Revision 1 1 2 3 Crystal structure of a new compound, CuZnCl(OH)₃, isostructural with **botallackite** 4 5 Hexing Yang^{1,*}, Isabel F. Barton², Marcelo B. Andrade¹, and Robert T. Downs¹ 6 7 ¹ Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721, USA 8 ² Lowell Institute for Mineral Resources, University of Arizona, Tucson, AZ 85721, USA 9 10 * Corresponding author: hyang@u.arizona.edu 11 12 Abstract 13 14 A new compound, ideally CuZnCl(OH)₃, was found on a metallic mining artifact of copper composition at the Rowley mine, Maricopa County, Arizona, USA, and studied 15 16 with electron microprobe analysis, single-crystal X-ray diffraction, and Raman spectroscopy. It is isostructural with botallackite $[Cu_2Cl(OH)_3]$ with space group $P2_1/m$ 17 and unit-cell parameters a = 5.6883(5), b = 6.3908(6), c = 5.5248(5) Å, $\beta = 90.832(2)^{\circ}$, V 18 = 200.82(3) Å³. The crystal structure of CuZnCl(OH)₃, refined to $R_1 = 0.018$, is 19 characterized by brucite-type octahedral sheets made of two distinct and considerably 20 21 distorted octahedra, M1 and M2, which are coordinated by (5OH + 1CI) and (4OH +2Cl), respectively. The octahedral sheets are parallel to (100) and connected by O—H^{...}Cl 22 hydrogen bonding. The major structural difference between CuZnCl(OH)₃ and 23 botallackite is the complete replacement of Cu^{2+} in the highly angle-distorted M1 site by 24 non-Jahn-Teller distorting Zn²⁺. The CuZnCl(OH)₃ compound represents the highest Zn 25 26 content ever documented for the atacamite group of minerals, in conflict with all previous reports that botallackite (like atacamite) is the most resistant, of all copper 27 hydroxylchloride $Cu_2Cl(OH)_3$ polymorphs, to the substitution of Zn^{2+} for Cu^{2+} , even in 28 the presence of large excess of Zn^{2+} . Its discovery, along with the recently-described new 29 30 mineral iyoite, CuMnCl(OH)₃, implies that more botallackite-type compounds or minerals with the chemical formula $CuMCl(OH)_3$ ($M = Ni^{2+}$, Co^{2+} , Fe^{2+} , Mn^{2+} , Cd^{2+} , and 31 Mg^{2+}) may be synthesized or found in nature. 32 33

34 **Key words:** CuZnCl(OH)₃, Copper-zinc hydroxychloride, botallackite, atacamite group,

- 35 crystal structure, Raman spectroscopy
- 36 37

INTRODUCTION

38 Pure copper hydroxychloride, Cu₂Cl(OH)₃, has three reported natural polymorphs: 39 orthorhombic *Pnma* atacamite (Parise and Hyde 1986), monoclinic $P2_1/n$ clinoatacamite (Jambor et al. 1996), and monoclinic $P2_1/m$ botallackite (Hawthorne 1985). In addition, 40 rhombohedral R-3 paratacamite, Cu₃(Cu,Zn)Cl₂(OH)₆ (Fleet 1975), is known to be 41 stabilized by the partial substitution of Zn^{2+} or Ni^{2+} for Cu^{2+} in one of the four distorted 42 octahedral sites in the structure (Jambor et al. 1996; Grice et al. 1996). The Zn 43 endmember of such a solid solution, Cu₃ZnCl₂(OH)₆, crystallizes in either the 44 rhombohedral R-3m herbertsmithite structure (Braithwaite et al. 2004) or the trigonal 45 46 *P*-3*m*1 kapellasite structure (Krause et al. 2006).

47 The Cu₂Cl(OH)₃ polymorphs occur commonly as corrosion products of copper and copper-bearing alloys, as well as pigments in wall paintings, manuscript illumination, 48 49 and other paintings (Scott 2000; Alejandre and Marquez 2006 and references therein). In 50 particular, their formation from the corrosion of bronze and other copper-bearing alloys 51 are the primary cause for the so-called "bronze disease" (see Scott 2000 for a thorough 52 review). Recently, the first copper-containing mineral atacamite was reported in the jaws 53 of the carnivorous marine worm Glycera (Lichtenegger et al. 2002), suggesting a 54 possible involvement of biological activities in the formation of Cu₂Cl(OH)₃ minerals. 55 Furthermore, the discoveries of various magnetic properties in $Cu_2Cl(OH)_3$ polymorphs have renewed great interest in understanding the correlations between their crystal 56 structures and physical properties (e.g., Takeda et al. 1999; Zheng et al. 2004, 2005, 57 58 2009). Specifically, botallackite, clinoatacamite, and herbertsmithite exhibit triangular, 59 tetrahedral, and kagome Heisenberg (antiferro)magnetic lattices, respectively, for the S = $\frac{1}{2}(Cu^{2+})$ quantum spin that leads to interesting frustrated magnetism or spin liquid 60 behavior. 61

