1	REVISION 1
2	A story of olivine from the McIvor Hill complex (Tasmania, Australia): clues
3	to the origin of the Avebury metasomatic Ni sulfide deposit
4	VADIM S. KAMENETSKY ^{1*} , ALEXEY V. LYGIN ¹ , JEFF G. FOSTER ¹ , SEBASTIEN MEFFRE ¹ ,
5	ROLAND MAAS ² , MAYA B. KAMENETSKY ¹ , KARSTEN GOEMANN ³ and STEVE W. BERESFORD ⁴
6	¹ School of Physical Sciences and CODES, University of Tasmania, Hobart, TAS 7001, Australia
7	² School of Earth Sciences, University of Melbourne, Parkville, VIC 3010, Australia
8	³ Central Science Laboratory, University of Tasmania, Hobart, TAS 7001, Australia
9	⁴ First Quantum Minerals, West Perth, WA 6005, Australia
10	
11	*Corresponding author, email Dima.Kamenetsky@utas.edu.au
12	Abstract
13	Magmatic differentiation and/or assimilation and related segregation of immiscible sulfide
14	liquid are generally believed to be critical processes in the formation of the majority of
15	orthomagmatic Ni sulfide deposits. In recent years, a new class of Ni sulfide deposits formed by
16	metasomatic and/or hydrothermal modification of peridotites has been recognized. The
17	serpentinite-hosted Avebury Ni sulfide deposit (Tasmania, Australia), the largest known non-
18	magmatic deposit, provides an unprecedented opportunity to understand sources of metals and
19	fluids responsible for this style of economic mineralization. Our study shows that
20	serpentinization of the Ni-bearing olivine in the Cambrian peridotites of the McIvor Hill
21	complex was followed by metasomatic transformation assisted by heat and fluids supplied by the
22	nearby Late Devonian granite intrusion. The role of the above in the formation of an economic
23	concentration of Ni sulfides is supported by 1) abundant Ni-Fe alloys and sulfides associated

24 with serpentinization of peridotitic olivine, 2) metasomatic olivine containing inclusions of 25 serpentine and metalliferous brines and 3) the Late Devonian age of the Ni sulfide deposit. The 26 Avebury metasomatic olivine is Ni-depleted and enriched in Mn relative to olivine of similar Fo 27 content in nearby unmineralized peridotites, and to olivine in subduction-related mafic magmas 28 generally. The unusual minor element chemistry of olivine is matched by a unique set of olivine-29 hosted multiphase inclusions composed of fibrous Mg-silicates and a variety of Na-, K-, Fe-, Ca-30 , Mn- and Ba-bearing chlorides/hydrochlorides, sulfides, arsenides magnetite, REE minerals and 31 Fe-Ni alloys.

Peridotite whole rock Sr-Nd-Pb isotope data and U-Pb dating of metasomatic titanite support earlier suggestions that Ni mineralization is temporally and genetically related with the intrusion of the nearby 360 Ma Heemskirk Granite. It appears that the multiphase inclusions in metasomatic olivine demonstrate chemical signatures of both *in situ* serpentinites (entrapped alloys, sulfides, arsenides and magnetite) and distal fluids (enrichment in Pb, Bi, Sn, Sb, Sr, Ba, Rb, Cs and Ce).

38 We propose that magmatic olivine in large ultramafic bodies provides almost infinite Ni to 39 replacive serpentinites and constitutes a major reservoir of disseminated Ni mineralization. In the 40 case of Avebury Ni was locally redistributed from olivine in the Cambrian peridotites to mainly 41 Fe-Ni alloys and sulfides during serpentinization in the early Paleozoic. In the Devonian 42 reheating and interaction with a granitic fluid in the contact aureole of the Heemskirk Granite led 43 to de-serpentinization and formation of metasomatic high-Mn, low-Ni olivine with inclusions of 44 serpentine and entrapped alloys, sulfides, arsenides and magnetite, and metalliferous brines rich 45 in 'granitic' elements. Nickel released from serpentinite in this process was re-deposited near the 46 margins of the peridotite to form the Avebury Ni orebody. Our model of serpentinization-related

47	release of Ni from magmatic olivine, in-situ precipitation of metallic, sulfide and arsenide Ni-
48	minerals, and their redistribution and recrystallization in hydrothermal conditions represents an
49	alternative to Ni remobilization from magmatic sulfides.
50	
51	Keywords: Ni sulfide deposits, peridotites, serpentinization, olivine, granite,
52	metasomatism, geochronology.
53	INTRODUCTION
54	World nickel production depends on two main types of Ni deposits: magmatic and
55	lateritic (Dill, 2010). Magmatic Ni deposits are mainly related to mafic and ultramafic rocks
56	associated with layered intrusions, continental flood basalts and komatiites (e.g. Naldrett, 1999).
57	Magmatic Ni sulfide deposits represent the magmatic accumulation of sulfide liquids immiscibly
58	derived from mafic/ultramafic silicate melts (Naldrett, 1999). Laterite Ni deposits are formed on
59	the Earth's surface due to extensive weathering of ultramafic rocks in tropical climates and
60	related to the removal of Mg and Si and transportation and precipitation of a variety of Ni-
61	bearing minerals (e.g. Butt and Cluzel, 2013; Elias, 2002).
62	In recent decades, a new class of Ni deposits - hydrothermal Ni sulfide - has received
63	much attention, culminating in a special issue of Ore Geology Reviews (2013, v. 52; González-
64	Álvarez et al., 2013). The Avebury deposit (Tasmania, Australia) is thought to represent a major
65	example of this unconventional style of Ni mineralization (Keays and Jowitt, 2013). However,
66	the petrogenesis of the Avebury mineralization remains controversial. According to Hoatson et
67	al. (2006) this deposit bears "similarities to a hydrothermally modified magmatic sulfide deposit
68	spatially associated with serpentinized ultramafic rocks". By contrast, Keays and Jowitt (2013)

69	favor an origin of the Ni (and Cu) by dissolution of disseminated magmatic sulfides at depth,
70	followed by metal re-precipitation from hydrothermal fluids at shallower levels.
71	Here we present the results of geochronological (U-Pb dating of hydrothermal titanite),
72	isotopic (Sr-Nd-Pb whole rock) and petrographic/mineral chemical studies (olivine, olivine-
73	hosted inclusions) of the Avebury Ni deposit. We present evidence for olivine which formed
74	from serpentine in the presence of metalliferous brines of complex origin. The role of several
75	populations of olivine in the Ni budget of the Avebury deposit is discussed. We suggest that
76	formation of serpentinite-related Ni ores was linked to mobilization of Ni from silicates rather
77	than from magmatic sulfides inferred to exist at depth.
78	AVEBURY NI SULFIDE DEPOSIT
79	The Avebury Ni sulfide deposit was discovered in 1997 near Zeehan, Tasmania, and it
80	was Australia's first economic nickel sulfide discovery outside of Western Australia (Hoatson et
81	al., 2006). As of January 2013, the Avebury resource was 18 Mt @ 1% Ni. Nickel-sulfide
82	mineralization (Fig. 1) is found in association with metasomatized ultramafic rocks (serpentinites
83	and diopside-tremolite metasomatites), and considered to be "hydrothermal-remobilized" in
84	origin (Hoatson et al., 2006; Keays and Jowitt, 2013; Keays et al., 2009; Lygin et al., 2010a).
85	Details of the geology, mineralogy and geochemistry of the ore bodies can be found in Callaghan
86	and Green (2014), Keays and Jowitt (2013) and Keays et al. (2009).
87	The host serpentinized peridotites (dunites and harzburgites) belong to the 516±0.9 Ma
88	(Mortensen et al., 2015) McIvor Hill mafic – ultramafic complex (Fig. 1). This and fifteen
89	neighboring ultramafic bodies, including the well-studied Heazlewood River complex (Peck,
90	1990), were emplaced into, or obducted onto, Neoproterozoic sedimentary sequences of a
91	passive continental margin in the Middle Cambrian (Berry and Crawford, 1988; Crawford and

