, with the shortest X-X bond length, show 205 206 the greatest tilt, while antimonides, with the longest, show the least tilt, however there is some overlap between the phosphides and arsenides. This relationship begs the chicken-and-egg 207 question: why do the MeX_6 octahedra tilt and why do the X_4 rings form? 208

The general formula of nickelskutterudite, NiAs₃, is not charged balanced assuming Ni²⁺, Ni³⁺ or Ni⁴⁺. Nickel (1969) suggested that in the skutterudite structure, Ni displays a charge of +4 and As a charge of -3, which give an overall charge of -5. In order to compensate for this charge imbalance, the anions form As₄ rings (Návratil et al. 2010; Patrik and Lutz 1999; Takizawa et al. 1999). Tilting of NiAs₆ octahedra "stuffs" four As atoms into an icosahedral

- void, allowing them to form a four member, σ -bonded ring, with each As sharing one electron
- with two other As atoms for an overall charge of -4 (Patrik and Lutz 1999, Nickel 1969).
- 216 The chemistry of two different nickelskutterudite samples were examined in this study:
- 217 R100194 (Schneeberg, Saxony, Germany), and R100196 (New Mexico, USA). Each contains
- significant amounts of Co and Fe: R100194 empirical formula
- 219 $(Ni_{0.86}Co_{0.14}Fe_{0.01})_{\Sigma=1.01}(As_{2.99}S_{0.01})_{\Sigma=3.00}, R100196 \text{ empirical formula}$
- 220 $(Ni_{0.62}Co_{0.28}Fe_{0.12})_{\Sigma=1.02}(As_{2.95}S_{0.05})_{\Sigma=3.00}$. The presence of significant Co and Fe may be explained
- by the different electronic configurations of Ni^{4+} and Co^{3+} in the skutterudite structure. Nickel
- 222 (1969) notes that in the skutterudite structure, cations achieve complete spin-pairing of their non-
- bonded *d*-electrons. For example, when Co^{3+} donates sufficient electrons to form pair bonds with
- neighboring atoms, it has 6 non-bonded *d*-electrons which can be spin paired (Nickel 1969). In
- order for Ni to be left with 6 non-bonded electrons, it must be quadrivalent, and if Ni⁴⁺ donates
- sufficient electrons to form pair-bonds with all 6 neighboring atoms, it is left with 7 non-bonded
- electrons, which cannot be fully spin-paired (Nickel, 1969).
- 228

Implications

Important concentrations of Co and Fe in natural NiAs₃, and the apparent inability to 229 synthesize pure NiAs₃ indicate that Co^{3+} and/or Fe²⁺ are required to stabilize the 230 nickelskutterudite structure (Grystiv et al. 2002; Borshchevsky et al. 1996; Nickel 1969). For 231 comparison, pure CoAs₂ (clinosafflorite) crystallizes in the arsenopyrite-type structure ($P2_1/c$) 232 because of the unpaired, non-bonded electron of Co^{2+} occupying a π_b orbital (Yang et al. 2008). 233 Incorporation of Ni²⁺ and Fe²⁺ into CoAs₂ results in crystallization of (Co,Ni,Fe)As₂ (safflorite) 234 in the marcasite-type structure (*Pnnm*), explained by the ability of Fe^{2+} and Ni^{2+} to spin-pair non-235 bonded electrons and thus achieve a lower energy, higher symmetry structure (Yang et al. 2008). 236

237	Further synthesis experiments could be used to constrain the amounts of Co^{3+} and/or Fe^{2+}
238	necessary to stabilize the nickelskutterudite structure.
239	Additionally, no anion deficiencies were found in skutterudite phases by either X-ray or
240	electron microprobe, supporting Roseboom's (1962) interpretation that anion deficient
241	skutterudite samples likely do not consist of a single phase. For these reasons, we propose the
242	chemical formula of nickelskutterudite (currently given as NiAs3-x by the IMA) should be
243	(Ni,Co,Fe)As ₃ .
244	Acknowledgements
245	The authors gratefully acknowledge Ron Gibbs for kindly providing the
246	nickelskutterudite sample to the RRUFF Project. Funding support for this study was given by
247	Freeport McMoRan, the Mineralogical Society of America Krauss Crystallographic Research
248	Grant, and M.B.A. acknowledges support by the Brazilian government (FAPESP 2013/03487-8).
249	References
250	Aleksandrov, K.S., and Beznosikov, B.V. (2007) Crystal Chemistry and Prediction of
251	Compounds with a Structure of Skutterudite Type. Kristallografiya, 52:1, 32-40.
252	Bader, R.F.W. (1998) A Bond Path: A Universal Indicator of Bonded Interactions. Journal of
253	Physical Chemistry A, 102, 7314-7323
254	Borshchevsky, A., Caillat, T., and Fleurial, JP. (1996) Solid Solution Formation: Improving the
255	Thermoelectric Properties of Skutterudites. Proceedings of the 15 th International
256	Conference on Thermoelectrics 1996, 112-116.