 $Of all the Cu_2Cl(OH)_3$ polymorphs, atacamite is the most common in nature and

63	botallackite the rarest. From synthesis experiments, Pollard et al. (1989) concluded that
64	clinoatacamite is the most stable phase at room temperature and botallackite the least.
65	Moreover, a number of investigations (e.g., Jambor et al. 1996; Braithwaite et al. 2004;
66	Yoder et al. 2011) have demonstrated that, while atacamite and botallackite are very
67	resistant to Zn substitution, clinoatacamite can incorporate up to 6% Zn apfu into its
68	structure if large Zn concentrations are available during formation. The Zn-stabilized
69	paratacamite and herbertsmithite can accommodate up to $Zn/Cu = 14\%$ and 33%,
70	respectively. This paper presents a single-crystal X-ray diffraction and Raman
71	spectroscopic study on a botallackite-type compound with $Zn/Cu = 100\%$,
72	CuZnCl(OH) ₃ , the highest Zn content ever reported for the atacamite group of minerals.
73	
74	EXPERIMENTAL METHODS
75	The CuZnCl(OH) ₃ sample used in this study was found on a coiled copper wire of
76	unknown age from the Rowley mine, Maricopa County, Arizona, USA and has been
77	deposited in the RRUFF Project with the deposition number R140401
78	(<u>http://rruff.info/R140401</u>). The CuZnCl(OH) ₃ crystals are blue and platy, up to $0.12 \times$
79	0.10×0.03 mm (Fig. 1). Associated minerals include simonkolleite Zn ₅ (OH) ₈ Cl ₂ ·H ₂ O,
80	wulfenite PbMoO ₄ , hemimorphite Zn ₄ Si ₂ O ₇ (OH) ₂ ·H ₂ O, barite BaSO ₄ , quartz, fluorite,
81	and fibrous crystals tentatively identified by SEM-EDS as $Zn_9(SO_4)_2(OH)_{12}Cl_2 \cdot 6H_2O$.
82	Barite, quartz, and fluorite occur as single crystals typically > 0.1 mm in size, unevenly
83	distributed over the wire. They, along with copper from the wire, are overgrown by fine
84	iron oxides with substantial Zn concentrations and by crystals of the Cu-Zn salts. Since
85	barite, quartz, and fluorite are all reported from the gangue mineral assemblage in the
86	Rowley mine (Wilson and Miller 1974), the mineralogical and textural evidence suggests
87	that they were dropped onto the wire and cemented in place by authigenic iron oxides and
88	Cu-Zn salts, rather than having precipitated from solution.
89	The chemical composition of the CuZnCl(OH) ₃ sample was determined with a
90	Cameca SX-100 electron microprobe operated at 20 keV and 18 nA with a beam size of 1
91	μ m. The standards include cuprite for Cu, ZnO for Zn, and scapolite for Cl. The average