92 Berry, 1992; Peck, 1990). The McIvor Hill complex was emplaced within a thick (> 5 km) late-93 Neoproterozoic sequence dominated by well-bedded greywacke with lesser black shale, siltstone, 94 sandstone, limestone and volcaniclastic conglomerate containing clasts of basalts, andesites and 95 rhyolites (Fig. 1). During the Late Devonian, the entire package of rocks was intruded by the 96 large, multi-phase Heemskirk biotite-monzogranite (359.9±1.9 Ma, Black et al., 2005). Nickel 97 mineralization at Avebury is located ~ 1.5 km southeast of the nearest granite exposure and only 98 \sim 500 m above the shallowly-dipping top of the granite pluton, i.e. well within the contact aureole 99 of the granite (Fig. 1). The mineralized zones are located along the margins of folded and faulted 100 ultramafic rocks, in contact with metamorphosed and altered sediments (Fig. 1). Mineralogically-101 complex, skarn-like tremolite/actinolite-diopside lithologies, with locally significant boron 102 mineralization (tourmaline, axinite, datolite), titanite and scheelite (Callaghan and Green, 2014; 103 Keays and Jowitt, 2013) are attributed to reaction with granite-derived fluids (Keays and Jowitt, 104 2013; Keays et al., 2009; Lygin et al., 2010a). Strong enrichment (up to 5-6 orders of magnitude 105 compared to lithophile elements of similar incompatibility) in "granitophile" elements (e.g., W, 106 U, Pb, Bi, Mo, Sn and Sb) within the serpentinites is also attributed to the granite-derived fluids 107 (Keays and Jowitt, 2013; Lygin et al., 2010b). 108 Avebury serpentinites are composed of antigorite, olivine, clino- and orthopyroxene, Cr-109 spinel, magnetite, pentlandite and pyrrhotite, with accessory awaruite Ni₃Fe, heazlewoodite 110 (Ni_3S_2) , millerite (NiS), gersdorffite NiAsS, maucherite ($Ni_{11}As_8$), and nickeline NiAs. Other 111 minerals, atypical for serpentinities in general, are also present and include native gold and 112 bismuth, arsenopyrite, pyrite, sphalerite, galena, bismuthinite, scheelite, wolframite, titanite, 113 apatite, axinite and tourmaline. Importantly, the Ni arsenide mineralization extends beyond the 114 Avebury deposit into the host sedimentary rocks for at least 300 m.

115	The Ni sulfide ore bodies are up to tens of meters thick and extend for hundreds of meters
116	along inferred fault zones and faulted contacts of serpentinites and their host metasedimentary
117	units. Pentlandite, often intergrown with magnetite, is the main sulfide mineral and is
118	characterized by high Co $(0.5 - 2.7 \text{ wt\%})$ and a lack of platinum-group elements (PGE) (Lygin et
119	al., 2010a). Pyrrhotite is also common, while Cu-rich sulfides are conspicuously rare. In
120	comparison to typical orthomagmatic Ni-ores, the Avebury mineralization is poor in PGE (e.g. Pt
121	< 6 ppb and Pd $<$ 55 ppb) and Cu ($<$ 550 ppm), but strongly enriched in Au, As, Bi, Pb, Sb and
122	Sn (up to 0.4, 600, 350, 70, 120, 400 ppm, respectively; Keays and Jowitt, 2013).
123	SAMPLES AND METHODS
124	Although the peridotites hosting the Avebury deposit are pervasively serpentinized, fresh
125	olivine with primary mineral and fluid inclusions was found in four samples in two drillholes
126	(A193 and U066). Samples U066-12 and UO66-13 were collected on the boundary between
127	serpentinite and diopside-tremolite metasomatite, ~ 20 meters from the contact between the
128	ultramafic body and sedimentary country rocks. Samples A193-648.7 and A193-653.1 are from
129	serpentinite well away (>100 m) from the contact with country rocks and ~40 meters away from
130	the diopside-tremolite alteration zone.
131	Mineral textures and compositions, including those of olivine-hosted inclusions, were
132	studied by electron microprobe, electron microscopy using secondary and back-scattered
133	electron analysis and by laser ablation ICPMS, while whole-rock powders for samples U066-12
134	and U066-13 (and for three other peridotites) were used for Sm-Nd, Rb-Sr and U-Th-Pb isotope
135	studies. Titanite in skarn-like assemblages in samples A193-502 and A193-519 was used for U-
136	Th-Pb dating by laser ablation ICPMS. For this purpose, titanite (70-200 μ m) was handpicked
137	from heavy mineral concentrates and mounted in epoxy (see Fig.9).

138 Electron microprobe and electron microscope

139	Olivine compositions were obtained using a Cameca SX100 electron microprobe at the
140	Central Science Laboratory, University of Tasmania. Analyses were done with 15 kV
141	accelerating voltage and 30 nA beam current. Elements were acquired using K α lines and
142	analyzing crystals LLiF for Fe, Ni, LPET for Ca, PET for Cr, Mn, and TAP for Si, Mg. The
143	standards were rhodonite for Mn, nickel silicide for Ni (both Astimex Scientific Ltd), San Carlos
144	olivine for Si, Fe, Mg, Kakanui augite for Ca, and Tiebaghi chromite for Cr (Jarosewich et al.,
145	1980). Peak and background counting times were 10 seconds for Fe, 20 seconds for Mg, Si, Cr,
146	Mn, 30 seconds for Ni, and 40 seconds for Ca. The background correction method was slope
147	(high) for Mn, and linear for all other elements. Oxygen was calculated by cation stoichiometry
148	and included in the matrix correction (PAP algorithm). Detection limits (in wt%) were 0.01 for
149	Ca, 0.02 for Mg, Si, 0.03 for Cr, Ni, 0.04 for Mn, and 0.05 for Fe. Analytical precision (in wt%)
150	was 0.01 for Ca, 0.03 for Cr, Ni, 0.05 for Mn, and 0.2 for Mg, Si, and Fe.
151	Secondary electron (SE) and backscattered electron (BSE) images and energy dispersive
152	X-ray spectrometry (EDS), including element maps, were acquired at 10kV accelerating voltage
153	and 2 nA beam current on a Hitachi SU-70 Schottky field emission scanning electron microscope
154	fitted with a Hitachi 5-segment solid state BSE detector and an Oxford IncaEnergy X-Max 80
155	silicon drift detector EDS system (CSL, University of Tasmania).
156	Laser ablation ICPMS
157	Semi- quantitative analyses of olivine-hosted inclusions were done using a Resonetics
158	M50 HR 193 nm ArF excimer laser ablation system coupled to an Agilent 7500cs ICP-MS
159	(CODES, University of Tasmania) Selected inclusions (15-40 μ m in diameter) found at depths
160	of 10-60 μ m in olivine were analyzed with laser spot sizes ranging from 19 to 46 μ m depending

