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Abstract 13 

A new compound, ideally CuZnCl(OH)3, was found on a metallic mining artifact of 14 

copper composition at the Rowley mine, Maricopa County, Arizona, USA, and studied 15 

with electron microprobe analysis, single-crystal X-ray diffraction, and Raman 16 

spectroscopy. It is isostructural with botallackite [Cu2Cl(OH)3] with space group P21/m 17 

and unit-cell parameters a = 5.6883(5), b = 6.3908(6), c= 5.5248(5) Å, β = 90.832(2)°, V 18 

= 200.82(3) Å3. The crystal structure of CuZnCl(OH)3, refined to R1 = 0.018, is 19 

characterized by brucite-type octahedral sheets made of two distinct and considerably 20 

distorted octahedra, M1 and M2, which are coordinated by (5OH + 1Cl) and (4OH + 21 

2Cl), respectively. The octahedral sheets are parallel to (100) and connected by O—H…Cl 22 

hydrogen bonding. The major structural difference between CuZnCl(OH)3 and 23 

botallackite is the complete replacement of Cu2+ in the highly angle-distorted M1 site by 24 

non-Jahn-Teller distorting Zn2+. The CuZnCl(OH)3 compound represents the highest Zn 25 

content ever documented for the atacamite group of minerals, in conflict with all previous 26 

reports that botallackite (like atacamite) is the most resistant, of all copper 27 

hydroxylchloride Cu2Cl(OH)3 polymorphs, to the substitution of Zn2+ for Cu2+, even in 28 

the presence of large excess of Zn2+. Its discovery, along with the recently-described new 29 

mineral iyoite, CuMnCl(OH)3, implies that more botallackite-type compounds or 30 

minerals with the chemical formula CuMCl(OH)3 (M = Ni2+, Co2+, Fe2+, Mn2+, Cd2+, and 31 

Mg2+) may be synthesized or found in nature.  32 

  33 



 

2 
 

Key words: CuZnCl(OH)3, Copper-zinc hydroxychloride, botallackite, atacamite group, 34 

crystal structure, Raman spectroscopy 35 

 36 

INTRODUCTION 37 

Pure copper hydroxychloride, Cu2Cl(OH)3, has three reported natural polymorphs: 38 

orthorhombic Pnma atacamite (Parise and Hyde 1986), monoclinic P21/n clinoatacamite 39 

(Jambor et al. 1996), and monoclinic P21/m botallackite (Hawthorne 1985). In addition, 40 

rhombohedral R-3 paratacamite, Cu3(Cu,Zn)Cl2(OH)6 (Fleet 1975), is known to be 41 

stabilized by the partial substitution of Zn2+ or Ni2+ for Cu2+ in one of the four distorted 42 

octahedral sites in the structure (Jambor et al. 1996; Grice et al. 1996). The Zn 43 

endmember of such a solid solution, Cu3ZnCl2(OH)6, crystallizes in either the 44 

rhombohedral R-3m herbertsmithite structure (Braithwaite et al. 2004) or the trigonal 45 

P-3m1 kapellasite structure (Krause et al. 2006).  46 

The Cu2Cl(OH)3 polymorphs occur commonly as corrosion products of copper and 47 

copper-bearing alloys, as well as pigments in wall paintings, manuscript illumination, 48 

and other paintings (Scott 2000; Alejandre and Marquez 2006 and references therein). In 49 

particular, their formation from the corrosion of bronze and other copper-bearing alloys 50 

are the primary cause for the so-called “bronze disease” (see Scott 2000 for a thorough 51 

review). Recently, the first copper-containing mineral atacamite was reported in the jaws 52 

of the carnivorous marine worm Glycera (Lichtenegger et al. 2002), suggesting a 53 

possible involvement of biological activities in the formation of Cu2Cl(OH)3 minerals. 54 

Furthermore, the discoveries of various magnetic properties in Cu2Cl(OH)3 polymorphs 55 

have renewed great interest in understanding the correlations between their crystal 56 

structures and physical properties (e.g., Takeda et al. 1999; Zheng et al. 2004, 2005, 57 

2009). Specifically, botallackite, clinoatacamite, and herbertsmithite exhibit triangular, 58 

tetrahedral, and kagome Heisenberg (antiferro)magnetic lattices, respectively, for the S = 59 

½(Cu2+) quantum spin that leads to interesting frustrated magnetism or spin liquid 60 

behavior.  61 

Of all the Cu2Cl(OH)3 polymorphs, atacamite is the most common in nature and 62 
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botallackite the rarest. From synthesis experiments, Pollard et al. (1989) concluded that 63 

clinoatacamite is the most stable phase at room temperature and botallackite the least. 64 