92 of 6 analysis points gives (wt.%) CuO = 34.43(29), ZnO = 39.75(19), Cl = 16.09(16), 93 with the total = 90.27(33). The chemical formula was calculated on the basis of 4 (O + 94 Cl) atoms per formula unit, as determined from the structure refinement (Table 2), by 95 adding 12.51 wt.% H₂O to bring the total close to the ideal value, yielding $Cu_{0.94}Zn_{1.06}$ 96 $Cl_{0.99}(OH)_{3.01}$, which can be simplified as CuZnCl(OH)₃. 97 Single-crystal X-ray diffraction data of the CuZnCl(OH)₃ sample were 98 collected from a crystal with size $0.05 \times 0.04 \times 0.03$ mm on a Bruker X8 APEX2 99 CCD X-ray diffractometer equipped with graphite-monochromatized MoK α radiation. 100 Reflections with $I > 2\sigma(I)$ were indexed based on a monoclinic unit cell (Table 1). No 101 satellite or super-lattice reflections were observed. The intensity data were corrected 102 for X-ray absorption using the Bruker program SADABS. The systematic absences of 103 reflections suggest possible space group $P2_1$ or $P2_1/m$. The crystal structure was 104 solved and refined using SHELX97 (Sheldrick 2008) based on the space group $P2_1/m$, 105 because it yielded better refinement statistics in terms of bond lengths and angles, atomic displacement parameters, and R factors. The positions of all atoms were 106 107 refined with anisotropic displacement parameters, except for H atoms, which were refined with the isotropic displacement parameter only. During the structure 108 refinements, ideal chemistry was assumed. Because of similar X-ray scattering 109 powers between Cu and Zn, a direct refinement of their ratios at each individual site 110 111 was unsuccessful. Therefore, we tested three different models with fixed site 112 occupancies for Cu and Zn at the two distinct octahedral sites, M1 and M2. Model 1 assumed Zn to occupy the M1 site only and Cu M2, which resulted in $R_1 = 0.0183$, 113 and bond-valence sums of 1.95 and 2.05 v.u. for Zn and Cu, respectively. In model 2, 114 Zn was assigned to M2 and Cu to M1, yielding $R_1 = 0.0191$, and bond-valence sums 115 of 2.18 and 1.83 v.u. for Zn and Cu, respectively. Model 3 assumed a random 116 117 occupation of Zn and Cu [i.e., (0.5Zn + 0.5Cu)] at each site, which produced results between those from models 1 and 2. Consequently, model 1 was adopted in this study. 118 119 Final refined atomic coordinates and displacement parameters are listed in Table 2 and 120 selected bond lengths and angles in Table 3.

125	The Raman spectrum of the CuZnCl(OH) ₃ crystal was collected from a
126	randomly oriented crystal on a Thermo Almega microRaman system, using a 532-nm
127	solid-state laser with a thermoelectric cooled CCD detector. The laser is partially
128	polarized with 4 cm ⁻¹ resolution and a spot size of 1 μ m.
126	
127	RESULTS AND DISCUSSION
128	Crystal Structure
137	The CuZnCl(OH) ₃ compound is isostructural with botallackite (Hawthorne 1985). Its
138	structure is characterized by brucite-type octahedral sheets made of two distinct
139	octahedra, M1 and M2 (Fig. 2). The M1 octahedron is occupied by Zn^{2+} and coordinated
140	by $(5OH + 1Cl)$, whereas M2 is filled with Cu and coordinated by $(4OH + 2Cl)$. Both
141	octahedra are considerably distorted, with four short equatorial bonds in a square-planar
142	arrangement and elongated axial bonds involving Cl and one OH. The octahedral sheets
143	are parallel to (100) and connected by hydrogen bonding between O atoms of one sheet
144	and the Cl atoms of the adjacent sheet (O-H Cl) (Fig. 3). Each Cl atom is involved in
145	three hydrogen bonds (or so-called trimeric H-bonds).
150	The principal structural difference between $CuZnCl(OH)_3$ and botallackite consists in
151	the complete substitution of non-Jahn-Teller distorting Zn^{2+} for Cu^{2+} in the M1 site. As a
152	consequence, the M1 octahedron in CuZnCl(OH) ₃ is noticeably less distorted than that in
153	botallackite, as measured by the octahedral angle variance (OAV) and quadratic
154	elongation (OQE) (Robinson et al. 1971) (Table 3). The OAV and OQE indices for M1 in
155	CuZnCl(OH) ₃ are 121.8 and 1.048, respectively, but 135.5 and 1.076 in botallackite.
156	Despite this difference, the M1 octahedron in CuZnCl(OH) ₃ is still markedly distorted in
157	terms of OAV, indicating that this site is actually angle-distorted, rather than
158	Jahn-Teller-distorted, in contrast to the suggestion by Braithwaite et al. (2004). Similar
159	angle-distorted sites also exist in atacamite, clinoatacamite, paratacamite, and
160	herbertsmithite. According to Braithwaite et al. (2004), Cu ²⁺ in such angle-distorted sites
161	is rather susceptible to substitution by non-Jahn-Teller distorting divalent cations of
162	similar radii, such as Zn ²⁺ , Ni ²⁺ , Co ²⁺ , Fe ²⁺ , Cd ²⁺ , and Mg ²⁺ , which is evidently
	5

150 substantiated by our results.