161	on the size of inclusions, a repetition rate of 10 Hz and an energy density of 3.5J/cm ² . Count
162	rates were measured for the following isotopes: ¹¹ B, ²³ Na, ²⁴ Mg, ²⁷ Al, ²⁹ Si, ³¹ P, ³⁴ S, ³⁵ Cl, ³⁹ K,
163	⁴³ Ca, ⁴⁷ Ti, ⁵³ Cr, ⁵⁵ Mn, ⁵⁷ Fe, ⁵⁹ Co, ⁶⁰ Ni, ⁶⁵ Cu, ⁶⁶ Zn, ⁷⁵ As, ⁷⁸ Se, ⁸⁵ Rb, ⁸⁸ Sr, ⁹⁵ Mo, ¹¹⁸ Sn, ¹²³ Sb,
164	¹³³ Cs, ¹³⁷ Ba, ¹⁴⁰ Ce, ¹⁷⁵ Lu, ¹⁸² W, ²⁰⁸ Pb, ²⁰⁹ Bi. Count rates were quantified using primary standard
165	reference material (SRM) NIST 612 for all elements except Cl.
166	U-Th-Pb isotope analyses for titanite were obtained using the same instrumentation, with
167	a 47 μ m spot size, a repetition rate of 5 Hz and an energy density of 2.0 J/cm ² . Further details
168	can be found in Appendix 1.
169	Whole rock Sm-Nd, Rb-Sr and U-Th-Pb isotope analyses
170	Radiogenic isotope analyses of Avebury peridotites were carried out by multi-collector
171	ICPMS at the University of Melbourne, using methods adapted from Maas et al. (2005). Details
172	can be found in Appendix 1.
173	RESULTS
	RESULTS The data essential for understanding the origin of the Avebury deposit, namely
173 174 175	
174	The data essential for understanding the origin of the Avebury deposit, namely
174 175	The data essential for understanding the origin of the Avebury deposit, namely compositions of olivine and olivine-hosted multiphase inclusions, radiogenic isotope
174 175 176 177	The data essential for understanding the origin of the Avebury deposit, namely compositions of olivine and olivine-hosted multiphase inclusions, radiogenic isotope compositions of peridotites and geochronologic constraints, are presented below.
174 175 176	The data essential for understanding the origin of the Avebury deposit, namely compositions of olivine and olivine-hosted multiphase inclusions, radiogenic isotope compositions of peridotites and geochronologic constraints, are presented below. Avebury olivine and associated minerals
174 175 176 177 178	The data essential for understanding the origin of the Avebury deposit, namely compositions of olivine and olivine-hosted multiphase inclusions, radiogenic isotope compositions of peridotites and geochronologic constraints, are presented below. Avebury olivine and associated minerals The peridotite samples selected here (Table 1) contain abundant olivine associated with
174 175 176 177 178 179	The data essential for understanding the origin of the Avebury deposit, namely compositions of olivine and olivine-hosted multiphase inclusions, radiogenic isotope compositions of peridotites and geochronologic constraints, are presented below. Avebury olivine and associated minerals The peridotite samples selected here (Table 1) contain abundant olivine associated with mm-sized intergrowths of tremolite-diopside, Cr-spinel, magnetite and pentlandite (Fig. 2).
174 175 176 177 178 179 180	The data essential for understanding the origin of the Avebury deposit, namely compositions of olivine and olivine-hosted multiphase inclusions, radiogenic isotope compositions of peridotites and geochronologic constraints, are presented below. Avebury olivine and associated minerals The peridotite samples selected here (Table 1) contain abundant olivine associated with mm-sized intergrowths of tremolite-diopside, Cr-spinel, magnetite and pentlandite (Fig. 2). Magnetite, variably enriched in Cr_2O_3 , MnO, MgO and NiO (up to 15, 4, 2 and 1 wt%,
174 175 176 177 178 179 180 181	The data essential for understanding the origin of the Avebury deposit, namely compositions of olivine and olivine-hosted multiphase inclusions, radiogenic isotope compositions of peridotites and geochronologic constraints, are presented below. Avebury olivine and associated minerals The peridotite samples selected here (Table 1) contain abundant olivine associated with mm-sized intergrowths of tremolite-diopside, Cr-spinel, magnetite and pentlandite (Fig. 2). Magnetite, variably enriched in Cr ₂ O ₃ , MnO, MgO and NiO (up to 15, 4, 2 and 1 wt%, respectively), forms several distinct but possibly related textural types: 1) euhedral inclusions in

184 pentlandite which is possibly an exsolution or replacive feature (Fig. 2 D-E). "Dusty" magnetite 185 associates with serpentinized cracks in olivine (Fig. 2 B, C). Areas of coarse-grained anhedral 186 olivine are interspersed with patches and linear zones of intergrown magnetite and pentlandite 187 (Fig. 2 E, F). Most of the olivine in the studied samples appears to be heavily fragmented, 188 forming an interlocking mosaic of small, irregularly shaped grains that have the same 189 crystallographic orientation (Fig. 2 A-C). The spaces between the olivine fragments are filled 190 with serpentine and fine-grained magnetite (Fig. 2 A-C). 191 Most olivine fragments are highly variable in composition (Fe/Mg) on a local scale, as 192 readily seen in back-scattered electron (BSE) images (Fig. 2 A, C) where single fragments may 193 show strong and sharp contrasts in BSE intensity (Fig. 2C); at other times composition changes 194 gradually. Compositional domains may extend across the serpentinized fractures to other olivine 195 fragments (Fig. 2A). Areas of high fragmentation intensity, i.e. with the smallest olivine 196 fragments, tend to have the highest BSE intensity (higher Fe/Mg or lower Fo, Fig. 2A). Fe-rich 197 compositions are also common on the edges of several olivine fragments adjacent to the same 198 fracture. 199 The overall range in Fo content recorded in the internal areas of olivine fragments (edges 200 excluded) is 89-93 mol% (Fig. 3, Appendix 2). The majority of grains have 90.2-91.2 mol% Fo, 201 but strongly variable NiO (0.1-0.3 wt%) and MnO (0.4-1.4 wt%) abundances (Fig. 3, Appendix 202 2). Importantly, minor element and forsterite contents do not correlate, and MnO and NiO are 203 significantly higher and lower, respectively, than in olivine from subduction-related mafic 204 volcanics (boninites and low-Ti tholeiites), cumulates and mantle peridotites (Fig. 3). Although

205 the forsterite content of the Avebury olivine overlaps with that of olivine from the Heazlewood

River complex (78.4-93.7 mol %; Peck, 1990), it is lower in NiO and significantly more enriched
in MnO (Fig. 3).

208 Olivine-hosted inclusions

209 Avebury olivine carries abundant primary (i.e. entrapped during olivine crystallization) 210 inclusions that are neither typical fluid nor silicate melt inclusions (Fig. 4-6). Some grains 211 contain many hundreds of tiny inclusions ($< 2 \mu m$), making their host olivine turbid, whereas the 212 larger inclusions (5 to 50 µm) are less abundant. Large inclusions are always associated with 213 small inclusions and show no alignment with fractures or particular crystallographic orientations 214 of host olivine (Fig. 4). They commonly have negative crystallographic shapes (Fig. 4-6) and 215 contain several colorless, brownish and opaque crystalline and possibly vapor phases, however, a 216 separate aqueous liquid phase was not observed. Optical recognition of crystalline phases in 217 transmitted light was not successful due to their small sizes, complex intergrowths and isotropic 218 properties. 219 Inclusions were studied on polished surfaces of olivine (Fig. 4B, 5, 6, Appendix 3). 220 Several hundred olivine grains (0.2-0.4 mm) hand-picked from crushed peridotites were mounted 221 in epoxy resin and hand-polished using kerosene as a lubricant, to prevent damage to water-

soluble phases. Final polishing was done on a silk-covered surface using an oil-based, water-free

223 1 μm diamond compound. After exposure the samples were carbon-coated and stored in a

224 desiccator to avoid interaction with atmospheric moisture.

Inclusions located within < 1 μ m of the polished olivine surfaces decrepitate and exude a brine-like substance of dominantly Ca-chloride composition with minor Na, K, Fe and Mg (Fig. 5A). A characteristic feature of exposed inclusions is a large number of solid phases (from 2 to 10-15) of varying sizes and highly variable proportions of these phases (at least at exposed

229	surfaces; Fig. 5). A fibrous Mg-silicate mineral, most likely serpentine, soaked in a multi-
230	element chloride liquid, is present in most studied inclusions and occupies up to 90% of the host
231	inclusion's volume (Fig. 5 B-E). Other abundant phases (up to 80 vol%) are represented by
232	chloride and hydrochloride minerals, ranging from common halite and sylvite to Fe-rich
233	compositions, dominated by Fe-Mn and Fe-Mg-Mn. Chlorides of Ba (\pm Sr) and Mg-K (\pm Cs) are
234	also common, but smaller in size, whereas minute (<1-2 μ m) chlorides, sulfides, arsenides and
235	alloys, containing Fe, Ni, Cu, Zn and Pb, occur sporadically (Fig. 5). In most cases the small size
236	of Ni-bearing phases (Ni-As, Ni-As-S, Ni-Fe-S, Ni-Fe-Cl, Ni ₃ Fe, Ni ₂ Pb) suggests in situ growth
237	(i.e. daughter phases, Fig. 5 D, G, H), however, disproportionally large Ni-bearing grains (e.g.
238	Ni-Fe-S, Fig. 5F), magnetite, Cr-bearing magnetite (Appendix 3) and REE-rich phases
239	(monazite, bastnäesite, florencite) in the olivine suggest that these phases were present as solids
240	in the parental media (discussed below) at the time of olivine growth.
241	The mineral assemblage observed in exposed inclusions was further examined by LA-
242	ICP-MS analysis of thirty unexposed, multiphase inclusions > 15 μ m in size. In the absence of
243	internal standardization (i.e. no other analytical methods can be applied prior to LA-ICP-MS),
244	inter-element ratios are readily obtained (Fig.7) but absolute element abundances cannot be
245	calculated with high precision. Given that the non-silicate component of the inclusions is
246	dominantly chloridic, apparent elemental compositions were normalized to 50 wt% total
247	chlorides to improve quantitation (Appendix 4). With this approach, the brine component is
248	dominated by Na (5-8 wt%), K (2-6 wt%), Ca (3-7 wt%), Fe (2-13 wt%) and Mn (0.4-1.4 wt%).
249	Higher relative abundances of Fe+Mn come at the expense of lower Na+K and Ca (Fig. 7).
250	The analyzed inclusions also contain (with upper limits given) boron (<600 ppm),
251	alkaline earth (Sr <1300 ppm and Ba <7500 ppm), and alkaline metals (Rb <650 ppm, Cs < 500 \pm