- Braun, D.J., and Jetschko, W. (1980) Ternary Arsenides with LaFe₄P₁₂-Type Structure. Journal
 of Solid State Chemistry, 32, 357-363.
- Breithaupt, J.F.A. (1827) Ueber eine neue Kies-Spezies von Skutterud. Annaler der Physik und
 Chemie, 9, 115-116.
- 261 Bruker (2007) APEX2, SAINT, and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chakoumakos, B.C., and Sales, B.C. (2006) Skutterudites: Their structural response to filling.
 Journal of Alloys and Compounds, 407, 87-93.
- Downs, R.T., Andalman, A., and Hudacsko, M. (1996) The coordination numbers of Na and K
 atoms in low albite and microcline as determined from a procrystal electron density
 distribution. American Mineralogist, 81, 1344-1349.
- Evers, C.B.H., Jeitschko, W., Boonk, L., Braun, D.J., Ebel, T., Scholz, U.D. (1995) Rare earth
 and uranium transition metal pnictides with LaFe₄P₁₂ structure. Journal of Alloys and
 Compounds, 224, 184-189.
- 270 Fukuoka, H., and Yamana, S. (2009) High-Pressure Synthesis, Structure and Electrical
- 271 Properties of Iodine Filled Skutterudite I_{0.9}Rh₄Sb₁₂-First Anion-Filled Skutterudite.
- 272 Chemistry of Materials, 22, 47-51.
- 273 Gibbs, G.V., Downs, R.T., Cox, D.F., Ross, N.L., Prewitt, C.T., Rosso, K.M., Lippmann, T., and
- 274 Kirfel, A. (2008) Bonded interactions and the crystal chemistry of minerals: a review.
- 275 Zeitschrift für Kristallographie, 223, 1-40.
- 276 Glazer, A.M. (1972) The Classification of Tilted Octahedra in Perovskites. Acta
- 277 Crystallographica, B28, 3384-3392.

278	Grvtsiv, A.	. Rogl. P.	Berger.	St., Paul.	Ch., Michor	H. Bauer	E., Hilscher,	G.,	Godart.	C.
2,0	01 9 101 1, 1 1.	, 1 0 5 1 , 1 0	, Deiger,	St., 1 uui,	Chi., million	, 11., Duuor	,, 1111501101,	· • · · ,	Gouart,	\sim ,

- 279 Knoll, P., Musso, M., Lottermoser, W., Saccone A., Ferro, R., Roisnel, T., Noel, H.
- 280 (2002) A novel skutterudite phase in the Ni-Sb-Sn system: phase equilibria and physical
- properties. Journal of Physics: Condensed Matter, 14, 7071-7090.
- Haidinger, W. (1845) Zwei Klasse: Geogenide. XIII. Ordnung. Kiese III. Kobaltkies.
- 283 Skutterudit, in Handbuch der Bestimmenden Mineralogie, Bei Braumüller und Seidel,
 284 Wien, 559-562.
- Holmes R.J. (1947) Higher mineral arsenides of cobalt, nickel, and iron, Geological Society of
 America Bulletin, 58, 299-392.
- 287

Kjekshus, A., and Rakke, T. (1974) Compounds with the Skutterudite Type Crystal Structure.

- 289 III. Structural Data for Arsenides and Antimonides. Acta Chemica Scandanavica, A
 290 28:1, 99-103.
- Mandel, M., and Donahue, J. (1971) The refinement of the crystal structure of skutterudite,
 CoAs₃. Acta Crystallographica, B27, 2288-2289.