Moreover, a number of investigations (e.g., Jambor et al. 1996; Braithwaite et al. 2004; 65 

Yoder et al. 2011) have demonstrated that, while atacamite and botallackite are very 66 

resistant to Zn substitution, clinoatacamite can incorporate up to 6% Zn apfu into its 67 

structure if large Zn concentrations are available during formation. The Zn-stabilized 68 

paratacamite and herbertsmithite can accommodate up to Zn/Cu = 14% and 33%, 69 

respectively. This paper presents a single-crystal X-ray diffraction and Raman 70 

spectroscopic study on a botallackite-type compound with Zn/Cu = 100%, 71 

CuZnCl(OH)3, the highest Zn content ever reported for the atacamite group of minerals.  72 

 73 

EXPERIMENTAL METHODS 74 

The CuZnCl(OH)3 sample used in this study was found on a coiled copper wire of 75 

unknown age from the Rowley mine, Maricopa County, Arizona, USA and has been 76 

deposited in the RRUFF Project with the deposition number R140401 77 

(http://rruff.info/R140401). The CuZnCl(OH)3 crystals are blue and platy, up to 0.12 × 78 

0.10 × 0.03 mm (Fig. 1). Associated minerals include simonkolleite Zn5(OH)8Cl2·H2O, 79 

wulfenite PbMoO4, hemimorphite Zn4Si2O7(OH)2·H2O, barite BaSO4, quartz, fluorite, 80 

and fibrous crystals tentatively identified by SEM-EDS as Zn9(SO4)2(OH)12Cl2·6H2O. 81 

Barite, quartz, and fluorite occur as single crystals typically > 0.1 mm in size, unevenly 82 

distributed over the wire. They, along with copper from the wire, are overgrown by fine 83 

iron oxides with substantial Zn concentrations and by crystals of the Cu-Zn salts. Since 84 

barite, quartz, and fluorite are all reported from the gangue mineral assemblage in the 85 

Rowley mine (Wilson and Miller 1974), the mineralogical and textural evidence suggests 86 

that they were dropped onto the wire and cemented in place by authigenic iron oxides and 87 

Cu-Zn salts, rather than having precipitated from solution.  88 

The chemical composition of the CuZnCl(OH)3 sample was determined with a 89 

Cameca SX-100 electron microprobe operated at 20 keV and 18 nA with a beam size of 1 90 

μm. The standards include cuprite for Cu, ZnO for Zn, and scapolite for Cl. The average 91 
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of 6 analysis points gives (wt.%) CuO = 34.43(29), ZnO = 39.75(19), Cl = 16.09(16), 92 

with the total = 90.27(33). The chemical formula was calculated on the basis of 4 (O + 93 

Cl) atoms per formula unit, as determined from the structure refinement (Table 2), by 94 

adding 12.51 wt.% H2O to bring the total close to the ideal value, yielding Cu0.94Zn1.06 95 

Cl0.99(OH)3.01, which can be simplified as CuZnCl(OH)3. 96 

Single-crystal X-ray diffraction data of the CuZnCl(OH)3 sample were 97 

collected from a crystal with size 0.05 × 0.04 × 0.03 mm on a Bruker X8 APEX2 98 

CCD X-ray diffractometer equipped with graphite-monochromatized MoKα radiation. 99 

Reflections with I > 2σ(I) were indexed based on a monoclinic unit cell (Table 1). No 100 

satellite or super-lattice reflections were observed. The intensity data were corrected 101 

for X-ray absorption using the Bruker program SADABS. The systematic absences of 102 

reflections suggest possible space group P21 or P21/m. The crystal structure was 103 

solved and refined using SHELX97 (Sheldrick 2008) based on the space group P21/m, 104 

because it yielded better refinement statistics in terms of bond lengths and angles, 105 

atomic displacement parameters, and R factors. The positions of all atoms were 106 

refined with anisotropic displacement parameters, except for H atoms, which were 107 

refined with the isotropic displacement parameter only. During the structure 108 

refinements, ideal chemistry was assumed. Because of similar X-ray scattering 109 

powers between Cu and Zn, a direct refinement of their ratios at each individual site 110 

was unsuccessful. Therefore, we tested three different models with fixed site 111 

occupancies for Cu and Zn at the two distinct octahedral sites, M1 and M2. Model 1 112 

assumed Zn to occupy the M1 site only and Cu M2, which resulted in R1 = 0.0183, 113 

and bond-valence sums of 1.95 and 2.05 v.u. for Zn and Cu, respectively. In model 2, 114 