151	It is interesting to note the significant discrepancies in all unit-cell parameters
152	between CuZnCl(OH) ₃ and botallackite (Table 1). Specifically, the unit-cell parameters
153	<i>a</i> , <i>c</i> , and β for CuZnCl(OH) ₃ are smaller, whereas the <i>b</i> dimension is greater than the
154	corresponding ones for botallackite. These results differ from those for the synthetic
155	Br-analogue of Zn-bearing botallackite, (Cu,Zn) ₂ Br(OH) ₃ , which allows the Zn
156	substitution for Cu up to the Zn/Cu ratio = 33% (Yoder et al. 2011). With increasing Zn
157	content in the $(Cu,Zn)_2Br(OH)_3$ solid solution, the unit-cell parameters <i>a</i> and <i>b</i> decrease
158	linearly, but <i>c</i> increases linearly and the β angle is essentially unchanged.
159	

160 Raman spectroscopy

161 There have been several Raman spectroscopic studies on botallackite, as well as 162 other Cu₂Cl(OH)₃ polymorphs, and detailed assignments of major Raman bands have 163 been proposed (e.g., Frost et al. 2002; Martens et al 2003; Liu et al. 2011a, 2011b, 2012). 164 Figure 4 shows the Raman spectrum of CuZnCl(OH)₃, along with that of botallackite from the RRUFF Project (R070066) for comparison. The strong bands between 3450 and 165 3600 cm⁻¹ are due to the O-H stretching vibrations and those between 650-1000 cm⁻¹ to 166 the Cu-O-H bending vibrations (Liu et al. 2011a, 2011b). The bands ranging from 400 to 167 520 cm^{-1} can be ascribed to the Cu-O stretching modes and those from 300 to 400 cm⁻¹ to 168 the O-Cu-O bending modes. The bands below 250 cm⁻¹ are associated with the Cu-Cl 169 interactions and the lattice vibrational modes. 170

Compared to botallackite, the two strong peaks related to the O-H stretching vibrations for CuZnCl(OH)₃ are shifted to higher wavenumbers with a much smaller separation between their peak positions. This observation indicates that the hydrogen bonds in CuZnCl(OH)₃ are longer (and thus weaker) and more similar to each other than the corresponding ones in botallackite, in accordance with the structural data from the X-ray diffraction analyses (Table 3).

177

178 Geochemical factors in Cu-Zn-Cl salt formation

179 The overgrowth of the corroded wire and the "detrital" quartz, fluorite, and barite 180 by Cu-Zn-Cl(-S) salts and iron oxides suggests that the wire lay submerged in saline 181 water with locally high concentrations of Cu, Fe, Zn, and S. There are abundant pyrite, 182 chalcopyrite, and accessory sphalerite in the Rowley mine, all of which can readily 183 dissolve in oxidizing water (Welty et al., 1985), thus becoming the supply of Cu, Fe, Zn, 184 and S for the mineral assemblage observed on the wire. It is also possible that some of Fe 185 and Zn came from corroded galvanized steel tools or machine parts left by miners. The 186 sulfides and/or the galvanized steel dissolved or corroded in salty water in the mine and 187 re-precipitated onto the wire as CuZnCl(OH)₃ and simonkolleite. This mineralogy 188 suggests that the water was too chloride-rich to stabilize malachite $Cu_2CO_3(OH)_2$, 189 smithsonite ZnCO₃, and other Cu- or Zn-bearing minerals that are nominally stable under 190 near-surface, oxidized conditions (Garrels, 1954; Mann and Deutscher, 1980), causing 191 the metals to precipitate as atacamite-group minerals. However, this does not explain the 192 extreme Zn enrichment in CuZnCl(OH)₃. 193 Experiments by Jambor et al. (1996) determined that Zn enrichment in 194 botallackite-structured minerals is favored when the Zn is present as aqueous Zn nitrate 195 rather than a Zn chloride. But when the concentration of Zn nitrate was increased to the 196 maximum possible without precipitating Zn-rich gerhardtite $[(Cu,Zn)NO_3OH]$, the botallackite produced had only 9% Zn, which is far short of the Zn content in 197 CuZnCl(OH)₃ found at the Rowley mine. However, their results suggest that the nature of 198 Zn²⁺ complexation in solution may be a significant factor in stabilizing different 199 200 compositions with the botallackite structure. Further experimental work on the aqueous 201 geochemistry of Zn with various anion complexes may be necessary to determine and 202 quantify this effect. 203 It is likely that a natural occurrence of CuZnCl(OH)₃ will eventually be discovered. 204 Atacamite-group minerals have been found lining the cell walls of algal spores around

hydrothermal vents on the ocean floor, with the implication that algal sorption of Cu^{2+} ,