252	ppm, Rb and Cs well correlated, Fig. 7). The abundances of some chalcophile metals (Pb $<$ 4000
253	ppm, Zn $<$ 2400 ppm, and Ni $<$ 3300 ppm, Fig. 7) are highly elevated compared to common
254	silicate rocks and hydrothermal fluids, but other metals such as Co and Cu (both < 200 ppm) are
255	not anomalous. Concentrations of S (< 2700 ppm) are roughly proportional to those of the
256	chalcophile metals. In general, Co, Ni and Cr are highly variable and reflect small-volume Ni-
257	and Cr-bearing phases. Other elements (e.g., As, Sn, Sb, Ce, W and Bi) are commonly present at
258	10s-100s of ppm (Appendix 4).
259	Radiogenic isotopes
260	The analyzed peridotites have low REE contents and high, near-chondritic Sm/Nd (Table
261	1). Present-day 143 Nd/ 144 Nd shows little range (0.51245-0.51249), equivalent to present-day ϵ_{Nd}
262	values of -3.5 to -2.7. By contrast, Rb/Sr varies strongly (0.25-3.73) and measured ⁸⁷ Sr/ ⁸⁶ Sr is
263	high (0.7231-0.7738). In the Rb-Sr isochron diagram (not shown) the data points form a
264	scattered (MSWD 181) but extensive array with a slope equivalent to an age of 357±14 Ma
265	$({}^{87}\text{Sr}/{}^{86}\text{Sr}_{i}\sim 0.7195).$
266	The U-Th-Pb systematics of the rocks (Table 1) are characterized by remarkably high Pb
267	contents (4.4-32 ppm), very low Th/U (0.27-0.39) and low 238 U/ 204 Pb (0.61-6.07) and 232 Th/ 204 Pb
268	(0.17-2.25) ratios, suggesting addition of Pb and U to the rocks. Measured Pb isotope ratios show
269	narrow ranges (18.490-18.708, 15.638-15.648, 38.390-38.436; Table 1, Fig. 8) and there is little
270	correlation in U-Pb, Th-Pb and Pb-Pb isotope plots.
271	Titanite geochronology
272	Laser ablation ICPMS spot analyses for titanite from two skarn-like assemblages show

- 273 highly variable U/Pb and Pb isotope ratios, covering the entire range from almost pure
- radiogenic to entirely common Pb (Fig. 9). The data for both analyzed grain populations plot on

275	the same scattered trend (Fig. 9), with individual lower intercept ages of 369±16 and 366±6 Ma,
276	respectively. Ablation profiles (30 second ablation time) for the titanite are characterized by
277	extreme heterogeneity, oscillating rapidly between radiogenic- and common Pb-dominated
278	segments. Trace-element data collected along traverses across the same crystals using a smaller
279	spot size (26 $\mu m)$ show them to contain domains with high contents of Pb, Zn, Ba, K and Cs
280	which are interpreted to represent small (<5 μ m) galena and fluid inclusions trapped within the
281	crystals. While overall averages of the U-Th-Pb isotope analyses for each analytical spot are
282	shown in Fig.9A, Fig. 9B shows the same data after splitting the U-Pb ablation profiles into 8
283	segments, increasing both the number of data points and, more importantly, the dispersion along
284	the radiogenic-common Pb mixing line, potentially improving age precision (e.g. Davidson et al.,
285	2007; Petrus and Kamber, 2012). The pooled results for all available ablations yield an age of
206	363 ± 3 Ma, with an upper intercept 207 Pb/ 206 Pb of 0.8438.
286	505 ± 5 Ma, with an upper intercept $F0/F0$ 01 0.8438.
280	ORIGIN OF THE AVEBURY NI SULFIDE DEPOSIT
287	ORIGIN OF THE AVEBURY NI SULFIDE DEPOSIT
287 288	ORIGIN OF THE AVEBURY NI SULFIDE DEPOSIT Was the granite involved?
287 288 289	ORIGIN OF THE AVEBURY NI SULFIDE DEPOSIT Was the granite involved? The Late Devonian Heemskirk Granite is well-known for having evolved a major late-
287 288 289 290	ORIGIN OF THE AVEBURY NI SULFIDE DEPOSIT Was the granite involved? The Late Devonian Heemskirk Granite is well-known for having evolved a major late- magmatic fluid phase and is associated with numerous hydrothermal mineral (Sn, Pb, Ag, Zn)
287 288 289 290 291	ORIGIN OF THE AVEBURY NI SULFIDE DEPOSIT Was the granite involved? The Late Devonian Heemskirk Granite is well-known for having evolved a major late- magmatic fluid phase and is associated with numerous hydrothermal mineral (Sn, Pb, Ag, Zn) deposits located within its (hydrothermal) contact aureole (e.g. McClenaghan, 2006 and
287 288 289 290 291 292	ORIGIN OF THE AVEBURY NI SULFIDE DEPOSIT Was the granite involved? The Late Devonian Heemskirk Granite is well-known for having evolved a major late- magmatic fluid phase and is associated with numerous hydrothermal mineral (Sn, Pb, Ag, Zn) deposits located within its (hydrothermal) contact aureole (e.g. McClenaghan, 2006 and references therein). Granite-related tourmalinization is widespread both within and around the
287 288 289 290 291 292 293	ORIGIN OF THE AVEBURY NI SULFIDE DEPOSIT Was the granite involved? The Late Devonian Heemskirk Granite is well-known for having evolved a major late- magmatic fluid phase and is associated with numerous hydrothermal mineral (Sn, Pb, Ag, Zn) deposits located within its (hydrothermal) contact aureole (e.g. McClenaghan, 2006 and references therein). Granite-related tourmalinization is widespread both within and around the granite. Hydrothermal Ni sulfide mineralization at Avebury has therefore been linked with

297	The results presented here provide further evidence for the granite link. Hydrothermal
298	titanite and whole-rock Rb-Sr isotopic data document a ~360 Ma event interpreted here as the
299	age of major alteration within the peridotites. The age of this alteration is indistinguishable from
300	U-Pb zircon emplacement ages for the Heemskirk Granite (361±2 and 360±2 Ma; Black et al.,
301	2005). Sr-Nd isotope data also support overprinting by granitic fluids: 87 Sr/ 86 Sr and ϵ_{Nd} in the
302	peridotites, calculated at 360 Ma (0.7189-0.7202, -2.8 to -4.0, Table 1) are similar to the Sr-Nd
303	isotope signatures in the two phases of the Heemskirk Granite (I-type Heemskirk Red, 0.7114/-
304	4.8; S-type Heemskirk White, 0.7397, -7.7; Black et al., 2010).
305	Initial Pb isotope ratios for the two phases of the Heemskirk Granite are 17.59, 15.56,
306	38.50 (Heemskirk White) and 18.68, 15.61, 38.54 (Heemskirk Red, Black et al., 2010). These
307	data may not be reliable because they are based on whole rocks with high U/Pb (238 U/ 204 Pb 52.6,
308	36.1) and Th/Pb (²³² Th/ ²⁰⁴ Pb 64.5, 164) ratios, rather than on low-U/Pb materials such as
309	feldspars. By contrast, ${}^{238}\text{U}/{}^{204}\text{Pb} - {}^{232}\text{Th}/{}^{204}\text{Pb}$ ratios in the analyzed Avebury peridotites are
310	\leq 6.1 and \leq 2.25, respectively. The granite Pb isotope data are therefore unsuitable for detailed
311	comparison with the Avebury data. However, the latter (both the high precision whole rock data
312	and the initial ²⁰⁷ Pb/ ²⁰⁶ Pb inferred from analysis of Pb-rich impurities in titanite by laser ablation
313	ICPMS) are similar to initial Pb isotope compositions for Late Devonian (granite-related)
314	sulfides of the nearby Zeehan Ag-Pb-Zn mineral field which is clearly related to the Heemskirk
315	Granite (Fig. 8). The Avebury data plot near the unradiogenic end of the Zeehan Pb isotope
316	range, suggesting possible mixing of Devonian and older (Cambrian ?) ore lead within the
317	granite-related fluids that interacted with the peridotites . One of the five peridotite whole rock
318	analyses (#A12) produced a lower 206 Pb/ 204 Pb _{360 Ma} which plots closer to the field for Cambrian
319	(volcanogenic massive sulfide) mineralization (Gulson et al., 1987; Gulson and Porritt, 1987;

Münker, 2000; Solomon et al., 2004). By contrast, calculated initial ²⁰⁷Pb/²⁰⁴Pb and ²⁰⁸Pb/²⁰⁴Pb
(both are rather insensitive to the age corrections) for this sample are not anomalous; it is
therefore possible that the low ²⁰⁶Pb/²⁰⁴Pb is an artifact of the age correction.

