Revision 1 1 Models for the estimation of $Fe^{3+}/Fe_{tot.}$ ratio in terrestrial and extra-2 terrestrial alkali- and iron-rich silicate glasses using Raman 3 spectroscopy 4 5 Danilo Di Genova¹, Kai-Uwe Hess¹, Magdalena Oryaëlle Chevrel², Donald B. 6 **Dingwell**¹ 7 8 ¹Dept. Earth and Environmental Sciences, Ludwig-Maximilians-Universität, 9 Theresienstrasse 41/III, 80333 München, Germany 10 ²Departamento de Vulcanología, Instituto de Geofísica, Universidad Nacional 11 Autónoma de México, Mexico 12 13 14 15 16 17 18 19 Corresponding author 20 21 Danilo Di Genova e-mail: danilo.digenova@min.uni-muenchen.de 22 Tel.: +498921804218 23 24 Fax: +498921804176

25

ABSTRACT

1	1	/24
---	---	-----

26	In order to develop Raman spectroscopy as a quantitative tool in both geosciences
27	and planetary sciences the effect of iron oxidation state ($Fe^{3+}/Fe_{tot.}$) on the Raman spectra
28	of basaltic and pantelleritic glasses has been investigated. We have used remelted
29	pantellerite from Pantelleria Island and synthetic iron-rich basaltic glasses [from Chevrel
30	et al. (2014)].
31	The Raman spectra of pantelleritic glasses reveal dramatic changes in the high
32	wavelength region of the spectrum (800-1200 cm ⁻¹) as iron oxidation state changes. In
33	particular the 970 cm ⁻¹ band intensity increases with increasing oxidation state of the
34	glass (Fe ^{$3+$} /Fe _{tot.} ratio from 0.24 to 0.83). In contrast, Raman spectra of the basaltic
35	glasses do not show the same oxidation state sensitivity ($Fe^{3+}/Fe_{tot.}$ ratio from 0.15 to
36	0.79). A shift, however, of the 950 cm^{-1} band to high wavenumber with decreasing iron

37 oxidation state can be observed.

We present here two empirical parameterizations (for silica- and alkali-rich pantelleritic glasses and for iron-rich basaltic glasses) to enable estimation of the iron oxidation state of both anhydrous and hydrous silicate glasses (up to 2.4 wt% H₂O). The validation of the models derived from these parameterizations have been obtained using the independent characterization of these melt samples plus a series of external samples via wet chemistry.

The "pantelleritic" model can be applied within SiO₂, FeO and alkali content
ranges of ~69-75, ~7-9 and ~8-11 wt%, respectively. The "basaltic" model is valid within
SiO₂, FeO and alkali content ranges of ~42-54, ~10-22 and ~3-6 wt%, respectively.

47	The results of this study contribute to the expansion of the compositionally-
48	dependent database previously presented by Di Genova et al. (2015) for Raman spectra of
49	complex silicate glasses. The applications of these models range from microanalysis of
50	silicate glasses (e.g. melt inclusions) to handheld in situ terrestrial field investigations and
51	studies under extreme conditions such as extraterrestrial (i.e. Mars), volcanic and
52	submarine environments.
53	
54	Keywords: Silicate glasses, Raman spectroscopy, Iron oxidation state, redox, basalt,
55	pantellerite, planetary science, Mars.
56	
57	INTRODUCTION
58	The physico-chemical properties of silicate melts that govern magmatic and
59	volcanic processes (melt generation, transport and emplacement on the terrestrial planets)
60	now have a long history of investigation (e.g., Richet 1984; Lange and Carmichael 1987,
61	1990; Persikov et al. 1990; Dingwell et al. 1996; Hess and Dingwell 1996; Papale 1999;
62	Romano et al. 2001; Whittington et al. 2001; Dingwell 2006; Neuville 2006; Behrens and
63	Zhang 2009; Di Genova et al. 2014a; Robert et al. 2014; Sehlke et al. 2014).
64	The wide range of chemical composition of magmatic and volcanic liquids means
65	that in order to be useful, the physico-chemical properties of these molten systems must
66	be parameterized, directly or indirectly, in terms of chemical composition. Knowledge of
67	the non-trivial nature of silicate melt structure and the enduring challenge of structure-
68	property relationships for silicate melts has fueled a generation of investigations (e.g.,
69	(Mysen et al. 1982; Stolper 1982; Neuville et al. 1993; Mysen 1997; Lee and Stebbins

2003; Stebbins 2008; Xue 2009; Malfait and Sanchez-Valle 2012; Di Genova et al.

71 2014b).

In all of this it has long been appreciated that the oxidation state and the structural role of iron in silicate melts plays a defining role affecting the melt structure and properties (e.g., Cukierman and Uhlmann 1974; Mysen et al. 1984; Dingwell and Virgo 1987, 1988; Lange and Carmichael 1987; Dingwell et al. 1988; Dingwell 1991; Toplis et al. 1994; Toplis and Carroll 1995; Giuli et al. 2011; Chevrel et al. 2013, 2014; Knipping et al. 2015).

Iron in silicate melts appears to exhibit elements of both network former and 78 network modifier behavior. It is typically present in a range of coordination environments 79 from tetrahedral (^{IV}Fe), through pentahedral (^VFe) to octahedral (^{VI}Fe) and is always 80 present in both reduced, ferrous (Fe^{2+} , network modifier), and oxidized, ferric (Fe^{3+} ; 81 82 network former) states (e.g., Mysen et al. 1984; Jackson et al. 1993; Wilke et al. 2001, 2006; Giuli et al. 2003; Magnien et al. 2008; Rossano et al. 2008). 83 The ferric-ferrous ratio of equilibrated silicate melts depends on the temperature, 84 redox state and the chemical composition (including the volatile content) of the melt 85 (Kress and Carmichael 1991; Mysen 1991; Ottonello et al. 2001; Botcharnikov et al. 86 2005; Moretti 2005; Giuli et al. 2012; Borisov et al. 2015; Cicconi et al. 2015). Thus a 87 88 precise quantification of the ferric-ferrous ratio in silicate melts and glasses is a crucial 89 constraint for the adequate parameterization of both the composition-dependence of physical properties (e.g. liquid viscosity and density) and the redox conditions prevailing 90 in magmatic systems. 91

92	The most widely employed standard techniques for the direct determination of
93	Fe ³⁺ /Fe _{tot.} ratio in silicate glasses are wet chemical analyses, ⁵⁷ Fe Mössbauer spectroscopy
94	and XANES [see Berry et al. (2003) and Mysen and Richet (2005) for reviews]. Wet-
95	chemistry is considered the most precise method, however, it is destructive and it
96	consumes a relatively large amount of sample (in the order of 100-500 mg) for a precise
97	Fe^{2+} concentration determination (± 0.02). Standard Mössbauer spectroscopy requires
98	powdered samples (in the order of 50-100 mg) for an accurate estimation of Fe ³⁺ /Fe _{tot} (\pm
99	0.02) and, in addition, it is relatively limited in spatial resolution (McCammon et al.
100	1991; Berry et al. 2003 and references therein). Fe K-edge XANES spectroscopy requires
101	a smaller amount of material and it has been employed also on small amount of glass and
102	it is characterized by a high spatial resolution (microns). Nevertheless, despite the wide
103	applicability of this technique, three main points must be considered: i) the fitting
104	procedure of the Fe pre-edge peak is not easy and the Fe^3/Fe_{tot} . estimation is associated
105	with a high error (± 0.05) respect to wet chemistry and Mössbauer; ii) for low amount of
106	total iron, photoreduction by synchrotron beam has been reported (Campeny et al. 2015);
107	iii) XANES spectroscopy is not easily accessible as it requires beam time at a
108	Synchrotron radiation facility.
109	Raman spectroscopy is a technique commonly used for studying the structure of
110	silicate glasses and melts (Neuville et al. 2014 for a review). It offers the advantages that
111	(1) little or no sample preparation is required, (2) the technique is non-destructive and, (3)
112	can be used to perform <i>in-situ</i> and remotely-controlled analysis under extreme conditions

113 like, for example, submarine environment or on planetary surfaces [see Di Genova et al.

114 (2015) and references therein for a review].

11/24

115	Only one study (Di Muro et al. 2009) has raised the possibility of retrieving
116	information on the $\mathrm{Fe}^{3+}/\mathrm{Fe}_{tot.}$ ratio of natural silicate glasses (pantelleritic and basaltic
117	compositions) by Raman spectroscopy.
118	Results from Di Muro et al. (2009) show a dependence of Raman spectra for some
119	remelted silicate glasses on iron oxidation state. They demonstrate the existence of a

relationship between the measured $Fe^{3+}/Fe_{tot.}$ ratio (by wet chemistry and XANES

spectroscopy) and the Raman parameters derived by spectra deconvolution (e.g. area %,

band position and bands intensity ratio). In particular, because of the significant

sensitivity of Raman spectra of pantelleritic samples with the variation in Fe^{3+}/Fe_{tot} ratio,

the authors concluded that peralkaline glasses represent an ideal system to define a

125 Raman model to estimate the iron oxidation state of samples. On the other hand, their

results on basaltic samples demonstrated the decreasing sensitivity of the glass structure,

and consequently of Raman spectra, with changing redox conditions of the system.