293 Mitchell, R.H. (2002) Perovskites Modern and Ancient, 316 pp. Thunder Bay: Almaz Press.

294 Navrátil, J., Laufek, F., Plecháček, T., Plášil, J. (2010) Synthesis, crystal structure and

thermoelectric properties of the ternary skutterudite Fe₂Pd₂Sb₁₂. Journal of Alloys and
Compounds, 493, 50-54.

Nickel, E.H. (1969) The application of ligand-field concepts to an understanding of the structural
 stabilities and solid solution limits of sulphides and related minerals. Chemical Geology,
 5, 233-241.

300	Oftedal, I. (1926) The crystal structure of skutterudite and related minerals. Norsk Geologisk
301	Tidsskrift, 8, 250-257.
302	Oftedal, I. (1928) Die Kristallstruktur von Skutterudite und Speiskobalt-Chloanthit. Zeitschrift
303	für Kristallographie, A66, 517-546.
304	Palache, C., Berman, H., Frondel, C. (1944) Dana's System of Mineralogy, Vol. I, 829 pp. New
305	York: John Wiley and Sons.
306	Patrick, M., and Lutz, H.D. (1999) Semiempirical band structure calculations on skutterudite-
307	type compounds. Physical Chemistry and Mineralogy, 27, 41-46.
308	Pauling, L. (1978) Covalent chemical bonding of transition metals in pyrite, cobaltite,
309	skutterudite, millerite and related minerals. Canadian Mineralogist, 16, 447-452.
310	Ramsdell, L.S. (1925) The Crystal Structure of Some Metallic Sulfides. American Mineralogist,
311	10:9, 281-304.
312	Roseboom E.H. (1962) Skutterudites (Co,Ni,Fe)As _{3-x} : Composition and cell dimensions,
313	American Mineralogist, 47, 310-327.
314	Schiferl, D., and Barrett, C.S. (1969). The crystal structure of arsenic at 4.2, 78 and 299 K.
315	Journal of Applied Crystallography 2, 30-36.
316	Schmidt, Th., Kliche, G., and Lutz, H.D. (1987) Structure Refinement of Skutterudite-Type
317	Cobalt Triantimonide, CoAs ₃ . Acta Crystallographica, C43, 1678-1679.
318	Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.

319	Shirotani, I., Hayashi, A., Takeda, K., Nakada, R., Ohishi, Y. (2006) X-ray study with
320	synchrotron radiation for filled skutterudite YbFe ₄ P ₁₂ at ambient and high pressures.
321	Physica B, 382, 8-13.
322	
323	Smith, P.M., Leadbetter, A.J., and Apling, A.J. (1974) The structures of orthorhombic and
324	vitreous arsenic. Philosophical Magazine, 31, 57-64.
325	Spiridonov, E.M., Gritsenko, Yu.D., and Kulikova, I.M. (2007). Ferrodkutterudite (Fe,Co)As ₃ : a
326	new mineral species from the dolomite-calcite veins of Noril'sk ore field. Doklady Earth
327	Sciences, 417:8, 1278-1280.
328	Takeda, K., Sato, S., Hayashi, J., Sekine, C., Shirotani, I. (2007) Crystal structure of a new
329	superconductor $La_xRh_4P_{12}$ prepared at high pressure. Journal of Magnetism and
330	MagneticMaterials, 310, e1-e3.
331	Takizawa, H., Miura, K., Ito, M., Suzuki, T., Endo, T. (1999) Atom insertion into the CoSb ₃
332	skutterudite host lattice under high pressure. Journal of Alloys and Compounds, 282, 79-
333	83.
334	Ventriglia, U. (1957) Studi strutturali sugli arseniuri di cobalto. Periodico di Mineralogia, 26,
335	345-383.
336	Vollhardt, G. (1888) Versuche über Speiskobalt, Zeitschrift für Krystallographie und
337	Mineralogie, 14, 407-408.
338	Waller, E., and Moses, A.J. (1893) A probably new nickel arsenide (preliminary notice). The
339	School of Mines Quarterly, 14, 49-51.