323

Metasomatic origin of Avebury peridotites

324 We argue for a metasomatic origin of the Avebury olivine based on unusual 325 compositional features, mineral association and presence of primary multiphase inclusions. 326 Comparison with the Heazlewood River ultramafic complex (Peck, 1990), considered to be an 327 unaltered analogue of the Avebury ultramafic rocks (Keays and Jowitt, 2013), shows that most of 328 the Avebury olivine grains are significantly more enriched in MnO (0.4-1.4 wt%) and depleted in 329 NiO (0.1-0.3 wt%) for a given Fo content (c.f. 0.1 and 0.4 wt%, respectively, in the Heazlewood 330 River olivine, Fig. 3). Likewise, similar contrasts exist when Avebury olivine is compared to 331 compositions of olivine phenocrysts in a number of boninites and arc low-Ti basalts (Fig. 3) that 332 may represent parental melts for the olivine-rich cumulates of the Heazlewood River complex 333 (Crawford and Berry, 1992; Peck, 1990). Avebury olivine does not show the typical correlations 334 of Fo content with MnO (negative) and NiO (positive) that are typical of magmatic olivine (Fig. 335 3). On the other hand, unusually high MnO abundances in Avebury olivine mirror the high MnO 336 in olivine formed by de-serpentinization (e.g. Frost, 1975; O'Hanley, 1996; Pinsent and Hirst, 337 1977; Vance and Dungan, 1977). 338 The primary inclusion suite found in the Avebury olivine (Fig. 4-6, Appendix 3) has no

known analogue in olivine from the Heazlewood River or indeed in any other mafic and

340 ultramafic suite in Tasmania or globally. These inclusions are distinct from all olivine-hosted

- inclusions studied to date in having an assemblage of fibrous Mg-silicate (serpentine-like)
- 342 minerals and chloride-rich solid and aqueous phases (Fig. 5 B-H). The variable proportions of

these phases in neighboring inclusions are complemented by significant differences in thecomposition of the chloride component (Fig. 7).

345 Moreover, the presence of magnetite, Fe-Ni-Cu sulfides and REE-rich minerals inside the 346 inclusions (Fig. 5) and the presence of magnetite and apatite as inclusions in olivine (Fig. 2B) 347 suggest that the Avebury olivine formed in a medium that is highly heterogeneous on a grain-348 scale. Based on the inclusions' phase compositions, the latter was dominated by serpentine-like 349 minerals "soaked" in a multi-element chloride solution (brine). We propose that the Avebury 350 olivine formed at the expense of serpentine in the presence of a saline aqueous fluid (brine). This 351 mode of olivine formation, involving a precursor hydrated Mg-silicate crystalline phase and 352 hydrous solutions, is neither magmatic (i.e. formed from a melt) nor metamorphic (solid state re-353 crystallization) nor hydrothermal (deposition from aqueous fluid), and thus the Avebury olivine 354 is best described as "metasomatic".

355 From magmatic cumulates to mineralized metasomatites: a storyline

356 The association of the Avebury Ni sulfide mineralization with metasomatic olivine and 357 contact metasomatic assemblages suggests that the present Ni ores were formed though a 358 combination of suitable precursor rocks and favorable magmatic, metamorphic, metasomatic and 359 mineralizing processes. We propose several stages in the development of the Ni sulfide 360 mineralization, each consecutive stage being reliant on the completion of the previous stage. 361 Partially to completely serpentinized dunites and harzburgites of the Heazlewood River 362 complex contain 0.13-0.36 wt% NiO that is mainly stored in olivine, sulfides and alloys. 363 Whereas the Heazlewood River olivine is primary, other nickeliferous minerals and associated 364 magnetite are fine-grained phases (<20 µm), dispersed throughout mesh-textured, fibrous 365 serpentine along boundaries of pseudomorphed olivine (Peck, 1990). The Ni contents of the host

366	rocks do not correlate with the degree of serpentinization. This suggests that in this (Peck, 1990)
367	and other suites of serpentinized peridotites (e.g. Auclair et al., 1993; Chamberlain, 1966;
368	Eckstrand, 1975; Guillon and Lawrence, 1973; Nickel, 1959; O'Hanley, 1996; Ramdohr, 1967;
369	Sciortino et al., 2015) the main Ni-rich minerals – heazlewoodite (first described in 1896 from
370	Lord Brassey Mine, Heazlewood River complex (i.e. type locality), see
371	http://www.mindat.org/min-1839.html), pentlandite, millerite and awaruite – contain Ni derived
372	in situ from alteration of primary olivine. The initial serpentinization of the Heazlewood River
373	complex is proposed to occur during its tectonic emplacement into the uppermost crust and
374	interaction with seawaters in the Middle Cambrian (Rubenach, 1973), followed by major
375	serpentinization in the Ordovician and Early Devonian (Peck, 1990).
376	We note, based on the NiO abundances in the Heazlewood River peridotites, that
377	completely serpentinized dunites and harzburgites of the McIvor Hill complex may have
378	contained $\sim 3.5-10 \text{ kg/m}^3$ of Ni, stored mainly in sulfides and alloys and partly in magnetite and
379	serpentine. The inclusions of serpentine found in the Avebury olivine in association with
380	chlorides and hydrochlorides (Fig. 5) are considered to represent a relic environment, where
381	further accumulation of Ni sulfides has taken place. In other words, liberation of Ni from
382	primary silicate minerals combined with wholesale enrichment in chlorine during sea-floor
383	serpentinization (e.g. Early, 1958; Miura et al., 1981; Orberger et al., 1999; Rucklidge and
384	Patterson, 1977; Scambelluri et al., 1997) were prerequisite factors conducive to later sulfide
385	upgrading.
386	In the Late Devonian, the heat and fluids derived from the intrusion of the Heemskirk
387	Granite caused significant transformations in outer zones of the McIvor Hill ultramafic body, the

388 host of the Avebury deposit. There is broad agreement that high abundances of non-peridotite

389 elements (alkali and alkali-earth elements, W, U, Pb, Bi, Sn, Sb, As, S and Au) in the Avebury 390 peridotites and spatially associated mineralization are related to interaction with fluids derived 391 from the nearby granite and from local metasedimentary rocks (Keays and Jowitt, 2013; Keays et 392 al., 2009; Lygin et al., 2010a). Keays and Jowitt (2013) further suggested that the granitic-393 hydrothermal fluids dissolved primary magmatic Ni sulfides inferred to have been present at 394 depth, and transferred their metal budget to the margins of the ultramafic body to form the 395 Avebury ore. However, our results on compositionally unusual olivine (Fig. 3) and olivine-396 hosted inclusions (Fig. 4-6) provide a background for an alternative source of Ni. We suggest 397 that the pre-Late Devonian serpentinite experienced de-watering and recrystallization to olivine 398 in response to the granite emplacement. The de-serpentinization process, relatively common in 399 other peridotites (e.g. Neumann et al., 2015; O'Hanley, 1996 and references therein), has a 400 potential of purging non-silicate components, which in the case of Avebury were Cr-spinel, 401 magnetite and Ni- and Ni-Fe sulfides and alloys. It cannot be excluded that in addition to such 402 mechanical "cleansing", Ni was transported and deposited by aqueous saline fluids (e.g. Tian et 403 al., 2013 and references therein), both serpentinite- and granite-derived. Re-precipitation of Ni 404 and accumulation of Ni-minerals were likely controlled by geochemical barriers, thus zones of 405 mineralized rocks mainly extend along the contacts of the ultramafic body with country rocks 406 (Keays and Jowitt, 2013). The role of fluid transport of Ni can be seen beyond the Avebury 407 deposit in a significant aureole of Ni arsenide mineralization extending at least 300 m into the 408 regional sediments.