128 Unfortunately, as those authors reported, this approach depends strongly on both

the spectra fitting procedure (i.e. spectrum deconvolution) and the chemical composition

130 of samples [see Rossano and Mysen (2012) and Neuville et al. (2014) for reviews].

131 Recently, Di Genova et al. (2015) have demonstrated that the chemical

132 composition of natural silicate glasses could be approximated using Raman spectroscopy

133 *without* the use of a spectra deconvolution procedure.

In this work we combine wet chemical analysis and Raman spectroscopy to track the evolution of the Raman spectra as a function of Fe³⁺/Fe_{tot} ratio of remelted and synthetic silicate glasses. The evolution of the acquired Raman spectra has been parameterized using the empirical criterion presented in Di Genova et al. (2015), which is

	els for
determining the $Fe^{3+}/Fe_{tot.}$ ratio of silica-alkali-rich and iron-rich basalt silica	te glasses
(anhydrous and mildly hydrous) in terrestrial and extra-terrestrial environment	nts.

- 141
- 142

EXPERIMENTAL METHODS

143 Starting material

In this study, the starting material consist of 1) anhydrous, crystals and bubble-144 145 free silica- and alkali-rich glasses of pantelleritic composition (i.e. peralkaline rhyolite, Fsp sample series) with different Fe^{3+}/Fe_{tot} ratio that were prepared by melting a natural 146 sample from Cala di Tramontana (Pantelleria Island), at 1500 °C and homogenized by 147 continuous stirring in a concentric cylinder apparatus at 1 atm until the melt was free of 148 bubbles and crystals; 2) anhydrous, crystals and bubble-free iron-rich (up to ~20 wt% 149 FeO_{tot}) basaltic glasses (AdMB and LDM series) representative of the known diversity of 150 Martian basalts with different Fe³⁺/Fe_{tot} ratios from Chevrel et al. (2014). The AdMB 151 152 chemical composition corresponds to the chemical analyses of the Adirondack class rock 153 (Gusev plains, Mars) as given by Ming et al. (2008). The LDM chemical composition is 154 based on equilibrium melting calculations of a primitive mantle composition [see 155 Baratoux et al. (2011) and Chevrel et al. (2014) for details]. Both sets of samples were synthetized at different oxygen fugacity, $f(O_2)$, in a gas-156 mixing furnace to obtained glasses with different Fe^{3+}/Fe_{tot} ratio (as described in Chevrel 157 158 et al. 2014). The furnace is equipped with a gas tight alumina muffle tube and $CO-CO_2$ gas mixing line. The $f(O_2)$ was controlled by CO-CO₂ gas mixtures and monitored by an 159 yttrium-stabilized, zirconia-based oxygen electrode calibrated against air and pure CO₂. 160

166

165

167 Iron oxidation state

by optical and electron microscopy.

The iron oxidation state of the investigated samples was determined by redox titration using potassium dichromate ($K_2Cr_2O_7$): a wet-chemistry method based on a simple potentiometric titration (Giuli et al. 2011). The standard materials used for the evaluation of the standard deviation of the measurements were a standard rock basalt (BHVO-1, USGS standard, Lit. 8.58wt% FeO) and a synthetic standard containing 18.8 wt% of FeO. The standard deviation of the measurements was determined to be $\pm 1.5\%$. Each measurement was performed with approximately 25 mg of sample.

175

176 Chemical analysis

The concentrations of major elements were measured with a Cameca SX100 electron micro probe analyzer (EMPA) of the Department of Earth and Environmental Sciences at the University of Munich. The chemical analyses were carried out at 15 kV acceleration voltage and 5 nA beam current. A defocused 10-µm beam was used for all elements in order to minimize alkali loss. Synthetic wollastonite (Ca, Si), periclase (Mg), hematite (Fe), corundum (Al), natural orthoclase (K), and albite (Na) were used as standards, and matrix correction was performed by PAP procedure (Pouchou and Pichoir

184 1991). The precision was better than 2.5% for all analyzed elements. In order to evaluate 185 the chemical homogeneity of glasses 25 chemical analyses were performed for each 186 sample. As reported in Chevrel et al. (2014), a liquid immiscibility in the iron-rich basalt 187 glasses can be observed. This aspect does not represent a limitation in our study, as the 188 Raman spot size is much smaller than the characteristic dimension of the liquid-liquid 189 immiscibility (from tens to hundreds microns).

190

191 Raman Spectroscopy

Raman spectra were obtained using a micro-Raman spectrometer (HORIBA; 192 XploRa-Raman-System) equipped with 3 lasers (red, green and NIR). A green argon ion 193 194 laser (532 nm), which provided a power at the sample surface of ~ 2.5 mW, was focused through the 100× objective to a ~1 μ m spot. The Raman system was set with a laser 195 attenuation of 25% in respect to the total laser power, 1200T grating, exposure time 30 s 196 (3 times), and confocal hole of 300 µm and slit of 200 µm. Backscattered Raman 197 radiation was collected over a range from 150 to 1400 cm⁻¹ and elastically scattered 198 photons were suppressed via a sharp edge filter. The instrument was calibrated using a 199 200 silicon standard.

All the acquired spectra have been corrected for the wavelength of excitation source and temperature dependence of the Raman intensity according to Shuker and Cammon (1970) and Long (1977) approaches. Finally, a background subtraction technique has been applied to all the spectra according to the strategy reported in Di Genova et al. (2015) where two zones devoid of peaks were chosen to constrain the cubic baseline (from 50 to ~250 cm⁻¹ and from ~1250 to 1500 cm⁻¹).

207 208 RESULTS 209 Chemical composition and iron oxidation state Measured chemical compositions and Fe^{3+}/Fe_{tot} ratio of pantelleritic (this study) 210 and basaltic (Chevrel et al. 2014) glasses are reported in Table 1. 211 Additionally, in Figure 1 we report in a TAS diagram the chemical compositions 212 of both the pantelleritic and basaltic end-members (Fsp 1, Fsp 9 and AdMB-S2, LDM-213 214 S5 respectively). Pantelleritic samples include nine different glasses with different Fe^{3+}/Fe_{tot} ratios 215 ranging between 0.24 and 0.83, and having an agpaitic index $[(Na_2O+K_2O/Al_2O_3) mol\%]$ 216 of around 1.3. Main oxides range between ~72 - 75 wt% SiO₂, ~7 - 9 wt% FeO_{tot.}, ~9 217 218 wt% Al₂O₃, and alkali (Na₂O+K₂O) between ~8 and 11 wt%. Basaltic samples are highly enriched in iron [FeO_{tot} ranging from ~ 18 to ~ 20 219 wt%] as analyzed on Mars [see Chevrel et al. (2014)] and include four glasses having 220 different Fe³⁺/Fe_{tot}, ratio ranging between 0.15 and 0.79. Specifically, we used three 221 AdMB samples (AdMB-S2, S5 and S6) and one sample (LDM-S5) belonging to the 222 LDM series that represents the sample with the lowest Fe^{3+}/Fe_{tot} ratio among the 223 analyzed samples in Chevrel et al. (2014). SiO₂ varies between ~45-48 wt%, Al₂O₃ is 224 225 ~11 wt% and alkali and alkaline earth (MgO+CaO) range between ~3-4 wt% and ~18-20 wt%, respectively. 226 227

228 Raman spectra: effect of the chemical composition

229	Figures 2 and 3 show the Raman spectra acquired, corrected for the wavelength of
230	the excitation source and temperature. The raw spectra are reported in Figures 2a and 3a,
231	while Figures 2b and 3b show the normalized spectra (to 100 arbitrary units) vertically
232	superimposed as a function of the $Fe^{3+}/Fe_{tot.}$ ratio.
233	The collected Raman spectra show three main bands: the low-wavenumber region
234	(LW ~250–640 cm ⁻¹), the mid-wavenumber region (MW~ 650-850 cm ⁻¹) and in the high-
235	wavenumber region (HW \sim 850–1250 cm ⁻¹).
236	The LW region is usually assigned to vibrations of bridging oxygens (BO) with
237	three-, four-, five-, six- or higher-membered rings of tetrahedra present in silicate
238	networks (e.g., Bell et al. 1968; Mysen et al. 1980; McMillan and Piriou 1982; Seifert et
239	al. 1982; Neuville and Mysen 1996; Pasquarello et al. 1998; Mysen 2003; Umari et al.
240	2003; Neuville et al. 2014). The HW region yields information about the vibration of T-
241	O ⁻ bonds [where T refers to fourfold coordinated cations (Si ⁴⁺ , Al ⁴⁺ , Fe ³⁺) and O ⁻ non-
242	bridging oxygen, NBO] and the structural effect of the network-modifying or charge
243	balancing cations (e.g., Bell and Dean 1972; Furukawa et al. 1981; McMillan 1984;
244	Mysen 2003; Mysen and Toplis 2007; Neuville et al. 2014). For a detailed discussion of
245	structural interpretation of Raman spectra we refer to Rossano and Mysen (2012) and
246	Neuville et al. (2014).
247	Overall, the LW region of pantelleritic samples (Fig. 2A) shows a well-defined
248	band between 250 and 650 cm^{-1} with a peak located around 470 cm^{-1} and a shoulder at

590 cm⁻¹. In contrast, the LW region of basaltic spectra (Fig. 3A) shows an asymmetric

band centered around 550 cm^{-1} and overlapping with the MW region.