Zn was assigned to M2 and Cu to M1, yielding R1 = 0.0191, and bond-valence sums 115 

of 2.18 and 1.83 v.u. for Zn and Cu, respectively. Model 3 assumed a random 116 

occupation of Zn and Cu [i.e., (0.5Zn + 0.5Cu)] at each site, which produced results 117 

between those from models 1 and 2. Consequently, model 1 was adopted in this study. 118 

Final refined atomic coordinates and displacement parameters are listed in Table 2 and 119 

selected bond lengths and angles in Table 3. 120 
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substantiated by our results.   150 

 It is interesting to note the significant discrepancies in all unit-cell parameters 151 

between CuZnCl(OH)3 and botallackite (Table 1). Specifically, the unit-cell parameters 152 

a, c, and β for CuZnCl(OH)3 are smaller, whereas the b dimension is greater than the 153 

corresponding ones for botallackite. These results differ from those for the synthetic 154 

Br-analogue of Zn-bearing botallackite, (Cu,Zn)2Br(OH)3, which allows the Zn 155 

substitution for Cu up to the Zn/Cu ratio = 33% (Yoder et al. 2011). With increasing Zn 156 

content in the (Cu,Zn)2Br(OH)3 solid solution, the unit-cell parameters a and b decrease 157 

linearly, but c increases linearly and the β angle is essentially unchanged.            158 

 159 

Raman spectroscopy 160 

There have been several Raman spectroscopic studies on botallackite, as well as 161 

other Cu2Cl(OH)3 polymorphs, and detailed assignments of major Raman bands have 162 

been proposed (e.g., Frost et al. 2002; Martens et al 2003; Liu et al. 2011a, 2011b, 2012). 163 

Figure 4 shows the Raman spectrum of CuZnCl(OH)3, along with that of botallackite 164 

from the RRUFF Project (R070066) for comparison. The strong bands between 3450 and 165 

3600 cm-1 are due to the O-H stretching vibrations and those between 650-1000 cm-1 to 166 

the Cu-O-H bending vibrations (Liu et al. 2011a, 2011b). The bands ranging from 400 to 167 

520 cm-1 can be ascribed to the Cu-O stretching modes and those from 300 to 400 cm-1 to 168 

the O-Cu-O bending modes. The bands below 250 cm-1 are associated with the Cu-Cl 169 

interactions and the lattice vibrational modes.  170 

Compared to botallackite, the two strong peaks related to the O-H stretching 171 

vibrations for CuZnCl(OH)3 are shifted to higher wavenumbers with a much smaller 172 

separation between their peak positions. This observation indicates that the hydrogen 173 

bonds in CuZnCl(OH)3 are longer (and thus weaker) and more similar to each other than 174 

the corresponding ones in botallackite, in accordance with the structural data from the 175 

X-ray diffraction analyses (Table 3).   176 

 177 

Geochemical factors in Cu-Zn-Cl salt formation 178 
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The overgrowth of the corroded wire and the “detrital” quartz, fluorite, and barite 179 

by Cu-Zn-Cl(-S) salts and iron oxides suggests that the wire lay submerged in saline 180 

water with locally high concentrations of Cu, Fe, Zn, and S. There are abundant pyrite, 181 

chalcopyrite, and accessory sphalerite in the Rowley mine, all of which can readily 182 

dissolve in oxidizing water (Welty et al., 1985), thus becoming the supply of Cu, Fe, Zn, 183 

and S for the mineral assemblage observed on the wire. It is also possible that some of Fe 184 

and Zn came from corroded galvanized steel tools or machine parts left by miners. The 185 

sulfides and/or the galvanized steel dissolved or corroded in salty water in the mine and 186 

re-precipitated onto the wire as CuZnCl(OH)3 and simonkolleite. This mineralogy 187 

suggests that the water was too chloride-rich to stabilize malachite Cu2CO3(OH)2, 188 

smithsonite ZnCO3, and other Cu- or Zn-bearing minerals that are nominally stable under 189 

near-surface, oxidized conditions (Garrels, 1954; Mann and Deutscher, 1980), causing 190 

the metals to precipitate as atacamite-group minerals. However, this does not explain the 191 

extreme Zn enrichment in CuZnCl(OH)3.  192 

Experiments by Jambor et al. (1996) determined that Zn enrichment in 193 

botallackite-structured minerals is favored when the Zn is present as aqueous Zn nitrate 194 

rather than a Zn chloride. But when the concentration of Zn nitrate was increased to the 195 

maximum possible without precipitating Zn-rich gerhardtite [(Cu,Zn)NO3OH], the 196 

botallackite produced had only 9% Zn, which is far short of the Zn content in 197 