- 206 combined with a low sulfide activity and high chloride activity, had induced primary
- 207 precipitation of atacamite (Mossman and Heffernan, 1978). Divalent Zn also sorbs onto

7

208 algal matter, so it is possible that Cu- and Zn-rich waters around algae could produce 209 primary CuZnCl(OH)₃. However, it may be difficult to detect, since atacamite-group 210 minerals are highly soluble in fresh water and tend to dissolve after formation except in 211 very arid environments (Cameron et al., 2007). 212 One of the likeliest places to find CuZnCl(OH)₃ may be the Antarctic, where Cu, Fe, 213 and Pb salts are known to form at the surface when marine aerosols corrode exposed 214 sulfides and the absence of liquid water preserves the salts from later dissolution. 215 Atacamite, paratacamite, malachite, antlerite, and other highly soluble Cu salts have all 216 been reported from the Ellsworth Mountains (Vennum and Nishi, 1992). The discovery of 217 botallackite-structured CuZnCl(OH)₃ in the Rowley mine clearly shows that 218 botallackite-structured minerals can be stable at near-surface conditions, suggesting that 219 CuZnCl(OH)₃ could be present at or near the land surface in an environment where there 220 is no rainfall to dissolve it.

- 221
- 222

IMPLICATIONS

223 All previous studies have shown that botallackite is the least stable of all basic 224 copper hydroxylchloride polymorphs and, like atacamite, it is the least prone to the substitution of Zn^{2+} for Cu^{2+} , even under forcing conditions — the presence of large to 225 swamping excesses of Zn^{2+} during its formation (e.g., Jambor et al. 1996; Scott 2000: 226 Braithwaite et al. 2004; Yoder et al. 2011). Therefore, the discovery of the new 227 228 CuZnCl(OH)₃ compound, on the one hand, calls for further research on the formation mechanisms of botallackite-type materials. Such investigations will undoubtedly shed 229 230 light on the nature of corrosion of Cu-bearing materials, bronze, and other copper-bearing 231 alloys. For example, if further research can identify the factors that lead to Zn-enrichment in botallackite-type minerals, it may be possible to constrain the composition and the 232 233 source of the fluids that caused the corrosion. On the other hand, it suggests that more botallackite-type compounds or minerals with the chemical formula $CuMCl(OH)_3$ (M = 234 Ni^{2+} , Co^{2+} , Fe^{2+} , Mn^{2+} , Cd^{2+} , and Mg^{2+}) may be synthesized or found in nature, as those 235 236 for the herbertsmithite-type compounds with the chemical formula Cu₃MCl₂(OH)₆

237 [herbertsmithite (M = Zn), gillardite (M = Ni), leverettite (M = Co), and tondiite (M =238 Mg)]. In fact, the new botallackite-type mineral, ivoite $CuMnCl(OH)_3$, has been recently 239 reported (Nishio-Hamane et al. 2014). The discovery of the new CuZnCl(OH)₃ 240 compound also begs the question whether materials with the chemistry $CuMCl(OH)_3$ and 241 the more stable atacamite-type structure could exist naturally or be synthesized, as 242 atacamite also possesses a highly angle-distorted octahedral site that is coordinated by 243 (5OH + 1Cl) with the OAV and OQE values of 136.2 and 1.067, respectively (Parise and 244 Hyde 1986), just as the one in botallackite. 245 The discovery of the new CuZnCl(OH)₃ compound also has implications for the 246 composition of supergene waters in hyper-arid environments, particularly the Atacama 247 Desert. The occurrence of atacamite- and paratacamite-group minerals in the supergene 248 zones of Andean porphyries has been used as evidence for the involvement of saline 249 formation waters in supergene alteration, in contrast to the normal meteoric-dominated 250 supergene waters (Arcuri and Brimhall, 2003; Cameron et al., 2007). If the CuZnCl(OH)₃ 251 compound or other Zn-enriched minerals are discovered around ore deposits' supergene 252 zones, they may suggest nitrate- and Zn-rich solutions were also involved. Because 253 nitrate-rich and Zn-rich solutions are not very common in groundwater, this will 254 considerably restrict the possible range of compositions, and therefore the possible 255 origins, of the fluids involved in supergene alteration in hyper-arid climates. Similar considerations apply to botallackite-structured compounds of Cu with Ni^{2+} , Mg^{2+} , Co^{2+} , 256 257 and other divalent cations capable of substituting for divalent Zn in botallackite. 258 259 ACKNOWLEDGEMENTS 260 We thank Robert Jenkins, Keith Wentz, and Joe Ruiz for providing the CuZnCl(OH)₃ 261 specimens. The funding supports from the Science Foundation Arizona and Sao Paulo 262 Research Foundation (Grant: 2013/03487-8) are gratefully acknowledged. 263 264 **REFERENCES CITED** 265 Alejandre, F.J. and Márquez, G. (2006) Copper-zinc hydroxychlorides: origin and occurrence as 266 paint pigments in Arcos de la Frontera's Chapel of Mercy (Spain). European Journal of 267 Mineralogy, 18, 403-409.