409

IMPLICATIONS

410 Our genetic model of the Avebury Ni-sulfide deposit involves one source of Ni and three411 main stages of Ni buildup:

412 1) Accumulation of Ni in magmatic olivine and sulfides in dunites and harzburgites
413 of the Cambrian McIvor Hill complex;

414 2) Formation of disseminated Ni sulfides and alloys in response to serpentinization
415 of ultramafic rocks in the pre-Late Devonian;

416 3) Transport of Ni both in solution and as previously formed minerals, both

417 originally magmatic and formed during serpentinization, to suitable trap-sites in response to de-

418 serpentinization, related to emplacement of the Heemskirk granite in the Late Devonian.

419 Our model has elements in common with that of Keays and Jowitt (2013). The major

420 difference lies in the recognition of a previously unrecognized source of Ni within the McIvor

421 Hill ultramafic complex. Magmatic olivine in voluminous ultramafic bodies provides almost

422 infinite Ni to replacive serpentinites, dwarfing potential contribution from magmatic sulfides.

423 The entire Ni content of the deposit (180 million kg) could potentially be supplied by mobilizing

424 part of the Ni content of 1 km³ of serpentinite. Given such relatively modest source volumes, the

425 pervasive granite-related metasomatism, and the presence of Ni-depleted metasomatic olivine

426 with remnant serpentinite inclusions at Avebury implies that olivine-derived Ni was indeed

427 mobilized from local serpentinites and reconcentrated within the ore lenses in response to

428 chemical and other gradients.

429

ACKNOWLEDGMENTS

Marcel Guillong and Sarah Gilbert are thanked for assistance with laser ablation ICP-MS
analyses. MMG (Minerals and Metals Group) provided access to drill-core and geological
materials and supported this publication. Constructive comments by an anonymous reviewer and
Jim Webster and editorial handling by Julie Roberge are greatly appreciated. This study was

434	funded by the ARC Centre of Excellence in Ore Deposits to AVL and JGF and the ARC
435	Discovery Grant to VSK.

436	R EFERENCES CITED
437	Auclair, M., Gauthier, M., Trottier, J., Jebrak, M., and Chartrand, F. (1993) Mineralogy,
438	geochemistry, and paragenesis of the Eastern Metals serpentinite-associated Ni-Cu-Zn
439	deposit, Quebec Appalachians. Economic Geology, 88, 123-138.
440	Berry, R.F., and Crawford, A.J. (1988) The tectonic significance of Cambrian allochthonous
441	mafic-ultramafic complexes in Tasmania. Australian Journal of Earth Sciences, 35, 523-
442	533.
443	Black, L.P., Everard, J.L., McClenaghan, M.P., Korsch, R.J., Calver, C.R., Fioretti, A.M.,
444	Brown, A.V., and Foudoulis, C. (2010) Controls on Devonian-Carboniferous magmatism
445	in Tasmania, based on inherited zircon age patterns, Sr, Nd and Pb isotopes, and major
446	and trace element geochemistry. Australian Journal of Earth Sciences, 57, 933-968.
447	Black, L.P., McClenaghan, M.P., Korsch, R.J., Everard, J.L., and Foudoulis, C. (2005)
448	Significance of Devonian-Carboniferous igneous activity in Tasmania as derived from U-
449	Pb SHRIMP dating of zircon. Australian Journal of Earth Sciences, 52, 807-829.
450	Butt, C.R.M., and Cluzel, D. (2013) Nickel laterite ore deposits: Weathered serpentinites.
451	Elements, 9, 123-128.
452	Callaghan, T., and Green, G.R. (2014) Avebury nickel deposits. In K.D. Corbett, P.G. Quilty,
453	and C.R. Calver, Eds. Geological Evolution of Tasmania, Special Publication 24, p. 357-
454	361. Geological Society of Australia.
455	Chamberlain, J.A. (1966) Heazlewoodite and awaruite in serpentinites of the Eastern Townships,
456	Quebec. Canadian Mineralogist, 8.

457	Crawford, A.J., and Berry, R.F. (1992) Tectonic implications of Late Proterozoic - Early
458	Palaeozoic igneous rock associations in western Tasmania. Tectonophysics, 214, 37-56.
459	Davidson, G.J., Paterson, H., Meffre, S., and Berry, R.F. (2007) Characteristics and origin of the
460	oak dam East Breccia-Hosted, iron oxide Cu-U-(Au) Deposit: Olympic Dam region,
461	Gawler Craton, South Australia. Economic Geology, 102, 1471-1498.
462	Dill, H.G. (2010) The "chessboard" classification scheme of mineral deposits: Mineralogy and
463	geology from aluminum to zirconium. Earth-Science Reviews, 100, 1-420.
464	Early, J.W. (1958) On chlorine in serpentinized dunite. American Mineralogist, 43, 148-155.
465	Eckstrand, O.R. (1975) The Dumont serpentinite: A model for control of nickeliferous opaque
466	mineral assemblages by alteration reactions in ultramafic rocks. Economic Geology, 70,
467	183-201.
468	Elias, M. (2002) Nickel laterite deposits – a geological overview, resources and exploitation.
469	Centre for Ore Deposit Research Special Publication 4, p. 205-220. University of
470	Tasmania, Hobart.
471	Frost, B.R. (1975) Contact metamorphism of serpentinite, chloritic blackwall and rodingite at
472	paddy-go-easy pass, central cascades, Washington. Journal of Petrology, 16, 272-313.
473	González-Álvarez, I., Pirajno, F., and Kerrich, R. (2013) Hydrothermal nickel deposits: Secular
474	variation and diversity. Ore Geology Reviews, 52, 1-3.
475	Guillon, J.H., and Lawrence, L.J. (1973) The opaque minerals of the ultramafic rocks of New
476	Caledonia. Mineralium Deposita, 8, 115-126.
477	Gulson, B.L., Large, R.R., and Porritt, P.M. (1987) Base metal exploration of the Mount Read
478	volcanics, western Tasmania: III. Application of lead isotopes at Elliott Bay. Economic
479	Geology, 82, 308-327.

- 480 Gulson, B.L., and Porritt, P.M. (1987) Base metal exploration of the Mount Read volcanics,
- 481 western Tasmania: II. Lead isotope signatures and genetic implications. Economic
 482 Geology, 82, 291-307.
- 483 Hoatson, D.M., Jaireth, S., and Jaques, A.L. (2006) Nickel sulfide deposits in Australia:

484 Characteristics, resources, and potential. Ore Geology Reviews, 29, 177-241.

485 Jarosewich, E.J., Nelen, J.A., and Norberg, J.A. (1980) Reference samples for electron

486 microprobe analysis. Geostandards Newsletter, 4, 43-47.

- 487 Kamenetsky, V.S., Binns, R.A., Gemmell, J.B., Crawford, A.J., Mernagh, T.P., Maas, R., and
- 488 Steele, D. (2001a) Parental basaltic melts and fluids in eastern Manus backarc basin:
- 489 Implications for hydrothermal mineralisation. Earth and Planetary Science Letters, 184,
 490 685-702.
- 491 Kamenetsky, V.S., Crawford, A.J., Eggins, S.M., and Mühe, R. (1997) Phenocrysts and melt

492 inclusion chemistry of near-axis seamounts, Valu Fa Ridge, Lau Basin: insight into

493 mantle wedge melting and the addition of subduction components. Earth and Planetary

494 Science Letters, 151, 205-223.

495 Kamenetsky, V.S., Crawford, A.J., and Meffre, S. (2001b) Factors controlling chemistry of

496 magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions
497 from primitive rocks. Journal of Petrology, 42, 655-671.

498 Kamenetsky, V.S., Sobolev, A.V., Eggins, S.M., Crawford, A.J., and Arculus, R.J. (2002)

- 499 Olivine-enriched melt inclusions in chromites from a low-Ca boninite, Cape Vogel,
- 500 Papua New Guinea: evidence for ultramafic primary magma, refractory mantle source
- and enriched components. Chemical Geology, 183, 287-303.