	(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5534CCBYNCND 11/
251	In the MW region, a symmetric band occurs between 670 and 850 cm ⁻¹ in the
252	spectra of all investigated samples and shows the highest intensity in the basaltic spectra.
253	Concerning the HW region, the pantelleritic spectra display a complex behavior of
254	the band located between 850 and 1250 cm ⁻¹ . The most oxidized sample (Fsp_1) shows a
255	peak located at 970 cm ⁻¹ and two shoulders at 1040 and 1150 cm ⁻¹ while the most
256	reduced sample (Fsp_9) clearly shows a peak at around 1040 cm ⁻¹ with two shoulders at
257	970 and 1150 cm ⁻¹ .
258	In contrast, for the basaltic samples, the band occurs between 800 and 1200 cm ⁻¹
259	with a peak between 950 and 966 cm ⁻¹ a shoulder located at ~ 1040 cm ⁻¹ and show less
260	variation with oxidation as detailed below.
261	
262	Raman spectra: effect of Fe ³⁺ /Fe _{tot.} ratio
263	In order to explore the evolution of Raman spectra with the oxidation state, and
264	provide Raman models to estimate the $Fe^{3+}/Fe_{tot.}$ ratio, we vertically superimposed the
265	normalized Raman spectra as a function of $Fe^{3+}/Fe_{tot.}$ ratio (Figs. 2B and 3B).
266	
267	Pantelleritic glasses.
268	Figure 2b shows the normalized Raman spectra as a function of the $Fe^{3+}/Fe_{tot.}$
269	ratio. In the LW region, both the intensities of the peak located at ~ 470 cm ⁻¹ and the
270	shoulder located at ~590 cm ⁻¹ decrease with increasing the $Fe^{3+/}Fe_{tot.}$ ratio. Similarly in
271	the MW region the peak located at ~800 cm ⁻¹ decreases in intensity with increasing the
272	$\mathrm{Fe}^{3+}/\mathrm{Fe}_{\mathrm{tot}}.$

11/24

273	The HW region exhibits a remarkable variation of the Raman spectrum with
274	Fe^{3+}/Fe_{tot} ratio. Indeed, with increasing $Fe^{3+}/Fe_{tot.}$ ratio, the wavelength position of the
275	band centroid shifts toward low wavenumbers: from 1040 cm ⁻¹ (Fsp_9, Fe ³⁺ /Fe _{tot.} = 0.24)
276	down to 970 cm ⁻¹ (Fsp_1, Fe ³⁺ /Fe _{tot} .= 0.83) and the shoulder located at 970 cm ⁻¹
277	dramatically decreases in intensity. Concurrently, the shoulder located at 1150 cm ⁻¹
278	decreases in intensity with increasing $Fe^{3+}/Fe_{tot.}$ ratio. The most oxidized sample (Fsp_1)
279	therefore shows a peak located at 970 cm^{-1} and two shoulders at 1040 and 1150 cm^{-1} ,
280	while the most reduced sample (Fsp_9) clearly shows a peak at around 1040 cm ⁻¹ with
281	two shoulders at 970 and 1150 cm^{-1} .
282	
283	Basaltic glasses.
284	Although the Raman spectra of the basaltic samples exhibit a weaker variation
285	with $Fe^{3+}/Fe_{tot.}$ ratio than the pantelleritic samples, some variations can be pointed out
286	(Fig. 3B).
287	The intensity in LW and MW region increases with increasing $Fe^{3+}/Fe_{tot.}$ ratio. In
288	the HW region, the main peak position shifts towards low wavenumber with increasing
289	the $Fe^{3+}/Fe_{tot.}$ ratio. Indeed, the reduced end-member (LDM-S5, $Fe^{3+}/Fe_{tot.} = 0.15$)
290	exhibits the peak at 966 cm ⁻¹ while the oxidized end-member (AdMB-S2, $Fe^{3+}/Fe_{tot.} =$
291	0.79) has the peak at 950 cm^{-1} . The samples characterized by an intermediate iron
292	oxidation state show intermediate main peak position at 963 and 961 cm ⁻¹ for AdMB-S6,
293	$Fe^{3+}/Fe_{tot.} = 0.37$ and for AdMB-S5, $Fe^{3+}/Fe_{tot.} = 0.52$, respectively. Additionally, a
294	decrease of the shoulder intensity (~1040 cm ⁻¹) occurs with increasing $Fe^{3+}/Fe_{tot.}$ ratio.
295	

11/24

296	DISCUSSION
297	The results presented here generally agree with those of Di Muro et al. (2009).
298	Pantelleritic Raman spectra in this study show a dramatic variation with changing the
299	$Fe^{3+}/Fe_{tot.}$ ratio while a weak sensitivity of Raman spectra is observed for the basaltic
300	glasses with changing iron oxidation state.
301	Our approach differs however in one important aspect from that employed by Di
302	Muro et al. (2009). As noted above, we avoid the highly disputed use of deconvolution
303	bands (Rossano and Mysen 2012; Neuville et al., 2014). Instead we adopt the criterion
304	reported in Di Genova et al. (2015) based on an empirical approach to parameterize
305	Raman spectra using an ideal mixing equation (reported below). This approach provides
306	a robust strategy to determine the iron oxidation state of glasses, independent of the
307	chemical composition of the samples investigated. Furthermore, using this approach,
308	together with iron-rich basaltic glasses (suitable for planetary science studies), the
309	limitation due the low sensitivity of Raman spectra to different iron oxidation states (for
310	depolymerized compositions like basalt) is overcome.
311	
312	Parameterization of the evolution of Raman spectra
313	In order to evaluate Raman spectroscopy as a tool to estimate the iron oxidation
314	state of glasses we combine the acquired Raman spectra (Figs. 2B and 3B) with measured
315	$Fe^{3+}/Fe_{tot.}$ ratios (Table 1) using the model presented in Di Genova et al. (2015).
316	We used an empirical formula (Eq. 1) previously reported in Di Genova et al.
317	(2015) to parameterize the Raman spectra as a function of a fit parameter (R_p) .

318	Specifically we assume that an acquired Raman spectrum can be approximate combining
319	two end-members Raman spectra with the Raman parameter R _p :
320	
321	$Y = E_{OX} \cdot R_P + E_{RED}(1 - R_P) $ ⁽¹⁾
322	
323	where Y represents the acquired Raman spectrum of the investigated sample, and E_{ox} and
324	E_{RED} represent the Raman spectra end-members, namely the most oxidized (Fsp_1 and
325	AdMB-S2) and the most reduced (Fsp_9 and LDM-S5) samples for the pantelleritic and
326	basaltic glasses respectively. The R_p fit parameter was calculated for each acquired
327	Raman spectra using Eq. 1, and has been reported and plotted in Table 2 and Figure 4
328	together with the measured $Fe^{3+}/Fe_{tot.}$ ratios.
329	It must be noted that the R_p parameter is equal to 1 when only the most oxidized
330	end members are considered (Fsp_1 and AdMB-S2) and, on the other hand, is equal to 0
331	when only the most reduced end-members are considered (Fsp_9 and LDM-S5).
332	The two different compositions clearly exhibit trends with respect to the
333	calculated Raman parameter versus Fe^{3+}/Fe_{tot} ratio. For this reason, these trends were
334	parameterized as a function of the Raman parameter (R_p) in order to calculate the
335	$Fe^{3+}/Fe_{tot.}$ ratio of glasses.
336	
337	Raman models to calculate the Fe ³⁺ /Fe _{tot.} ratio of silicate glasses

338 We parameterized the $Fe^{3+}/Fe_{tot.}$ ratio as a function of R_p parameter using the 339 following equation:

341
$$\frac{Fe^{3+}}{Fe_{tot}} = \sqrt{\frac{(a+cR_p)}{(1+bR_p)}}$$
 (2)

342

where a, b and c are the best fit parameters. Finally, using the Eq. 2 with the fit parameters reported in Table 3 (for pantelleritic and basaltic glasses) and the calculated R_p parameters using Eq. 1 (Table 2), we can accurately estimate the Fe³⁺/Fe_{tot.} ratio of our samples simply using the acquired Raman spectra. In Table 1 we report the calculated Fe³⁺/Fe_{tot.} ratios, while in Figure 5 we show the comparison between measured and calculated iron oxidation state of our samples.