9

268	Arcuri, T., and Brimhall, G. (2003) The chloride source for atacamite mineralization at the
269	Radomiro Tomic porphyry copper deposit, northern Chile. Economic Geology, 98, 1667-1681.
270	Braithwaite, R.S.W., Mereiter, K., Paar, W.H. and Clark, A.M. (2004) Herbertsmithite,
271	Cu ₃ Zn(OH) ₆ Cl ₂ , a new species, and the definition of paratacamite. Mineralogical Magazine,
272	68, 527-539.
273	Cameron, E.M., Leybourne, M.I., and Palacios, C. (2007) Atacamite in the oxide zone of copper
274	deposits in northern Chile: involvement of deep formation waters? Mineralium Deposita, 42,
275	205-218.
276	Fleet, M.E. (1975) The crystal structure of paratacamite, Cu ₂ (OH) ₃ Cl. Acta Crystallographica,
277	B31, 183-187.
278	Frost, R.L., Martens, W., Kloprogge, J.T., and Williams, P.A. (2002) Raman spectroscopy of the
279	basic copper chloride minerals atacamite and paratacamite: implications for the study of
280	copper, brass and bronze objects of archeological significance, Journal of Raman Spectroscopy,
281	33, 801-806.
282	Garrels, R.M. (1954) Mineral species as functions of pH and oxidation-reduction potentials, with
283	special reference to the zone of oxidation and secondary enrichment of sulphide ore deposits.
284	Geochimica et Cosmochimica Acta 4, 153-168.
285	Grice, J.D., Szymanski, J.T. and Jambor, J.L. (1996) The crystal structure of clinoatacamite, a
286	new polymorph of Cu ₂ (OH) ₃ Cl. The Canadian Mineralogist, 34, 73-78.
287	Hawthorne, F.C. (1985) Refinement of the crystal structure of botallackite. Mineralogical
288	Magazine, 49, 87-89.
289	Jambor, J.L., Dutrizac, J.E., Roberts, A.C., Grice, J.D. and Szymanski, J.T. (1996)
290	Clinoatacamite, a new polymorph of Cu ₂ (OH) ₃ Cl, and its relationship to paratacamite and
291	"anarakite". Canadian Mineralogist, 34, 61-72.
292	Krause, W., Bernhardt, H.J., Braithwaite, R.S.W., Kolitsch, U., Pritchard, R. (2006) Kapellasite,
293	Cu ₃ Zn(OH) ₆ Cl ₂ , a new mineral from Lavrion, Greece, and its crystal structure. Mineralogical
294	Magazine, 70, 329-340.
295	Lichtenegger, H.C., Schöberl, T., Bartl, M.H., Waite, H., and Stucky, G.D. (2002) High abrasion
296	resistance with sparse mineralization: Copper biomineral in worm jaws. Science, 298, 389-392.
297	Liu, X., Hagihala, M., Zheng, X., Guo, Q. (2011a) Vibrational spectroscopic properties of
298	botallackite-structure basic copper halides. Vibrational Spectroscopy, 56, 177-183.
299	Liu, X., Meng, D., Hagihala, M., and Zheng, X. (2011b) Microstructural hydroxyl environments
300	and Raman spectroscopy in selected basic transition-metal halides. Chinese Physics, B20,
301	087801 (1-8).
302	Mann, A.W. and Deutscher, R.L. (1980) Solution geochemistry of lead and zinc in water
303	containing carbonate, sulphate and chloride ions. Chemical Geology, 29, 293-311.
304	Martens, W., Frost, R.L., and Williams, P.A. (2003) Raman and infrared spectroscopic study of
305	the basic copper chloride minerals - implications for the study of the copper and brass
306	corrosion and "bronze disease", Neues Jahrbuch für Mineralogie, Abhandlungen, 178, 197-215.
307	Mossman, D.J., and Heffernan, K.J. (1978) On the possible primary precipitation of atacamite
308	and other metal chlorides in certain stratabound deposits. Chemical Geology, 21, 151-159.
309	Nishio-Hamane, D., Momma, K., Ohnishi, M., Shimobayashi, N., Miyawaki, R., Tomita, N., and
310	Minakawa, T. (2014) Iyoite, IMA 2013-130. CNMNC Newsletter No. 20, June 2014, page 552;
311	Mineralogical Magazine, 78, 549-558