502	Keays, R.R., and Jowitt, S.M. (2013) The Avebury Ni deposit, Tasmania: A case study of an
503	unconventional nickel deposit. Ore Geology Reviews, 52, 4-17.
504	Keays, R.R., Jowitt, S.M., and Callaghan, T. (2009) The Avebury Ni deposit, Tasmania: a case
505	study of an unconventional nickel deposit. In P.J. Williams, Ed. Smart Science for
506	Exploration and Mining, Proceedings of the Tenth Biennial SGA Meeting, p. 173-175,
507	Townsville, Australia.
508	Lygin, A.V., Foster, J.G., and Hutchinson, D. (2010a) A new style of Ni-mineralization resulting
509	from the interaction of ultramafic rocks with hydrothermal fluids derived from granites:
510	Avebury Ni-deposit, Western Tasmania. 11th International Platinum Symposium,
511	Miscellaneous Release-Data, vol. 269. Ontario Geological Survey, Sudbury, Ontario.
512	Lygin, A.V., Foster, J.G., Hutchinson, D., and Callaghan, T. (2010b) The mineralogy and
513	geochemistry of the Avebury Ni-deposit, Western Tasmania. 13th Quadrennial IAGOD
514	Symposium, p. 96-97, Adelaide, Australia.
515	Maas, R., Kamenetsky, M.B., Sobolev, A.V., Kamenetsky, V.S., and Sobolev, N.V. (2005) Sr,
516	Nd, and Pb isotope evidence for a mantle origin of alkali chlorides and carbonates in the
517	Udachnaya kimberlite, Siberia. Geology, 33, 549-552.
518	McClenaghan, M.P. (2006) The geochemistry of Tasmanian Devonian-Carboniferous granites
519	and implications for the composition of their source rocks, Record 2006/06, p. 31.
520	Tasmanian Geological Survey.
521	Miura, Y., Rucklidge, J., and Nord, G.L. (1981) The occurrence of chlorine in serpentine
522	minerals. Contributions to Mineralogy and Petrology, 76, 17-23.

523	Mortensen, J.K., Gemmell, J.B., McNeill, A.W., and Friedman, R.M. (2015) High-precision U-
524	Pb zircon chronostratigraphy of the Mount Read Volcanic belt in Western Tasmania,
525	Australia: Implications for VHMS deposit formation. Economic Geology, 110, 445-468.
526	Münker, C. (2000) Pb-Nd isotopes indicate the origin of Island Arc Terranes in the early
527	Paleozoic Pacific. Journal of Geology, 108, 233-242.
528	Naldrett, A.J. (1999) World-class Ni-Cu-PGE deposits: key factors in their genesis. Mineralium
529	Deposita, 34, 227-240.
530	Neumann, E.R., Abu El-Rus, M.A., Tiepolo, M., Ottolini, L., Vannucci, R., and Whitehouse, M.
531	(2015) Serpentinization and deserpentinization reactions in the upper mantle beneath
532	Fuerteventura revealed by peridotite xenoliths with fibrous orthopyroxene and mottled
533	olivine. Journal of Petrology, 56, 3-31.
534	Nickel, E.H. (1959) The occurrence of native nickel-iron in the serpentine rock of the Eastern
535	Townships of Quebec Province. Canadian Mineralogist, 6, 307-319.
536	O'Hanley, D.S. (1996) Serpentinites: Records of tectonic and petrological history. Oxford
537	University Press.
538	Orberger, B., Metrich, N., Mosbah, M., Mevel, C., and Fouquet, Y. (1999) Nuclear microprobe
539	analysis of serpentine from the Mid-Atlantic Ridge. Nuclear Instruments & Methods in
540	Physics Research Section B-Beam Interactions with Materials and Atoms, 158, 575-581.
541	Peck, D.C. (1990) The platinum-group element geochemistry and petrogenesis of the
542	Heazlewood River mafic-ultramafic complex, Tasmania, PhD thesis, p. 566. University
543	of Melbourne.

- 544 Petrus, J.A., and Kamber, B.S. (2012) VizualAge: A Novel Approach to Laser Ablation ICP-MS
- 545 U-Pb Geochronology Data Reduction. Geostandards and Geoanalytical Research, 36,
 546 247-270.
- 547 Pinsent, R.H., and Hirst, D.M. (1977) The metamorphism of the Blue River ultramafic body,

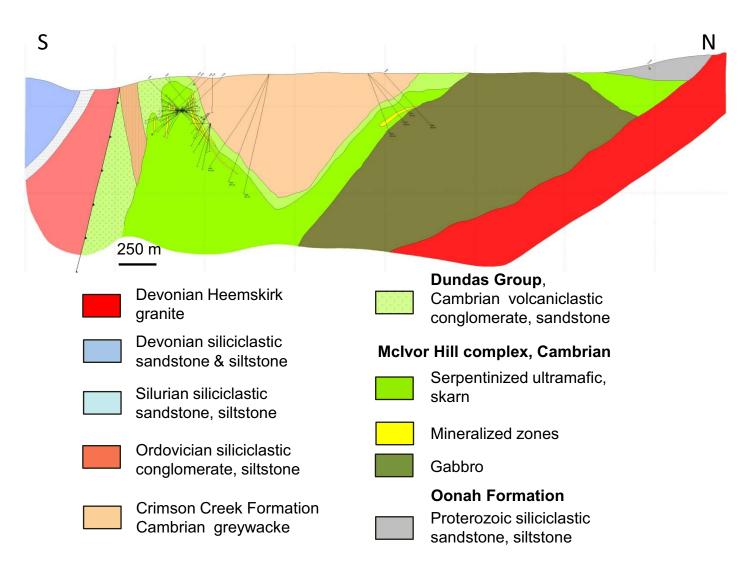
548 Cassiar, British Columbia, Canada. Journal of Petrology, 18, 567-594.

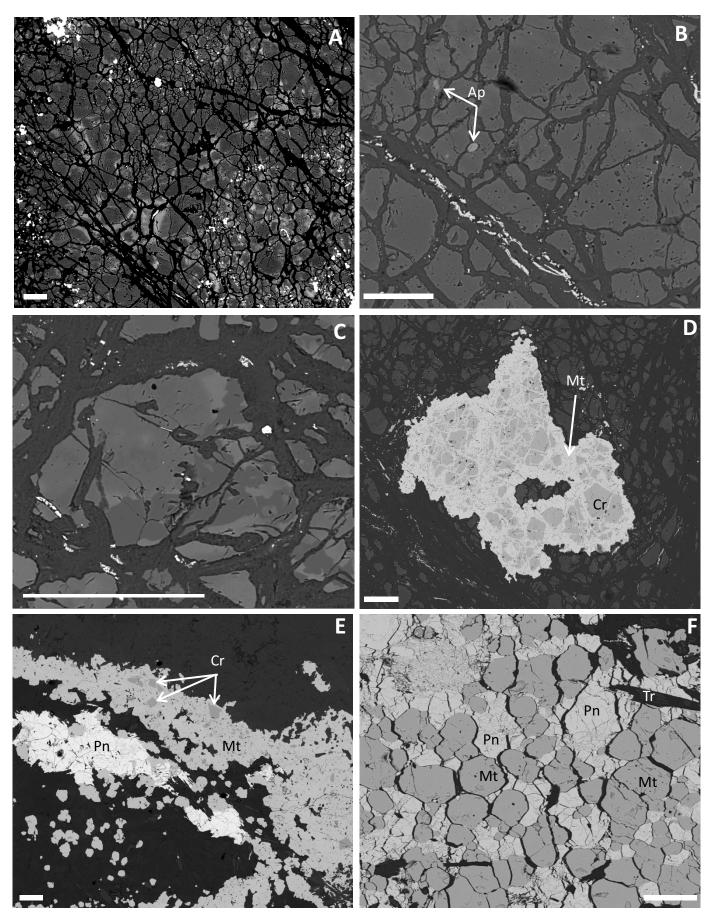
- 549Ramdohr, p. (1967) A widespread mineral association, connected with serpentinization. Neues
- Jahrbuch Mineralogie Abhandlungen, 107, 241-265.
- 551 Rubenach, M.J. (1973) The Tasmanian ultramafic-gabbro and ophiolite complexes, PhD thesis,
- 552 p. 213. University of Tasmania.
- 553 Rucklidge, J.C., and Patterson, G.C. (1977) The role of chlorine in serpentinization.