349

350 Validation of the models

In order to validate our approach, we have investigated eleven other samples. For 351 this purpose, we have used six natural glasses, anhydrous and water-bearing, with 352 different Fe³⁺/Fe_{tot}, ratios: three pantelleritic glasses from Pantelleria Island (PS series in 353 Di Genova et al. 2013, 2014a) and three basaltic glasses from Etna (ETN series in Di 354 Genova et al., 2014a). In addition, we have used five iron-rich basaltic glasses with 355 different Fe³⁺/Fe_{tot} ratios (analogues for extra-terrestrial basalt, from the IAMB, LDM, 356 HDM series in Chevrel et al. 2014). Chemical compositions are reported in Table 4 357 together with the measured iron oxidation state and water content and, in addition, are 358 shown in a TAS diagram (Fig. 1). 359 360 The acquired Raman spectra are reported in Figure 6. In Table 4 we report, for 361 each sample, the chemical compositions, the measured iron oxidation state, and water content together with the calculated R_p parameters using Eq. 1 and the estimated 362

363 $Fe^{3+}/Fe_{tot.}$ ratio using our models (Eq. 2 and fit parameters in Table 3). A comparison

- - 3+ -

364	between the estimated and the measured $Fe^{3+}/Fe_{tot.}$ ratio is reported in Figure 7. As can be
365	seen in the figure the calculated $Fe^{3+}/Fe_{tot.}$ ratio of the investigated sample are well in
366	accordance with the measured values.

. .

367	Upon inspection of Table 4 it is possible to assess quantitatively the validity of
368	our models to determine the iron oxidation state of silicate glasses. In particular, the
369	anhydrous pantelleritic glass (PS-GM) exhibits a measured $Fe^{3+}/Fe_{tot.}$ ratio of 0.36, while
370	the calculated ratio using our model is 0.38. Concerning the anhydrous analogues extra-
371	terrestrial basalt (IAMB, LDM, HDM series), the estimated $Fe^{3+}/Fe_{tot.}$ ratio is 0.79, 0.28,
372	0.79, 0.21 and 0.79 for IAMB-S1 and -S3, HDM-S1 and -S4 and LDM-S1 samples
373	respectively, while the measured $\text{Fe}^{3+}/\text{Fe}_{\text{tot.}}$ ratios are 0.79, 0.31, 0.77, 0.20 and 0.77.
374	Although our models have been developed using volatile-free samples, we used
375	water-bearing samples (PS 0.5, PS 1.1, ETN 1.4 and ETN 2.9) to verify the accuracy of
376	our models in predicting the iron oxidation state. It must be noted that a water-bearing
377	glass represent an extreme scenario for testing our model as the water has the biggest
378	effects, among all the magmatic volatiles (e.g. H ₂ O, CO ₂ , F, Cl) in affecting the silicate
379	structure (Di Genova et al. 2014a and references therein) and, consequently, the Raman
380	spectra.

In particular, for pantelleritic water-bearing glasses, our model accurately predicts 381 the measured Fe³⁺/Fe_{tot.} ratio. Indeed, sample PS 0.5, characterized by a water content of 382 0.72 wt%, exhibits a Fe³⁺/Fe_{tot} ratio of 0.46. while the calculated Fe³⁺/Fe_{tot} ratio is 0.49. 383 At the same time, sample PS 1.1 which is characterized by a higher water content (1.16 384 wt%) respect to PS 0.5, exhibits a Fe^{3+}/Fe_{tot} ratio of 0.45 while the calculated ratio is 385 0.47. We did not validate our model to predict the oxidation state of a pantelleritic 386

387	samples with a high water content (2.10 wt% H_2O). The difficulty to estimate the
388	$Fe^{3+}/Fe_{tot.}$ ratio of such water rich samples is probably due the large effect of this amount
389	of water on the Raman spectrum.
390	Regarding the basaltic samples, the model can accurately predict the iron
391	oxidation state (measured $Fe^{3+}/Fe_{tot.} = 0.32$, calculated = 0.35) for sample with minor
392	water content (ETN 1.4, H ₂ O 1.48 wt%), however the model shows large errors when the
393	sample with the highest water content is considered (ETN 2.9, H_2O 2.40 wt%). The
394	measured $\text{Fe}^{3+}/\text{Fe}_{\text{tot.}}$ ratio is 0.39, while the calculated ratio is 0.48.
395	For these reasons we stress that care must be taken in applying our models to
396	water-rich samples (i.e. higher than 2.10 and 2.40 wt% for pantelleritic and basaltic
397	samples), because the strong effects of water on the glass structure and, therefore, on the
398	Raman spectra.
399	
400	HOW TO USE THE MODELS
401	The Excel [©] version of our models is provided as Supporting Information. First of
402	all, a Raman spectrum has to be acquired, and we suggest setting the Raman system on
403	how it is reported in Raman Spectroscopy paragraph. Subsequently, the following
404	correction has to be applied to the acquired Raman spectrum [see Shuker and Cammon
405	(1970) and Long (1977) for the theoretical background]:
406	
407	$I = I_{obs} \cdot \left\{ v_0^3 \cdot v \frac{[1 - exp(-hcv/kT)]}{(v_0 - v)^4} \right\} $ (3)
408	

409	where I_{obs} is the acquired Raman spectra, <i>h</i> is the Planck constant, $h = 6.62607 \times 10^{-34} \text{ J s}$,
410	k is the Boltzmann constant; $k = 1.38065 \times 10^{-23} \text{ J K}^{-1}$, c is the speed of light, c =
411	2.9979×10^{10} cm s ⁻¹ , T is the absolute temperature, v ₀ is the wavenumber of the incident
412	laser light ($10^{7}/532$ for the green laser), and v is the measured wavenumber in cm ⁻¹ .
413	After applying the correction, the background subtraction has to be applied to the
414	acquired spectrum (see Raman Spectroscopy paragraph) together with an intensity
415	normalization to 100 (arbitrary units).
416	Finally, before using the Excel [©] file, it is important to verify that the 3 different
417	Raman spectra (2 end-members spectra and the sample spectrum) have to be necessarily
418	characterized by the same X values (cm ⁻¹).
419	
420	Implications
421	Here, we presented an improved Raman spectra-database (after Di Genova et al.,
422	2015) including silica-alkali-rich and iron-rich basaltic glasses together with two linear
422 423	2015) including silica-alkali-rich and iron-rich basaltic glasses together with two linear mixing models to estimate the iron oxidation state ($Fe^{3+}/Fe_{tot.}$) from the spectra. This
422 423 424	2015) including silica-alkali-rich and iron-rich basaltic glasses together with two linear mixing models to estimate the iron oxidation state ($Fe^{3+}/Fe_{tot.}$) from the spectra. This study, in addition to the results presented by Di Genova et al. (2015), provides a high
422 423 424 425	2015) including silica-alkali-rich and iron-rich basaltic glasses together with two linear mixing models to estimate the iron oxidation state ($Fe^{3+}/Fe_{tot.}$) from the spectra. This study, in addition to the results presented by Di Genova et al. (2015), provides a high spatial resolution (~1µm) tool for detailed studies of the chemical composition and iron
422 423 424 425 426	2015) including silica-alkali-rich and iron-rich basaltic glasses together with two linear mixing models to estimate the iron oxidation state ($Fe^{3+}/Fe_{tot.}$) from the spectra. This study, in addition to the results presented by Di Genova et al. (2015), provides a high spatial resolution (~1µm) tool for detailed studies of the chemical composition and iron oxidation state of glasses. The implications and applications of such a tool are multiple:
422 423 424 425 426 427	2015) including silica-alkali-rich and iron-rich basaltic glasses together with two linear mixing models to estimate the iron oxidation state (Fe ³⁺ /Fe _{tot.}) from the spectra. This study, in addition to the results presented by Di Genova et al. (2015), provides a high spatial resolution (~1µm) tool for detailed studies of the chemical composition and iron oxidation state of glasses. The implications and applications of such a tool are multiple: 1-High spatial resolution tool for estimating chemical composition and iron
422 423 424 425 426 427 428	2015) including silica-alkali-rich and iron-rich basaltic glasses together with two linear mixing models to estimate the iron oxidation state (Fe ³⁺ /Fe _{tot.}) from the spectra. This study, in addition to the results presented by Di Genova et al. (2015), provides a high spatial resolution (~1µm) tool for detailed studies of the chemical composition and iron oxidation state of glasses. The implications and applications of such a tool are multiple: 1-High spatial resolution tool for estimating chemical composition and iron oxidation state of glasses (from melt inclusions to glass matrix of rocks);
422 423 424 425 426 427 428 429	2015) including silica-alkali-rich and iron-rich basaltic glasses together with two linear mixing models to estimate the iron oxidation state (Fe ³⁺ /Fe _{tot}) from the spectra. This study, in addition to the results presented by Di Genova et al. (2015), provides a high spatial resolution (~1µm) tool for detailed studies of the chemical composition and iron oxidation state of glasses. The implications and applications of such a tool are multiple: 1-High spatial resolution tool for estimating chemical composition and iron oxidation state of glasses (from melt inclusions to glass matrix of rocks); 2-In-situ and remotely controlled identification, discrimination and analyses of
422 423 424 425 426 427 428 429 430	2015) including silica-alkali-rich and iron-rich basaltic glasses together with two linear mixing models to estimate the iron oxidation state (Fe ³⁺ /Fe _{tot.}) from the spectra. This study, in addition to the results presented by Di Genova et al. (2015), provides a high spatial resolution (~1µm) tool for detailed studies of the chemical composition and iron oxidation state of glasses. The implications and applications of such a tool are multiple: 1-High spatial resolution tool for estimating chemical composition and iron oxidation state of glasses (from melt inclusions to glass matrix of rocks); 2-In-situ and remotely controlled identification, discrimination and analyses of glasses (determination of chemical composition and iron oxidation state);