340	Yang, H., Downs, R.T., and Eichler, C. (2008) Safflorite, (Co,Ni,Fe)As ₂ , isomorpous with
341	marcasite. Acta Crystallographica, E64, i62.
242	Zameri C. Tromani Duce, Chaudauat D. Madar D. Comptour I.D. (1096) Somthagia and Cre

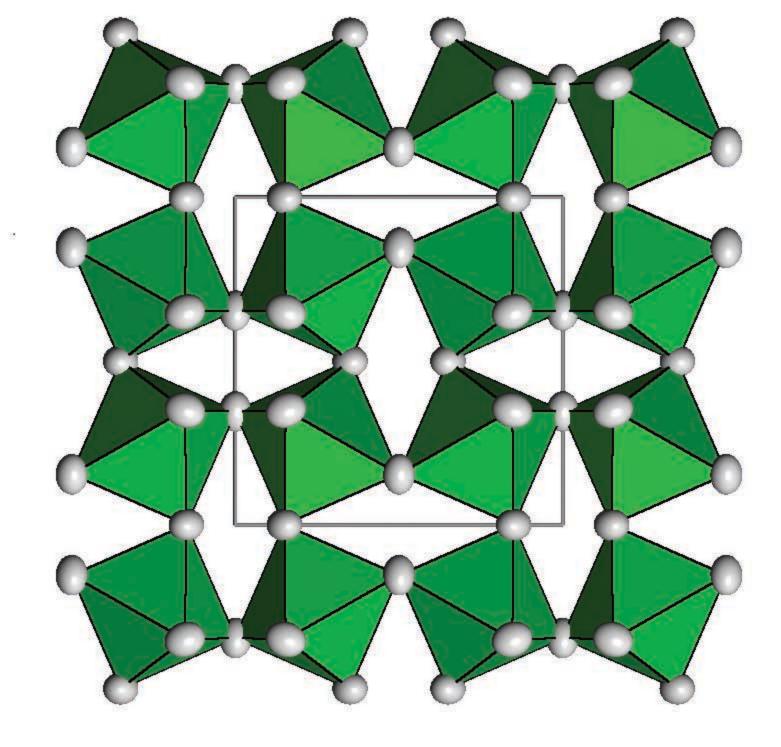
- Zemni, S., Tranqui, Duc., Chaudouet, P., Madar, R., Senateur, J.P. (1986) Synthesis and Crystal
 Structure of a New Series of Ternary Phosphides in the system Tr-Co-P (Tr: Rare Earth).
- Journal of Solid State Chemistry, 65, 1-5.

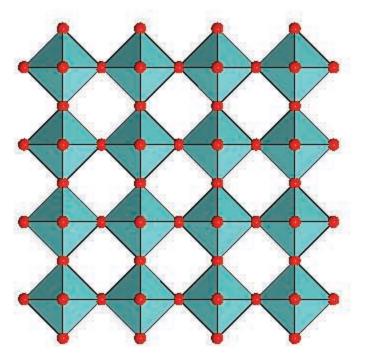
345

Figure 1. Representative image of the crystal structure of nickelskutterudite (left), viewed along [001]. Green octahedra represent NiAs₆ groups and As displacement parameters at 99% are represented by grey ellipsoids. Unit cell edges are indicated by the grey square. A representation of the crystal structure of α -ReO₃, viewed along [001] (right), is included for the purpose of comparison.

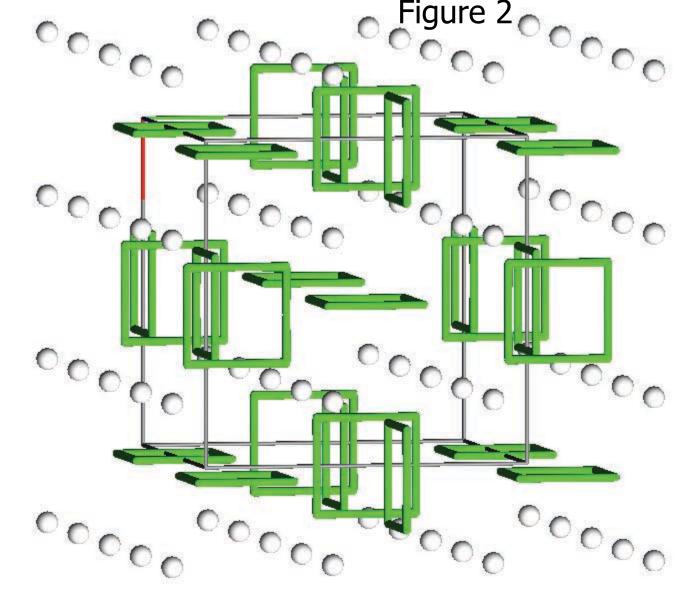
Figure 2. A depiction of the crystal structure of nickelskutterudite as a primitive cubic lattice
with white spheres representing metal atoms at lattice points. Three quarters of these cubes