312 313	Parise, J.B. and Hyde, B.G. (1986) The structure of atacamite and its relationship to spinel. Acta Crystallographica, C42, 1277-1280.
314	Pollard, A.M., Thomas, R.G., and Williams, P.A. (1989) Synthesis and stabilities of the basic
315	copper (II) chlorides atacamite, paratacamite, and botallackite. Mineralogical Magazine, 53,
316	557-563.
317	Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971): Quadratic elongation, a quantitative measure
318	of distortion in coordination polyhedra. Science, 172, 567–570.
319	Scott, D.A. (2000) A review of copper chlorides and related salts in bronze corrosion and as
320	painting pigments. Studies in Conservation, 45, 39-53.
321	Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica, A64, 112-122.
322	Takeda, S., Maruta, G., Terasawa, K., Fukuda, N., and Yamaguchi, K. (1999) Local magnetic
323	Structure of layered compounds Cu2(OD)3X with exchangeable acid anion X studied by solid
324	state high resolution deuterium NMR. Molecular Crystals and Liquid Crystals Science and
325	Technology, 335, 11-21.
326	Vennum, W.R., and Nishi, J.M. (1992) Chemical weathering of Cu, Fe, and Pb sulfides, southern
327	Ellsworth Mountains, West Antarctica. In Webers, G.F., Craddock, C., and Splettstoesser, J.F.,
328	Geology and Paleontology of the Ellsworth Mountains, West Antarctica: Boulder, CO,
329	Geological Society of America Memoir, 170, 433-442.
330	Welty, J.W., Spencer, J.E., Allen, G.B., Reynbolds, S.J., and Trapp, R.A. (1985) Geology and
331	production of Middle Tertiary mineral districts in Arizona. Arizona Bureau of Geology and
332	Mineral Technology Open-File Report 85-1.
333	Wilson, W. E., and Miller, D. K. (1974) Minerals of the Rowley mine. Mineralogical Record, 5,
334	10-30.
335	Yoder, C.H., Schaeffer, R.W., McCaffrey, P.F., Rowand, A., Liu, X., and Schaeffer, J. (2011)
336	The synthesis of copper/zinc solid solutions of hydroxyl carbonates, sulphates, nitrates,
337	chlorides and bromides. Mineralogical Magazine, 75, 2573-2582.
338	Zheng, X.G. and Xu, C.N. (2004) Antiferromagnetic transition in botallackite $Cu_2Cl(OH)_3$. Solid
339	State Communications, 131, 509-511.
340	Zheng, X.G., Mori, T., Nishiyama, K., Higemoto, W., Yamada, H., Nishikubo, K., and Xu, C.N.
341	(2005) Antiferromagnetic transitions in polymorphous minerals of the natural cuprates
342	atacamite and botallackite $Cu_2Cl(OH)_3$, Physical Review B, /1, 1/4404-8.
343	zneng, X.G., Yamashita, I., Haginala, M., Fujinala, M., and Kawae, I. (2009) Magnetic
344	transmons in botanackite-structure $Cu_2(OII)_3DI$ and $Cu_2(OII)_3I$. Filysica D, 404, 080-082.
345	
540	
347	
348	
349	
350	
351	

11

352	
353	List of Tables
354	
355	Table 1. Comparison of crystallographic data for botallackite and the CuZnCl(OH) ₃
356	Compound.
357	
358	Table 2. Coordinates and displacement parameters of atoms in the CuZnCl(OH) ₃
359	Compound.
360	
361	Table 3. Comparison of selected interatomic distances and angles in the CuZnCl(OH) ₃
362	Compound and botallackite.
363	
364	
365	List of Figure Captions
366	
367	Figure 1. Back-scattered electron image of the CuZnCl(OH) ₃ crystals.
368	
369	Figure 2. A brucite-type sheet made of two distinct and highly distorted octahedra in the
370	$CuZnCl(OH)_3$ compound.
371	
372	Figure 3. Crystal structure of the CuZnCl(OH) ₃ compound, showing the brucite-type
373	octahedral sheets stacked along [100] and linked together by O—HCl
374	hydrogen bonds.
375	
376	Figure 4. Raman spectrum of the CuZnCl(OH) ₃ compound, along with that of
377	botallackite for comparison.
378	
379	
• • •	
380	
381	
382	