432	The method presented here is of particular interest for analyses of small quantities
433	of glass such as melt inclusions and glass matrix of crystalline rocks. Indeed, the
434	chemical composition and $\mathrm{Fe}^{3+}/\mathrm{Fe}_{tot.}$ ratio of melt inclusion is widely used as a chemical
435	indicator of the melt redox conditions during the formation of magmas at depth, both on
436	Earth and other planets. For example, Berry et al. (2008) used XANES to study the iron
437	oxidation state of melt inclusion in Komatiite in order to infer the condition of the
438	Archean mantle.
439	As documented since the first Apollo missions, amorphous materials, especially
440	iron-rich basaltic, are encountered frequently on the Moon (Shearer et al. 1990).
441	Similarly, several recent studies (Horgan and Bell 2012; Blake et al. 2013; Vaniman et al.
442	2013; Bish 2014; Downs 2015; Grotzinger et al. 2015; Kah 2015; Newsom et al. 2015)
443	observed high abundances of alkali-silica-rich amorphous materials in sediment on Mars
444	and Martian meteorites.
445	Herd et al. (2001, 2002) investigated the oxygen fugacity of Martian basaltic
446	meteorites. Both studies claim that the oxygen fugacity of the samples varies by 2 log
447	units suggesting that water may play a significant role in the oxidation of basaltic
448	magmas on Mars or, alternatively, a secondary assimilation of ferric iron-rich material.
449	Our method would allow similar analyses in a much faster and cheaper way than XANES
450	spectroscopy and, importantly, directly in-situ and remotely controlled.
451	The potential of this methodology has recently been demonstrated by Raman
452	apparatus, which were used to perform analyses under extreme conditions (Tarcea et al.
453	2008; Di Genova et al. 2015 and reference therein). Moreover, both the European Space
454	Agency (ESA) and National Aeronautics and Space Administration (NASA) have

455	established two forthcoming Mars mission [ExoMars program (2016-2018) and Mars
456	2020], using rovers equipped with Raman spectrometers, to investigate the Martian
457	environment in order to provide information about the potential generation of life and
458	igneous processes on the planet. In this context, in Figure 1 we report a compilation of
459	the chemical analyses recently performed on Mars. Inspection of the diagram reveals that
460	the chemical compositions of the samples used in this work well match the <i>in-situ</i>
461	estimated chemical compositions on Mars and, for this reason, we believe that our tool
462	will enhance the interpretive capabilities of the forthcoming Mars missions.
463	Another applications of our results are the possibility to discriminate the impact
464	vs. volcanic origin of glasses. Indeed, Lukanin and Kadik (2007) presented a review of
465	the available data on the $\mathrm{Fe}^{3+}/\mathrm{Fe}_{\mathrm{tot.}}$ ratio of tektites and impact glasses, concluding that
466	these glasses are more reduced compared with the precursor target material probably
467	related to the characteristics of oxygen, and temperature, regime during the
468	decompression stage following shock compression.
469	For all these reasons, our study extends the potential use of Raman spectroscopy
470	to a powerful tool able to shed new light on the formation of impact craters and the type
471	of magmatism and volcanic activity in our solar system.

472

473 ACKNOWLEDGMENTS

This research was funded by the European Union's Seventh Programme for
research technological development and demonstration by the ERC Advanced Grant
247076 – EVOKES. The authors are grateful to Dr F. Rinaldi, Dr M. R. Cicconi and S.

477 Kolzenburg for useful discussions and advice.

11/24

478	
479	R EFERENCES CITED
480	Baratoux, D., Toplis, M.J., Monnereau, M., and Gasnault, O. (2011) Thermal history of
481	Mars inferred from orbital geochemistry of volcanic provinces. Nature, 472, 338–
482	341.
483	Behrens, H., and Zhang, Y. (2009) H ₂ O diffusion in peralkaline to peraluminous rhyolitic
484	melts. Contributions to Mineralogy and Petrology, 157, 765–780.
485 486	Bell, R.J., and Dean, P. (1972) The structure of vitreous silica: Validity of the random network theory. Philosophical Magazine, 25, 1381–1398.
487 488	Bell, R.J., Bird, N.F., and Dean, P. (1968) The vibrational spectra of vitreous silica, germania and beryllium fluoride. Journal of Physics C: Solid State Physics 1 299.
489	Berry, A.J., O'Neill, H.S.C., Jayasuriya, K.D., Campbell, S., and Foran, G.J. (2003)
490	XANES calibrations for the oxidation state of iron in a silicate glass. American
491	Mineralogist, 88, 967–977.
492	Berry, A.J., Danyushevsky, L. V., St C. O'Neill, H., Newville, M., and Sutton, S.R.
493	(2008) Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean
494	mantle. Nature, 455, 960–963.
495	Bish, D.L., Blake, D. F., Vaniman, D. T., Chipera, S. J., Morris, R. V., Ming, D. W.,
496	Treiman, A. H., Sarrazin, P., Morrison, S. M., Downs, R. T., and others (2014) X-
497	ray Diffraction Results from Mars. Science, 341, 1–6.
498	Blake, D.F., Morris, R. V, Kocurek, G., Morrison, S.M., Downs, R.T., Bish, D., Ming,
499	D.W., Edgett, K.S., Rubin, D., Goetz, W., and others (2013) Curiosity at Gale crater,
500	Mars: characterization and analysis of the Rocknest sand shadow. Science, 341,
501	1239505.
502	Borisov, A., Behrens, H., and Holtz, F. (2015) Effects of melt composition on Fe3+/Fe2+
503	in silicate melts: a step to model ferric/ferrous ratio in multicomponent systems.
504	Contributions to Mineralogy and Petrology, 169, 23–24.
505 506 507	Botcharnikov, R.E., Koepke, J., Holtz, F., McCammon, C. a., and Wilke, M. (2005) The effect of water activity on the oxidation and structural state of Fe in a ferro-basaltic melt. Geochimica et Cosmochimica Acta, 69, 5071–5085.
508	Campeny, M., Kamenetsky, V.S., Melgarejo, J.C., Mangas, J., Manuel, J., Alfonso, P.,
509	Kamenetsky, M.B., Bambi, A.C.J.M., and Gonçalves, A.O. (2015) Carbonatitic

lavas in Catanda (Kwanza Sul, Angola): Mineralogical and geochemical constraints on the parental melt. Lithos, 232, 1–11.
Chevrel, M.O., Giordano, D., Potuzak, M., Courtial, P., and Dingwell, D.B. (2013) Physical properties of CaAl ₂ Si ₂ O ₈ -CaMgSi ₂ O ₆ -FeO-Fe ₂ O ₃ melts: Analogues for extra-terrestrial basalt. Chemical Geology, 346, 93–105.
Chevrel, M.O., Baratoux, D., Hess, K.U., and Dingwell, D.B. (2014) Viscous flow behavior of tholeiitic and alkaline Fe-rich martian basalts. Geochimica et Cosmochimica Acta, 124, 348–365.
Cicconi, M.R., Giuli, G., Ertel-Ingrisch, W., Paris, E., and Dingwell, D.B. (2015) The effect of the [Na/(Na+K)] ratio on Fe speciation in phonolitic glasses. American Mineralogist, 100, 1610–1619.
Cukierman, M., and Uhlmann, D.R. (1974) Effects of Iron Oxidation State on Viscosity, Lunar Composition 15555. J. Geophys. Res., 79, 1594–1598.
Di Genova, D., Romano, C., Hess, K.U., Vona, A., Poe, B.T., Giordano, D., Dingwell, D.B., and Behrens, H. (2013) The rheology of peralkaline rhyolites from Pantelleria Island. Journal of Volcanology and Geothermal Research, 249, 201–216.
Di Genova, D., Romano, C., Giordano, D., and Alletti, M. (2014a) Heat capacity, configurational heat capacity and fragility of hydrous magmas. Geochimica et Cosmochimica Acta, 142, 314-333.
Di Genova, D., Romano, C., Alletti, M., Misiti, V., and Scarlato, P. (2014b) The effect of CO ₂ and H ₂ O on Etna and Fondo Riccio (Phlegrean Fields) liquid viscosity, glass transition temperature and heat capacity. Chemical Geology, 377, 72–86.
Di Genova, D., Morgavi, D., Hess, K.U., Neuville, D.R., Borovkov, N., Perugini, D., and Dingwell, D.B. (2015) Approximate chemical analysis of volcanic glasses using Raman spectroscopy. Journal of Raman Spectroscopy. <i>In Press</i> .
 Di Muro, A., Métrich, N., Mercier, M., Giordano, D., Massare, D., and Montagnac, G. (2009) Micro-Raman determination of iron redox state in dry natural glasses: Application to peralkaline rhyolites and basalts. Chemical Geology, 259, 78–88.
Dingwell, D.B. (1991) Redox viscometry of some Fe-bearing silicate melts. American Mineralogist, 76, 1560–1562.
Dingwell, D.B. (2006) Transport Properties of Magmas: Diffusion and Rheology. Elements, 2, 281–286.