CuZnCl(OH)3 found at the Rowley mine. However, their results suggest that the nature of 198 

Zn2+ complexation in solution may be a significant factor in stabilizing different 199 

compositions with the botallackite structure. Further experimental work on the aqueous 200 

geochemistry of Zn with various anion complexes may be necessary to determine and 201 

quantify this effect.  202 

It is likely that a natural occurrence of CuZnCl(OH)3 will eventually be discovered. 203 

Atacamite-group minerals have been found lining the cell walls of algal spores around 204 

hydrothermal vents on the ocean floor, with the implication that algal sorption of Cu2+, 205 

combined with a low sulfide activity and high chloride activity, had induced primary 206 

precipitation of atacamite (Mossman and Heffernan, 1978). Divalent Zn also sorbs onto 207 
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algal matter, so it is possible that Cu- and Zn-rich waters around algae could produce 208 

primary CuZnCl(OH)3. However, it may be difficult to detect, since atacamite-group 209 

minerals are highly soluble in fresh water and tend to dissolve after formation except in 210 

very arid environments (Cameron et al., 2007).   211 

One of the likeliest places to find CuZnCl(OH)3 may be the Antarctic, where Cu, Fe, 212 

and Pb salts are known to form at the surface when marine aerosols corrode exposed 213 

sulfides and the absence of liquid water preserves the salts from later dissolution. 214 

Atacamite, paratacamite, malachite, antlerite, and other highly soluble Cu salts have all 215 

been reported from the Ellsworth Mountains (Vennum and Nishi, 1992). The discovery of 216 

botallackite-structured CuZnCl(OH)3 in the Rowley mine clearly shows that 217 

botallackite-structured minerals can be stable at near-surface conditions, suggesting that 218 

CuZnCl(OH)3 could be present at or near the land surface in an environment where there 219 

is no rainfall to dissolve it.     220 

 221 

IMPLICATIONS 222 

All previous studies have shown that botallackite is the least stable of all basic 223 

copper hydroxylchloride polymorphs and, like atacamite, it is the least prone to the 224 

substitution of Zn2+ for Cu2+, even under forcing conditions — the presence of large to 225 

swamping excesses of Zn2+ during its formation (e.g., Jambor et al. 1996; Scott 2000; 226 

Braithwaite et al. 2004; Yoder et al. 2011). Therefore, the discovery of the new 227 

CuZnCl(OH)3 compound, on the one hand, calls for further research on the formation 228 

mechanisms of botallackite-type materials. Such investigations will undoubtedly shed 229 

light on the nature of corrosion of Cu-bearing materials, bronze, and other copper-bearing 230 

alloys. For example, if further research can identify the factors that lead to Zn-enrichment 231 

in botallackite-type minerals, it may be possible to constrain the composition and the 232 

source of the fluids that caused the corrosion. On the other hand, it suggests that more 233 

botallackite-type compounds or minerals with the chemical formula CuMCl(OH)3 (M = 234 

Ni2+, Co2+, Fe2+, Mn2+, Cd2+, and Mg2+) may be synthesized or found in nature, as those 235 

for the herbertsmithite-type compounds with the chemical formula Cu3MCl2(OH)6 236 
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[herbertsmithite (M = Zn), gillardite (M = Ni), leverettite (M = Co), and tondiite (M = 237 

Mg)]. In fact, the new botallackite-type mineral, iyoite CuMnCl(OH)3, has been recently 238 

reported (Nishio-Hamane et al. 2014). The discovery of the new CuZnCl(OH)3 239 

compound also begs the question whether materials with the chemistry CuMCl(OH)3 and 240 

the more stable atacamite-type structure could exist naturally or be synthesized, as 241 

atacamite also possesses a highly angle-distorted octahedral site that is coordinated by 242 

(5OH + 1Cl) with the OAV and OQE values of 136.2 and 1.067, respectively (Parise and 243 

Hyde 1986), just as the one in botallackite.  244 

The discovery of the new CuZnCl(OH)3 compound also has implications for the 245 

composition of supergene waters in hyper-arid environments, particularly the Atacama 246 

Desert. The occurrence of atacamite- and paratacamite-group minerals in the supergene 247 

zones of Andean porphyries has been used as evidence for the involvement of saline 248 

formation waters in supergene alteration, in contrast to the normal meteoric-dominated 249 

supergene waters (Arcuri and Brimhall, 2003; Cameron et al., 2007). If the CuZnCl(OH)3 250 

compound or other Zn-enriched minerals are discovered around ore deposits’ supergene 251 

zones, they may suggest nitrate- and Zn-rich solutions were also involved. Because 252 

nitrate-rich and Zn-rich solutions are not very common in groundwater, this will 253 

considerably restrict the possible range of compositions, and therefore the possible 254 

origins, of the fluids involved in supergene alteration in hyper-arid climates. Similar 255 

considerations apply to botallackite-structured compounds of Cu with Ni2+, Mg2+, Co2+, 256 

and other divalent cations capable of substituting for divalent Zn in botallackite. 257 