Figure 1

Figure 3

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

	CuZnCl(OH) ₃	Botallackite
Ideal chemical formula	CuZnCl(OH) ₃	$Cu_2Cl(OH)_3$
Space group	$P2_1/m$	$P2_1/m$
a (Å)	5.6883(5)	5.717(1)
$b(\mathbf{A})$	6.3908(6)	6.126(1)
c(Å)	5.5248(5)	5.636(1)
β (°)	90.832(2)	93.07(1)
$V(Å^3)$	200.82(3)	197.06(5)
Z	2	2
$\rho_{cal}(g/cm^3)$	3.56	3.60
λ (Å)	0.71073	0.71073
μ (mm ⁻¹)	11.769	
2θ range for data collection	≤66.36	≤60
No. of reflections collected	3073	762
No. of independent reflections	813	379
No. of reflections with $I > 2\sigma(I)$	685	358
No. of parameters refined	45	
R(int)	0.021	
Final R_1 , wR_2 factors $[I > 2\sigma(I)]$	0.018, 0.033	0.038, 0.042
Final R_1 , wR_2 factors (all data)	0.026, 0.035	
Goodness-of-fit	1.042	
Reference	This work	Hawthorne (1985)

Table 1. Comparison of crystallographic data for the new compound CuZnCl(OH)₃ and botallackite

Table 2. Coordinates and displacement parameters of atoms in the new compound $\mbox{CuZnCl}(\mbox{OH})_3$

Atom	x	у	Ζ	U_{eq}	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Zn Cu	0.48330(4)	0.25	0.01469(4)	0.0144(1)	0.0245(2)	0.0085(1) 0.0093(1)	0.0102(1)	0	0.0010(1)	0
Cl	0.1521(1)	0.25	-0.3050(1)	0.0129(1)	0.0213(2)	0.0093(1)	0.0237(3)	0.0014(1)	-0.0014(1) -0.0020(2)	0
01 02	0.6546(3) 0.6545(2)	0.25 0.0157(2)	0.3634(3) 0.8210(2)	0.0148(4) 0.0146(3)	0.0179(9) 0.0159(6)	0.0121(7) 0.0147(6)	0.0143(7) 0.0133(5)	0 0.0009(4)	0.0004(6) 0.0003(4)	0 -0.0004(4)
H1 H2	0.801(6) 0.802(4)	0.25 0.031(3)	0.381(6) 0.812(4)	0.05(1) 0.021(6)						

CuZnCl(OH)	3 (This study	y)	Botallackite (Hawthorne 1985)			
Zn—O2 —O2 —O1 —C1 Ave. OAV OQE	2.084(1) ×2 2.090(1) ×2 2.1463(2) 2.5636(6) 2.176 121.8 1.048	2 2	Cu1—O2 —O2 —O1 —C1	1.995(6) 1.998(6) 2.367(9) 2.732(3) 2.180 135.5 1.076	×2 ×2	
Cu—O1 —O2 —C1 Ave. OAV OQE	1.979(1) ×2 1.970(1) ×2 2.7733(5) ×2 2.241 19.32 1.062	2 2 2	Cu2—O1 —O2 —Cl	1.920(5) 2.001(6) 2.789(2) 2.237 17.06 1.066	×2 ×2 ×2	
01—H1 H1Cl 01—Cl ∠O1—H1Cl 02—H2 H2Cl	0.83(3) 2.63(3) 3.349(2) 145(3)° 0.85(2) 2.52(2)			$\begin{array}{c} 0.8(1) \\ 2.5(1) \\ 3.318(9) \\ 116(3)^{\circ} \\ 0.6(1) \\ 2.6(1) \end{array}$		
02—Cl ∠O1—H1Cl	3.286(2) 150(2)°			3.214(6) 132(15)°		

Table 3. Selected interatomic distances (Å), angles (°) and other geometrical data in the new compound $CuZnCl(OH)_3$ and botallackite

Note: OV—Octahedral volume; OAV—Octahedral angle variance; OQE—Octahedral quadratic elongation (Robinson et al. 1971).