542 543 544	Dingwell, D.B., and Virgo, D. (1987) The effect of oxidation state on the viscosity of melts in the system Na ₂ O-FeO-Fe ₂ O ₃ -SiO ₂ . Geochimica et Cosmochimica Acta, 51, 195–205.
545	Dingwell, D.B. (1988) Viscosity-oxidation state relationship for hedenbergitic melt.
546	Carnagie Institution of Washington Year Book, 87, 48–53.
547	Dingwell, D.B., Brearley, M., and Dickinson Jr, E. (1988) Melt densities in the Na ₂ O-
548	FeO-Fe ₂ O ₃ -SiO ₂ system and the partial molar volume of tetrahedrally-coordinated
549	ferric iron in silicate melts. Geochimica et Cosmochimica Acta, 52, 2467–2475.
550	Dingwell, D.B., Romano, C., and Hess, K.U. (1996) The effect of water on the viscosity
551	of a haplogranitic melt under P-T-X conditions relevant to silicic volcanism.
552	Contributions to Mineralogy and Petrology, 124, 19–28.
553 554	Downs, R.T. and MSL Science Team (2015) Determining Mineralogy on Mars with the CheMin X-Ray Diffractometer. Elements, 11, 45–50.
555 556 557	Furukawa, T., Fox, K.E., and White, W.B. (1981) Raman spectroscopic investigation of the structure of silicate glasses. III. Raman intensities and structural units in sodium silicate glasses. The Journal of Chemical Physics, 75, 3226.
558	Giuli, G., Paris, E., Pratesi, G., Koeberl, C., and Cipriani, C. (2003) Iron oxidation state
559	in the Fe-rich layer and silica matrix of Libyan Desert Glass: A high-resolution
560	XANES study. Meteoritics and Planetary Science, 38, 1181–1186.
561	Giuli, G., Paris, E., Hess, K.U., Dingwell, D.B., Cicconi, M.R., Eeckhout, S.G., Fehr,
562	K.T., and Valenti, P. (2011) XAS determination of the Fe local environment and
563	oxidation state in phonolite glasses. American Mineralogist, 96, 631–636.
564	Giuli, G., Alonso-Mori, R., Cicconi, M.R., Paris, E., Glatzel, P., Eeckhout, S.G., and
565	Scaillet, B. (2012) Effect of alkalis on the Fe oxidation state and local environment
566	in peralkaline rhyolitic glasses. American Mineralogist, 97, 468–475.
567 568	Grotzinger, J.P., Crisp, J.A., Vasavada, A.R., and Team, MSL Team (2015) Curiosity's Mission of Exploration at Gale Crater, Mars. Elements, 11, 19–26.
569	Herd, C.D.K., Papike, J.J., and Brearley, a. J. (2001) Oxygen fugacity of martian basalts
570	from electron microprobe oxygen and TEM-EELS analyses of Fe-Ti oxides.
571	American Mineralogist, 86, 1015–1024.
572 573 574 575	Herd, C.D.K., Borg, L.E., Jones, J.H., and Papike, J.J. (2002) Oxygen fugacity and geochemical variations in the martian basalts: Implications for martian basalt petrogenesis and the oxidation state of the upper mantle of Mars. Geochimica et Cosmochimica Acta, 66, 2025–2036.

576 577	Hess, K.U., and Dingwell, D.B. (1996) Viscosities of hydrous leucogranitic melts : A non-Arrhenian model. American Mineralogist, 81, 1297–1300.
578 579	Horgan, B., and Bell, J.F. (2012) Widespread weathered glass on the surface of Mars. Geology, 40, 391.
580 581 582	Jackson, W.E., de Leon, J.M., Brown, G.E., Waychunas, G. a, Conradson, S.D., and Combes, J.M. (1993) High-Temperature XAS Study of Fe ₂ SiO ₄ Liquid: Reduced Coordination of Ferrous Iron. Science (New York, N.Y.), 262, 229–233.
583 584	Kah, L.C. and the MSL Science Team (2015) Images from Curiosity: A New Look at Mars. Elements, 11, 27–32.
585 586 587	Knipping, J.L., Behrens, H., Wilke, M., Göttlicher, J., and Stabile, P. (2015) Effect of oxygen fugacity on the coordination and oxidation state of iron in alkali bearing silicate melts. Chemical Geology, 411, 143–154.
588 589 590 591	Kress, V.C., and Carmichael, I.S.E. (1991) The compressibility of silicate liquids containing Fe ₂ O ₃ and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contributions to Mineralogy and Petrology, 108, 82–92.
592 593 594	Lange, R.A., and Carmichael, I.S.E. (1987) Densities of Na ₂ O-K ₂ O-CaO-MgO-FeO- Fe ₂ O ₃ -Al ₂ O ₃ -TiO ₂ -SiO ₂ liquids; new measurements and derived partial molar properties. Geochimica et Cosmochimica Acta, 2931–2946.
595 596 597	Lange, R.L., and Carmichael, I.S.E. (1990) Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility. Reviews in Mineralogy and Geochemistry, 24, 25–64.
598 599	Lee, S.K., and Stebbins, J.F. (2003) Nature of Cation Mixing and Ordering in Na-Ca Silicate Glasses and Melts. The Journal of Physical Chemistry B, 107, 3141–3148.
600	Long, D.A. (1977) Raman Spectroscopy. Mcgraw-Hill, 2, 276.
601 602 603	Lukanin, O.A., and Kadik, A.A. (2007) Decompression mechanism of ferric iron reduction in tektite melts during their formation in the impact process. Geochemistry International, 45, 857–881.
604 605 606 607	Magnien, V., Neuville, D.R., Cormier, L., Roux, J., Hazemann, JL., de Ligny, D., Pascarelli, S., Vickridge, I., Pinet, O., and Richet, P. (2008) Kinetics and mechanisms of iron redox reactions in silicate melts: The effects of temperature and alkali cations. Geochimica et Cosmochimica Acta, 72, 2157–2168.
608 609	Malfait, W.J., and Sanchez-Valle, C. (2012) Effect of water and network connectivity on glass elasticity and melt fragility. Chemical Geology, 346, 72-80.

610 611 612	McCammon, C.A., Chaskar, V., and Richards, G.G. (1991) A technique for spatially resolved Mössbauer spectroscopy applied to quenched metallurgical slags. Measurement Science and Technology, 657–662.
613	McMillan, P.F. (1984) A Raman spectroscopic study of glasses in the system CaO-MgO-
614	SiO ₂ . American Mineralogist, 69, 645–659.
615	McMillan, P.F., and Piriou, B. (1982) The structures and vibrational spectra of crystals
616	and glasses in the silica-alumina system. Journal of Non-Crystalline Solids, 53, 279–
617	298.
618	Ming, D.W., Gellert, R., Morris, R. V., Arvidson, R.E., Brückner, J., Clark, B.C., Cohen,
619	B. a., D'Uston, C., Economou, T., Fleischer, I., and others (2008) Geochemical
620	properties of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle X-
621	Ray Spectrometer from Cumberland Ridge to Home Plate. Journal of Geophysical
622	Research E: Planets, 113, E12S39.
623 624	Moretti, R. (2005) Polymerisation, basicity, oxidation state and their role in ionic modelling of silicate melts. Annals of Geophysics, 48, 583–608.
625	Mysen, B.O. (1991) Relations Between Structure, Redox Equilibria of Iron, and
626	Properties of Magmatic Liquids. In L. Perchuk and I. Kushiro, Eds., Physical
627	Chemistry of Magmas SE - 2 Vol. 9, pp. 41–98. Springer New York.
628	Mysen, B.O. (1997) Aluminosilicate melts: structure, composition and temperature.
629	Contributions to Mineralogy and Petrology, 127, 104–118.
630 631	Mysen, B.O. (2003) Physics and chemistry of silicate glasses and melts. European Journal of Mineralogy, 15, 781–802.
632	Mysen, B.O., and Richet, P. (2005) Silicate Glasses and Melts, 544 p. Elsevier,
633	Amsterdam.
634	Mysen, B.O., and Toplis, M.J. (2007) Structural behavior of Al ³⁺ in peralkaline,
635	metaluminous, and peraluminous silicate melts and glasses at ambient pressure.
636	American Mineralogist, 92, 933–946.
637 638 639	Mysen, B.O., Virgo, D., and Scanrfe, C.M. (1980) Relations between the anionic structure and viscosity of silicate melts - a Raman spectroscopic study. American Mineralogist, 65, 690–710.
640	Mysen, B.O., Virgo, D., and Seifert, A. (1982) Implications for Chemical and Physical
641	Properties of Natural Magma. Reviews of Geophysics and space physics, 20, 353–
642	383.