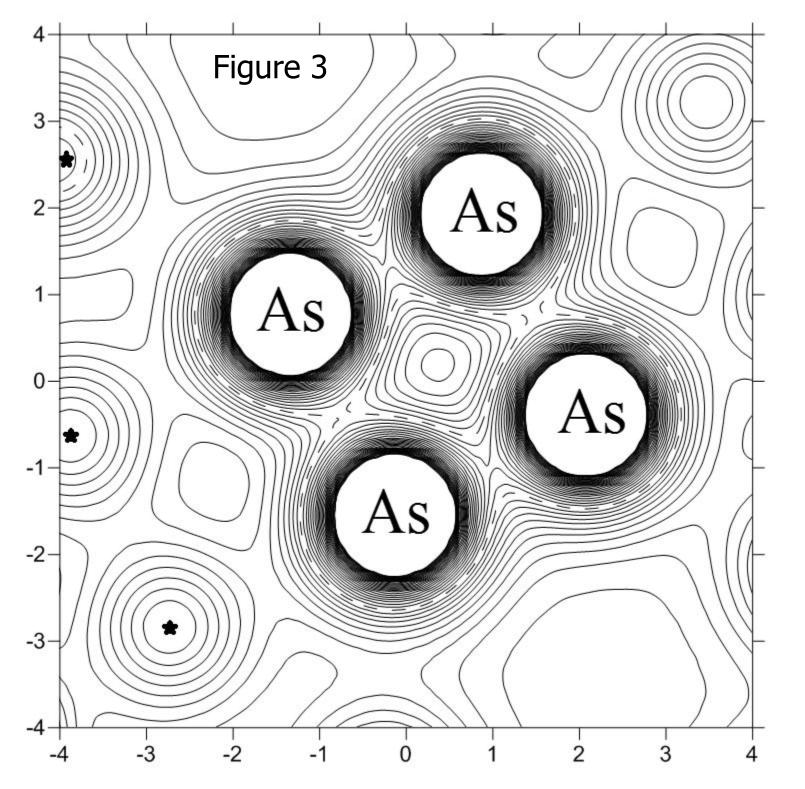
354 contain rectangular four membered rings of bonded As atoms indicated by green rods.


Figure 3. Procrystal electron density map of a rectangular four membered ring of bonded As atoms, from 0.005 to 0.200 e/Å³ in steps of 0.005 e/Å³. The 0.055 e/Å³ contour is dashed to emphasize the difference in electron density at the bond critical points associated with the different lengths of As-As bonds. The bond critical points are represented by saddles in the contours between bonded As atoms. Note three other As atoms at left (black stars), representing other four membered rings above and below the plane of the observed ring.


Figure 4. Graph showing the inverse relationship between octahedral tilt and shortest anionanion (*X-X*) distance in X_4 rings in the skutterudite structure. As the *X-X* distance, and therefore the size of the *X* atom, increases, octahedral tilt will decrease.

364


365


366

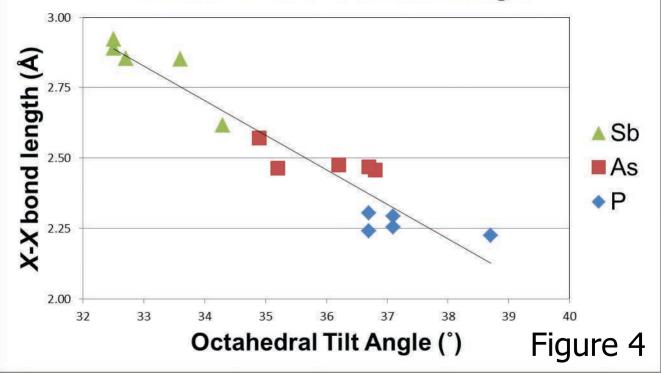


Figure 1

Octahedral Tilt vs X-X Bond Length

Sample	R050593	R100195	R100194	R100196
Locality	Bou Azzer	Skutterud	Schneeberg	Alhambra mine
a-cell, Å	8.2060(10)	8.2070(4)	8.2876(5)	8.2653(6)
Ni	1.42(18)	1.04(2)	17.82(48)	12.76(90)
Со	17.68(20)	18.54(7)	2.88(44)	5.8(48)
Fe	2.1(18)	1.52(1)	0.25(7)	2.41(51)
Bi	nd*	0.34(13)	0.27(19)	0.34(20)
As	76.32(74)	78.00(12)	78.64(22)	77.95(24)
S	0.82(9)	0.31(6)	0.06(4)	0.59(11)
Sum	98.34	99.75	99.92	99.85

Table 1. Electron microprobe data for skutterudite and nickelskutterudite samples in weight percent.