 258 
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Table 1. Comparison of crystallographic data for the new compound CuZnCl(OH)3  
              and botallackite 
 ====================================================== 

CuZnCl(OH)3 Botallackite 
====================================================== 
Ideal chemical formula            CuZnCl(OH)3    Cu2Cl(OH)3   
Space group P21/m P21/m         
a (Å) 5.6883(5) 5.717(1)
b (Å) 6.3908(6) 6.126(1)             
c (Å) 5.5248(5) 5.636(1)             
β (°) 90.832(2) 93.07(1)             
V(Å3)  200.82(3) 197.06(5)              
Z                                     2 2
ρcal(g/cm3) 3.56 3.60
λ (Å)   0.71073 0.71073
μ (mm-1) 11.769
2θ range for data collection ≤66.36 ≤60
No. of reflections collected 3073 762 
No. of independent reflections 813 379 
No. of reflections with I > 2σ(I) 685 358 
No. of parameters refined 45 
R(int) 0.021
Final R1, wR2 factors [I > 2σ(I)] 0.018, 0.033 0.038, 0.042 
Final R1, wR2 factors (all data) 0.026, 0.035
Goodness-of-fit 1.042

Reference                    This work Hawthorne (1985) 
======================================================= 



Table 2. Coordinates and displacement parameters of atoms in the new compound CuZnCl(OH)3
====================================================================================================
Atom           x                    y                     z                 Ueq                U11                U22                U33                U23                U13                U12        
====================================================================================================
Zn  0.48330(4)   0.25  0.01469(4)    0.0144(1)  0.0245(2)  0.0085(1)  0.0102(1)  0   0.0010(1)  0 
Cu  0.5  0  0.5  0.0129(1)   0.0215(2)  0.0093(1)  0.0079(1)  0.0014(1)   -0.0014(1)  -0.0020(1)
Cl   0.1521(1)  0.25   -0.3050(1)  0.0207(2)    0.0170(3)  0.0214(3)  0.0237(3)  0 -0.0020(2)  0 
O1   0.6546(3)  0.25   0.3634(3)    0.0148(4)   0.0179(9)  0.0121(7)  0.0143(7)  0  0.0004(6)  0 
O2  0.6545(2)   0.0157(2)   0.8210(2)    0.0146(3)  0.0159(6)  0.0147(6)  0.0133(5)  0.0009(4)  0.0003(4)   -0.0004(4) 
H1   0.801(6)  0.25   0.381(6)     0.05(1) 
H2  0.802(4)  0.031(3)  0.812(4)     0.021(6) 
=====================================================================================================



Table 3. Selected interatomic distances (Å), angles (°) and other geometrical data in the new 
compound CuZnCl(OH)3 and botallackite 
===================================================================
   CuZnCl(OH)3   (This study)                                       Botallackite (Hawthorne 1985) 
------------------------------------------------------------------------------------------------------------------
Zn—O2   2.084(1)    ×2 Cu1—O2  1.995(6)    ×2 
    —O2   2.090(1)    ×2     —O2   1.998(6)    ×2 
    —O1   2.1463(2)              —O1   2.367(9)   
    —Cl    2.5636(6) —Cl   2.732(3)   
Ave.  2.176 2.180 
OAV  121.8 135.5 
OQE  1.048 1.076 

Cu—O1   1.979(1)    ×2 Cu2—O1  1.920(5)    ×2 
     —O2   1.970(1)    ×2 —O2  2.001(6)    ×2 
     —Cl    2.7733(5)  ×2 —Cl   2.789(2)    ×2 
Ave.  2.241 2.237 
OAV  19.32 17.06 
OQE  1.062 1.066 

O1—H1  0.83(3) 0.8(1) 
H1...Cl   2.63(3) 2.5(1) 
O1—Cl  3.349(2) 3.318(9) 
∠O1—H1...Cl 145(3)° 116(3)°

O2—H2  0.85(2) 0.6(1) 
H2...Cl   2.52(2) 2.6(1) 
O2—Cl  3.286(2) 3.214(6) 
∠O1—H1...Cl 150(2)° 132(15)°
===================================================================
Note: OV—Octahedral volume; OAV—Octahedral angle variance; OQE—Octahedral quadratic 
elongation (Robinson et al. 1971).  
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