643 644 645	Mysen, B.O., Virgo, D., and Seifert, F. (1984) Redox equilibria of iron in alkaline earth silicate melts: relationships between melt structure, oxygen fugacity, temperature and properties of iron-bearing silicate liquids. American Mineralogist, 69, 834–847.
646 647	Neuville, D.R. (2006) Viscosity, structure and mixing in (Ca, Na) silicate melts. Chemical Geology, 229, 28–41.
648 649 650	Neuville, D.R., and Mysen, B.O. (1996) Role of aluminium in the silicate network: In situ, high-temperature of glasses and melts on the join SiO ₂ -NaAlO ₂ . Geochimica et Cosmochimica Acta, 60, 1727–1737.
651 652 653	Neuville, D.R., Courtial, P., Dingwell, D.B., and Richet, P. (1993) Thermodynamic and rheological properties of rhyolite and andesite melts. Contributions to Mineralogy and Petrology, 113, 572–581.
654 655 656	Neuville, D.R., de Ligny, D., and Henderson, G.S. (2014) Advances in Raman Spectroscopy Applied to Earth and Material Sciences. Review in Mineralogy, 78, 509–541.
657 658 659	Newsom, H.E., Mangold, N., Kah, L.C., Williams, J.M., Arvidson, R.E., Stein, N., Ollila, A.M., Bridges, J.C., Schwenzer, S.P., King, P.L., and others (2015) Gale crater and impact processes – Curiosity's first 364 Sols on Mars. Icarus, 249, 108–128.
660 661 662	Ottonello, G., Moretti, R., Marini, L., and Vetuschi Zuccolini, M. (2001) Oxidation state of iron in silicate glasses and melts: A thermochemical model. Chemical Geology, 174, 157–179.
663 664	Papale, P. (1999) Modeling of the solubility of a two-component H ₂ O+CO ₂ fluid in silicate liquids. American Mineralogist, 84, 477–492.
665 666 667	Pasquarello, A., Sarnthein, J., and Car, R. (1998) Dynamic structure factor of vitreous silica from first principles: Comparison to neutron-inelastic-scattering experiments. Physical Review B.
668 669 670	Persikov, Y.S., Zharikov, V.A., Bukhtiyarov, P.G., and Pol'skoy, S.F. (1990) The effect of volatiles on the properties of magmatic melts. European Journal of Mineralogy, 2, 621–642.
671 672 673	Pouchou, JL., and Pichoir, F. (1991) Quantitative Analysis of Homogeneous or Stratified Microvolumes Applying the Model "PAP." In K.F.J. Heinrich and D. Newbury, Eds., Electron Probe Quantitation SE - 4 pp. 31–75. Springer US.
674 675	Richet, P. (1984) Viscosity and configurational entropy of silicate melts. Geochimica et Cosmochimica Acta, 48, 471–483.

676 677	Robert, G., Whittington, A.G., Stechern, A., and Behrens, H. (2014) Heat capacity of hydrous basaltic glasses and liquids. Journal of Non-Crystalline Solids, 390, 19–30.
678 679 680	Romano, C., Poe, B.T., Mincione, V., Hess, K.U., and Dingwell, D.B. (2001) The viscosities of dry and hydrous XAISi ₃ O ₈ (X = Li, Na, K, Ca-0.5, Mg-0.5) melts. Chemical Geology, 174, 115–132 ST – The viscosities of dry and hydrous X.
681 682	Rossano, S., Behrens, H., and Wilke, M. (2008) Advanced analyses of 57Fe Mössbauer data of alumino-silicate glasses. Physics and Chemistry of Minerals, 35, 77–93.
683 684	Rossano, S., and Mysen B. O. (2012) Raman spectroscopy of silicate glasses and melts in geological systems. EMU Notes in Mineralogy, 12.
685	Sehlke, a., Whittington, a., Robert, B., Harris, a., Gurioli, L., and Médard, E. (2014)
686	Pahoehoe to `a`a transition of Hawaiian lavas: an experimental study. Bulletin of
687	Volcanology, 76.
688	Seifert, F., Mysen, B.O., and Virgo, D. (1982) Three-dimensional network structure of
689	quenched melts (glass) in the systems SiO ₂ -NaAlO ₂ , SiO ₂ -CaAl ₂ O ₄ and SiO ₂ -
690	MgAl ₂ O ₄ . American Mineralogist, 67, 696–717.
691 692	Shuker, R., and Cammon, W. (1970) Raman-Scattering selection-rule breaking and the density of states in amorphous materials. Physical Review Letters, 25, 222–225.
693	Stebbins, J.F. (2008) Temperature effects on the network structure of oxide melts and
694	their consequences for configurational heat capacity. Chemical Geology, 256, 80–
695	91.
696	Stolper, E.M. (1982) Water in silicate glasses: An infrared spectroscopic study.
697	Contributions to Mineralogy and Petrology, 81, 1–17.
698	Tarcea, N., Frosch, T., Rösch, P., Hilchenbach, M., Stuffler, T., Hofer, S., Thiele, H.,
699	Hochleitner, R., and Popp, J. (2008) Raman Spectroscopy—A Powerful Tool for in
700	situ Planetary Science. Space Science Reviews, 135, 281–292.
701	Toplis, M.J., and Carroll, M.R. (1995) An Experimental Study of the Influence of
702	Oxygen Fugacity on Fe-Ti Oxide Stability , Phase Relations , and Mineral- Melt
703	Equilibria in Ferro-Basaltic Systems. Journal of Petrology, 36, 1137–1170.
704 705 706	Toplis, M.J., Dingwell, D.B., and Libourel, G. (1994) The effect of phosphorus on the iron redox ratio, viscosity, and density of an evolved ferro-basalt. Contributions to Mineralogy and Petrology, 117, 293–304.
707	Umari, P., Gonze, X., and Pasquarello, A. (2003) Concentration of small ring structures
708	in vitreous silica from a first-principles analysis of the Raman spectrum. Physical
709	review letters, 90, 027401.

710	Vaniman D.T. Rish D.I. Ming D.W. Bristow T.F. Morris R. V. Blake D.F.
711	Chipera, S.J., Morrison, S.M., Treiman, a H., Rampe, E.B., and others (2013)
712	Mineralogy of a Mudstone at Yellowknife Bay Gale Crater Mars Science (New
713	York, N.Y.), 343, 1243480.
714 715	Whittington, A., Richet, P., Linard, Y., and Holtz, F. (2001) The viscosity of hydrous phonolites and trachytes. Chemical Geology, 174, 209–223.
716 717 718	Wilke, M., Farges, F., Petit, P.E., Brown, G.E., and Martin, F. (2001) Oxidation state and coordination of Fe in minerals: An FeK- XANES spectroscopic study. American Mineralogist, 86, 714–730.
719 720 721 722	Wilke, M., Schmidt, C., Farges, F., Malavergne, V., Gautron, L., Simionovici, A., Hahn, M., and Petit, P.E. (2006) Structural environment of iron in hydrous aluminosilicate glass and melt-evidence from X-ray absorption spectroscopy. Chemical Geology, 229, 144–161.
723 724	Xue X. (2009) Water speciation in hydrous silicate and aluminosilicate glasses : Direct evidence from. American Mineralogist, 94, 395–398.
725	
726	Figure captions
727	Figure 1. TAS (total alkali vs SiO ₂ contents in wt%) diagram showing the chemical
728	composition of glasses used in this study. Yellow symbols represent the input chemical
729	composition (oxidized and reduced) used to develop the Raman models (Eq. 1). Red
730	symbols represent the samples used for the model validation. Red and green areas show
731	the interval of chemical compositions measured on Mars and from Martian meteorites
732	according to Stolper et al. (2013) and Sautter et al. (2015).
733	
734	Figure 2. (a) Raw Raman spectra after a cubic baseline correction of silica-alkali-rich
735	samples (Fsp, pantellerite). Vertical dashed lines represent the main peaks and shoulders
736	of the spectra. (b) Raman spectra corrected according to Eq. 2 and normalized to the most
737	intense peak.