Formula

R050593 $(Co_{0.86}Fe_{0.11}Ni_{0.07})_{\Sigma=1.04}(As_{2.97}S_{0.03})_{\Sigma=3.00}$

 $R100195 \quad (Co_{0.90}Fe_{0.08}Ni_{0.05})_{\Sigma=1.03}(As_{2.97}S_{0.03})_{\Sigma=3.00}$

 $R100194 \quad (Ni_{0.85}Co_{0.14}Fe_{0.01})_{\Sigma=1.01}(As_{2.99}S_{0.01})_{\Sigma=3.00}$

R100196 $(Ni_{0.62}Co_{0.28}Fe_{0.12})_{\Sigma=1.02}(As_{2.95}S_{0.05})_{\Sigma=3.00}$ Note: *nd = not determined

Revision 2

 Table 2. Summary of crystal data and refinement results for skutterudite and nickelskutterudite.

	Skutterudite	Skutterudite	Nickelskutterudite	Nickelskutterudite
	(R050593, Morocco)	(R100195, Norway)	(R100194, Germany)	(R100196, New Mexico)
IMA-defined chemical formula	CoAs _{3-x}	CoAs _{3-x}	NiAs ₂₋₃	NiAs ₂₋₃
Effective structural formula	${}^{\rm M1}{\rm Co}_{1.00}{}^{\rm M2}{\rm Fe}_{0.01}{\rm As}_{2.90}{\rm S}_{0.10}$	^{M1} Co _{1.00} As _{3.00}	$^{M1}Ni_{1.00}{}^{M2}Fe_{0.01}As_{3.00}$	$^{M1}Ni_{0.59}$ $^{M2}Co_{0.2499}$ $^{M2}Fe_{0.14}As_{3.00}$
Space group	<i>Im</i> -3 (No. 204)	<i>lm</i> -3 (No. 204)	<i>Im</i> -3 (No. 204)	<i>lm</i> -3 (No. 204)
<i>a</i> (Å)	8.2060(10)	8.2070(4)	8.2876(5)	8.2653(6)
V (Å ³)	552.6(1)	552.78(5)	569.23(6)	564.65(7)
Ζ	8	8	8	8
ρ_{calc} (g/cm ³)	6.719	6.818	6.615	6.675
λ (Å)	0.71073	0.71073	0.71073	0.71073
μ (mm ⁻¹)	40.41	41.49	41.07	41.04
2θ range for data collection	≤68.75	≤68.28	≤68.44	≤68.65
No. of reflections collected	1279	1259	1205	1266
No. of independent reflections	232	224	231	234
No. of reflections with $l > 2\sigma(l)$	214	215	220	225
No. of parameters refined	17	12	14	13
R(int)	0.02	0.019	0.022	0.033
Final R_1 , wR_2 factors $[l > 2\sigma(l)]$	0.015, 0.036	0.011, 0.023	0.010, 0.023	0.014, 0.029
Final R_1 , wR_2 factors (all data)	0.018, 0.037	0.012, 0.023	0.012, 0.023	0.015, 0.029
Goodness-of-fit	1.106	1.209	1.12	1.001
Twin law				(0 1 0/1 0 0 /0 0 1)
Twin ratio				0.88/0.12

Element	x	У	Z	$U_{\rm eq}$ (Å ²)	Occ. (<1)	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
R050593											
M*	0.25	0.25	0.25	0.00310(18)	0.989(4)	0.00310(18)	0.00310(18)	0.00310(18)	0.00047(11)	0.00047(11)	0.00047 (11)
Fe	0	0	0	0.000(15)	0.0127(9)						
As	0.15012(4)	0.34300 5)	0	0.00452(14)	0.967(5)	0.00434(17)	0.0057(2)	0.00350(16)	0.00054(10)	0	0
S	0.121(3)	0.273(4)	0	0.009(6)*	0.033(5)						
R100195											
Co	0.25	0.25	0.25	0.00227(13)	1.00(3)	0.00227(13)	0.00227(13)	0.00227(13)	0.00013(8)	0.00013(8)	0.00013 (8)
As	0	0.15024(2)	0.34280 (2)	0.00316(8)	0.99(3)	0.00211(10)	0.00295(11)	0.00442(11)	0	0	0.00048 (6)
R100194											
Ni1	0.25	0.25	0.25	0.00529(12)		0.00529(12)	0.00529(12)	0.00529(12)	0.00026(8)	0.00026(8)	0.00026 (8)
Ni2	0	0	0	0.01(3)	0.008(6)						
As	0	0.34685(2)	0.14960 (2)	0.00613(8)		0.00503(10)	0.00752(11)	0.00584(11)	0	0	0.00073 (6)
R100196											
M**	0.25	0.25	0.25	0.00471(15)		0.00471(15)	0.00471(15)	0.00471(15)	0.00023(11)	0.00023(11)	0.00023(11)
As**	0.14972(3)	0.34594(3)	0	0.00585(9)		0.00562(15)	0.00734(14)	0.00459(15)	0.00074(8)	0	0

Table 3. Fractional atomic coordinates, equivalent isotropic displacement parameters, occupancies, and atomic displacement parameters ($Å^2$) for skutterudite and nickelskutterudite.

Notes: *M = Co + Fe. **M = $Ni_{0.59(5)}Co_{0.280(10)}Fe_{0.14(6)}$.

**As =As_{0.99}S_{0.01}.

	Distance, Å		Angle (°)
M—As	2.3634(2)	As ⁱ —M—As	84.008(9)
As—As ^{vii}	2.4749(5)	As ⁱ —M—As ⁱⁱ	95.992(9)
As—As ^{viii}	2.5467(6)	As—M—As ⁱⁱ	84.008(9)
		As ⁱ —M—As ⁱⁱⁱ	84.008(9)
		As—M—As ⁱⁱⁱ	95.992(9)
		As ⁱⁱ —M—As ⁱⁱⁱ	180.000(11)
		As ^{iv} —M—As ^v	84.007(9)
		M ^{vi} —As—M	121.928(11)
		M ^{vi} —As—As ^{vii}	110.531(6)
		M ^{vi} —As—As ^{viii}	109.604(6)
		As ^{vii} —As—As ^{viii}	90.0

Table 4. Selected interatomic distances and angles for nickelskutterudite R100196. The Ni, Co, and Fe site is identified as *M*. The theoretical icosahedral bond length, *A*-As, is included for purposes of discussion even though *A* is not occupied.

Formula	Anion(X)	Tilt Angle	Shortest X-X Distance	Reference
$YbFe_4P_{12}$	Р	37.1	2.293	Shirotani et al. (2006)
$La_{X}Rh_{4}P_{12}$	Р	38.7	2.224	Takeda et al. (2007)
CeFe ₄ P ₁₂	Р	36.7	2.304	Shirotani et al. (2006)
La _{0.2} Co ₄ P ₁₂	Р	37.1	2.254	Zemni et al. (1986)
CoP ₃	Р	36.7	2.240	Zemni et al. (1986)
(Ni,Co,Fe)As ₃	As	36.2	2.475	This Study
IrAs ₃	As	36.8	2.456	Kjekshus and Rakke (1974)
RhAs₃	As	36.7	2.468	Kjekshus and Rakke (1974)
LaFe ₄ As ₁₂	As	34.9	2.570	Braun and Jeitschko (1980)
CoAs ₃	As	35.2	2.464	Mandel and Donahue (1971)
CoSb ₃	Sb	32.7	2.854	Schmidt, Kliche, and Lutz (1987)
$Fe_2Ni_2Sb_{12}$	Sb	32.5	2.890	Návratil et al. (2010)
$Fe_2Pd_2Sb_{12}$	Sb	33.6	2.852	Návratil et al. (2010)
IrSb ₃	Sb	34.3	2.617	Kjekshus and Rakke (1974)
NdFe ₄ Sb ₁₂	Sb	32.5	2.921	Evers et al. (1995)

Table 5. MX_6 octahedral tilt compared by anion (*X*) and shortest *X*-*X* interatomic distance for both filled and unfilled skutterudite phases.