11/24

739	Figure 3. (a) Raw Raman spectra after a cubic baseline correction of iron-rich samples
740	(AdMB and LDM, Martian basalts). Vertical dashed lines represent the main peaks and
741	shoulders of the spectra. (b) Raman spectra corrected according to Eq. 2 and normalized
742	to the most intense peak.
743	
744	Figure 4. Measured iron oxidation states as a function of the calculated Raman parameter
745	(R_p) using Eq. 1 for (a) pantelleritic and (b) basaltic samples. Lines represent the fits
746	obtained using Eq. 2 and fit parameters reported in Table 3. White symbols represent the
747	samples used for model parameterization and colored symbols represent external samples
748	used for model validation.
749	
750	Figure 5. Comparison between measured $Fe^{3+}/Fe_{tot.}$ ratio using wet chemistry and
751	calculated $Fe^{3+}/Fe_{tot.}$ using our proposed Raman models (Eq. 2 and fitting parameters of
752	Tables 2 and 3) for the samples used in this study. $Fe^{3+}/Fe_{tot.}$ ratios are reported in Table
753	1.
754	
755	Figure 6. Long-corrected, and normalized, Raman spectra of samples used to validate
756	our Raman models. PS and ETN samples are from Di Genova et al. (2013; 2014a), while
757	the remaining samples are from Chevrel et al. (2014).
758	
759	Figure 7. Comparison between measured $Fe^{3+}/Fe_{tot.}$ ratio using wet chemistry and

validate the models. $Fe^{3+}/Fe_{tot.}$ ratios and Raman parameters are reported in Table 4. The white square represents the basaltic sample (ETN 2.9) with the highest water content (H₂O 2.40 wt%) for which our model shows the highest error in the Fe³⁺/Fe_{tot.} ratio estimation among the analyzed samples (see Table 4 and text for discussion).

765

766 Figure 1

Figure 2

Figure 3

787 Figure 4

11/24

797 Figure 5

814 Figure 6

816 Figure 7

36

11/24

Table 1.

Chemical composition and iron oxidation state of analyzed glasses.													
Sample	SiO ₂	TiO ₂	Al_2O_3	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	Tot.	Fe ³⁺ /Fe _{tot.} b	Fe ³⁺ /Fe _{tot.} calc.c
Fsp_1	72.53	0.44	8.70	9.02	0.34	0.17	0.45	4.59	4.09	0.00	100.33	0.83	0.86
Fsp_2	71.89	0.43	8.78	8.78	0.35	0.16	0.43	4.37	4.01	0.00	99.20	0.74	0.76
Fsp_3	72.94	0.42	8.92	8.55	0.37	0.17	0.44	4.46	4.10	0.00	100.37	0.58	0.58
Fsp_4	71.93	0.43	8.97	8.93	0.37	0.17	0.46	4.72	4.18	0.00	100.16	0.62	0.56
Fsp_5	73.75	0.41	9.06	7.73	0.30	0.15	0.37	4.08	3.94	0.00	99.79	0.69	0.69
Fsp_6	73.11	0.43	8.97	8.34	0.37	0.17	0.47	4.55	4.18	0.00	100.59	0.40	0.43
Fsp_7	73.44	0.43	9.05	7.71	0.35	0.17	0.40	4.08	3.99	0.00	99.62	0.35	0.33
Fsp_8	74.62	0.45	9.05	7.17	0.38	0.18	0.45	4.06	4.05	0.00	100.41	0.26	0.27
Fsp_9	74.24	0.44	9.01	7.04	0.36	0.17	0.47	4.19	4.14	0.00	100.06	0.24	0.24
AdMB-S2 ^a	46.77	0.61	10.93	19.65	0.44	9.23	8.73	2.88	0.18	0.57	100.00	0.79	0.79
AdMB-S5 ^a	47.46	0.58	10.98	19.41	0.44	8.97	8.59	2.84	0.18	0.57	100.00	0.52	0.49
AdMB-S6 ^a	47.62	0.64	11.13	18.95	0.43	9.13	8.53	2.84	0.17	0.57	100.00	0.37	0.36
LDM-S5 ^a	45.17	0.71	10.47	18.09	0.14	11.28	8.96	3.91	0.29	0.98	100.00	0.15	0.15
^a From Chevr	al at al 20	114 (no)	malicod	to 100 y	vt%)								

^a From Chevrel et al. 2014 (normalised to 100 wt%).

^bObtained by wet chemistry.

 $^{c}\text{Calculated Fe}^{3+}\!/\text{Fe}_{\text{tot.}}$ ratio using Eq. 2.

818

Table 2.

Calculated R_p parameter using Eq. 1

Sample	Fe ³⁺ /Fe _{tot.}	R _p
Fsp_1	0.83	1.000
Fsp_2	0.74	0.947 (0.004)
Fsp_3	0.58	0.793 (0.008)
Fsp_4	0.62	0.770 (0.009)
Fsp_5	0.69	0.903 (0.007)
Fsp_6	0.40	0.564 (0.011)
Fsp_7	0.35	0.314 (0.014)
Fsp_8	0.26	0.104 (0.013)
Fsp_9	0.24	0.000
AdMB-S2	0.79	1.000
AdMB-S6	0.37	0.684 (0.017)
HDM-S1	0.77	1.000 (0.011)
LDM-S5	0.15	0.000

819

Table 3.

Fit parameters used to parameterize the Fe³⁺/Fe_{tot.} ratio (Eq. 2) as a function of the R_p parameter (Eq. 1)

	а	b	С	R ²
Pantellerite	0.0571 (0.0061)	-0.8189 (0.0570)	0.0760 (0.0288)	0.984
Basalt	0.0223 (0.0039)	-0.9007 (0.0300)	0.0391 (0.0131)	0.996

Table 4.

Chemical composition and iron oxidation state of the analyzed external samples used to test the proposed Raman model. The calculated iron oxidation state using the Eq. 2 and the calculated Raman parameter (R_p) are also reported.

Sample	SiO ₂	TiO ₂	AI_2O_3	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	Cr_2O_3	H ₂ O	Tot.	Fe ³⁺ /Fe _{tot.}	R _p ^d	Fe ³⁺ /Fe _{tot.} calc.e
PS-GM ^a	69.21	0.50	9.18	8.63	0.32	0.08	0.60	6.52	4.35	0.04	-	0.00	99.43	0.36	0.640 (0.012)	0.38
PS 0.5 ^b	70.02	0.49	9.18	8.30	0.39	0.08	0.59	5.94	3.96	0.04	0.01	0.72	99.72	0.46	0.454 (0.018)	0.49
PS 1.1 ^b	69.78	0.49	9.09	8.44	0.37	0.08	0.58	5.74	3.99	0.02	0.01	1.16	99.75	0.45	0.676 (0.013)	0.47
IAMB-S1 ^c	48.14	1.09	8.52	21.31	0.41	9.33	6.45	3.32	0.57	0.86	-	0.00	100.00	0.79	1.000 (0.082)	0.79
IAMB-S3 ^c	53.59	1.03	9.18	16.62	0.34	8.05	5.73	3.85	0.77	0.86	-	0.00	100.00	0.31	0.510 (0.022)	0.28
HDM-S1 ^c	45.23	0.56	10.34	21.04	0.12	11.04	8.27	0.20	2.61	0.60	-	0.00	100.00	0.77	1.000 (0.052)	0.79
HDM-S4 ^c	47.35	0.55	10.75	18.46	0.11	11.04	8.21	0.19	2.73	0.60	-	0.00	100.00	0.20	0.263 (0.010)	0.21
LDM-S1 ^c	42.69	0.68	10.11	21.77	0.15	10.98	8.72	3.60	0.27	1.03	-	0.00	100.00	0.77	1.000 (0.038)	0.79
ETN DRY ^b	48.95	1.67	17.00	10.08	0.24	5.54	10.18	3.72	1.85	0.01	0.47	0.00	99.71	0.76	0.988 (0.024)	0.74
ETN 1.4 ^b	47.96	1.65	16.68	10.17	0.22	5.39	10.09	3.66	1.83	0.02	0.53	1.48	99.68	0.32	0.671 (0.035)	0.35
ETN 2.9 ^b	47.90	1.61	16.62	10.15	0.20	5.29	9.92	3.59	1.78	0.01	0.47	2.40	99.94	0.39	0.845 (0.043)	0.48
^a From Di Genova et al. 2013.																
^b From Di Genova et al. 2014a.																

^cFrom Chevrel et al. 2014.

^dRaman parametr calculated according to Eq. 1. ^eCalculated Fe³⁺/Fe_{tot.}^{ratio} using Eq. 2.