554 Contributions to Mineralogy and Petrology, 65, 39-44.

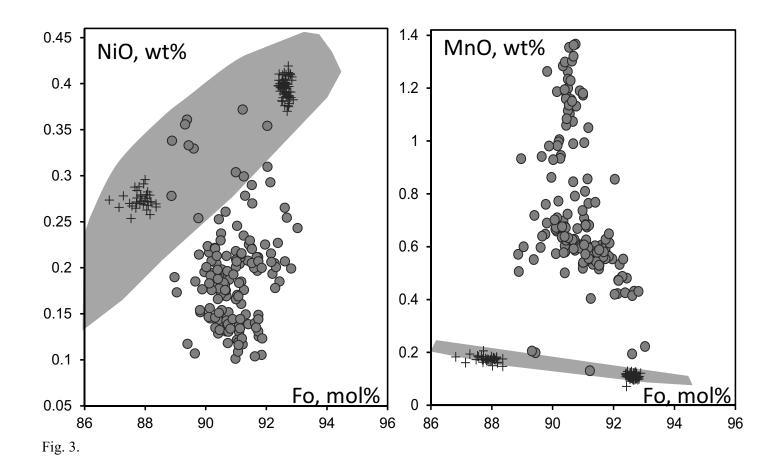
555 Scambelluri, M., Piccardo, G.B., Philippot, P., Robbiano, A., and Negretti, L. (1997) High

salinity fluid inclusions formed from recycled seawater in deeply subducted alpine
serpentinite. Earth and Planetary Science Letters, 148, 485-499.


- 558 Sciortino, M., Mungall, J.E., and Muinonen, J. (2015) Generation of High-Ni sulfide and alloy
- phases during serpentinization of dunite in the Dumont sill, Quebec. Economic Geology,110, 733-761.
- 561 Sigurdsson, I.A., Kamenetsky, V.S., Crawford, A.J., Eggins, S.M., and Zlobin, S.K. (1993)


562 Primitive island arc and oceanic lavas from the Hunter ridge-Hunter fracture zone.

- 563 Evidence from glass, olivine and spinel compositions. Mineralogy and Petrology, 47,
 564 149-169.
- Solomon, M., Gemmell, J.B., and Zaw, K. (2004) Nature and origin of the fluids responsible for
 forming the Hellyer Zn-Pb-Cu, volcanic-hosted massive sulphide deposit, Tasmania,


567	using fluid inclusions, and stable and radiogenic isotopes. Ore Geology Reviews, 25, 89-
568	124.
569	Stacey, J.S., and Kramers, J.D. (1975) Approximation of terrestrial lead isotope evolution by a
570	two-stage model. Earth and Planetary Science Letters, 26, 207-221.
571	Tian, Y., Etschmann, B., Liu, W., Borg, S., Mei, Y., Testemale, D., O'Neill, B., Rae, N.,
572	Sherman, D.M., Ngothai, Y., Johannessen, B., Glover, C., and Brugger, J. (2013)
573	Speciation of nickel (II) chloride complexes in hydrothermal fluids: In situ XAS study.
574	Chemical Geology, 334, 345-363.
575	Vance, J.A., and Dungan, M.A. (1977) Formation of peridotites by deserpentinization in
576	Darrington and Sultan areas, Cascade Mountains, Washington. Geological Society of
577	America Bulletin, 88, 1497-1508.
578	
579	FIGURE CAPTIONS
580	Fig. 1. Schematic cross-section through magmatic and sedimentary rock units containing the
581	Avebury deposit. For a regional map and more details of regional geology and tectonic history
582	see paper by Keays and Jowitt (2013).
583	Fig. 2. Backscattered electron images showing main petrographic and mineralogical features of
584	the Avebury peridotites. A-C: Metasomatic olivine with strong compositional heterogeneity
585	(darker and brighter areas are higher and lower in Fo content, respectively) is cut by fractures
586	with serpentine and fine-grained magnetite. Note apatite (Ap) inclusions in olivine (B). D-F:
587	Metasomatic-hydrothermal assemblages of magnetite (Mt) replacing Cr-spinel (Cr) and
588	magnetite - pentalandite (Pn) – tremolite (Tr) intergrowths. Scale bars are 100 μ m.

- 589 Fig. 3. Compositions of Avebury metasomatic olivine (circles) compared to compositions of
- 590 olivine from the Heazelwood River complex peridotites (two samples, crosses) and olivine from
- 591 boninites and island-arc tholeiites (field; Kamenetsky et al., 2001a; Kamenetsky et al., 1997;
- 592 Kamenetsky et al., 2001b; Kamenetsky et al., 2002; Sigurdsson et al., 1993). Compositional data
- can be found in Appendix 1.
- 594 Fig. 4. Transmitted light (A) and backscattered electron (B) images of Avebury metasomatic
- 595 olivine containing multiphase inclusions.
- 596 Fig. 5. Backscattered electron images of Avebury metasomatic olivine showing Ca-rich brine on
- 597 the surface (A) and exposed multiphase inclusions (B-H). The phases in inclusions are serpentine
- 598 (S), halite (NaCl), sylvite (KCl), complex chlorides and hydrochlorides containing Ba (±Sr, Cs),
- 599 Fe, Fe-Mn, Fe-Mn-Mg, Ca-Fe and K-Mn ((±Mg), magnetite (Mt), Fe-Ni sulfides and sulfides
- and arsenides of Ni, Zn, Pb (±Cu). EDS X-ray element maps of some exposed inclusions are
- 601 presented in Fig. 6 and Appendix 2.
- 602 Fig. 6. Backscattered electron image and X-ray element maps of the olivine-hosted inclusion (see
- 603 Fig. 5D for phase identification).
- Fig. 7. Ternary diagrams showing bulk element compositions (in wt%) of the olivine-hostedinclusions.
- 606 Fig. 8. Initial isotope compositions of the Avebury peridotite compared to various ores and
- 607 galena from western Tasmania. Data for the Zeehan mineral field from (Gulson and Porritt,
- 608 1987) and unpublished reports.
- 609 Fig. 9. Tera-Wasserburg diagram for Avebury titanite (shown on the BSE image) from two
- 610 samples; A: average compositions s from individual analyses. B: each LA-ICPMS analyses are
- 611 divided into 8 separate segments (see text for details).

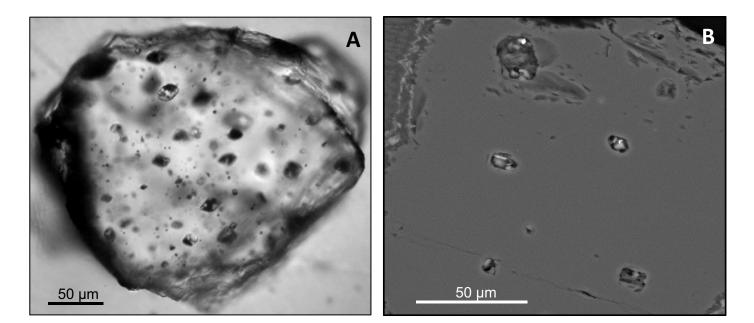
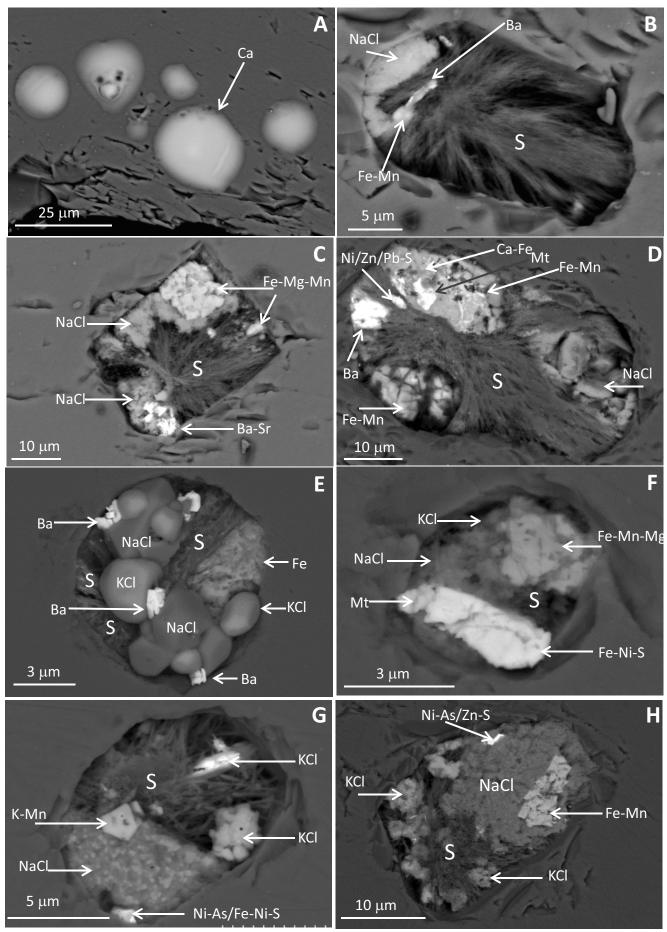
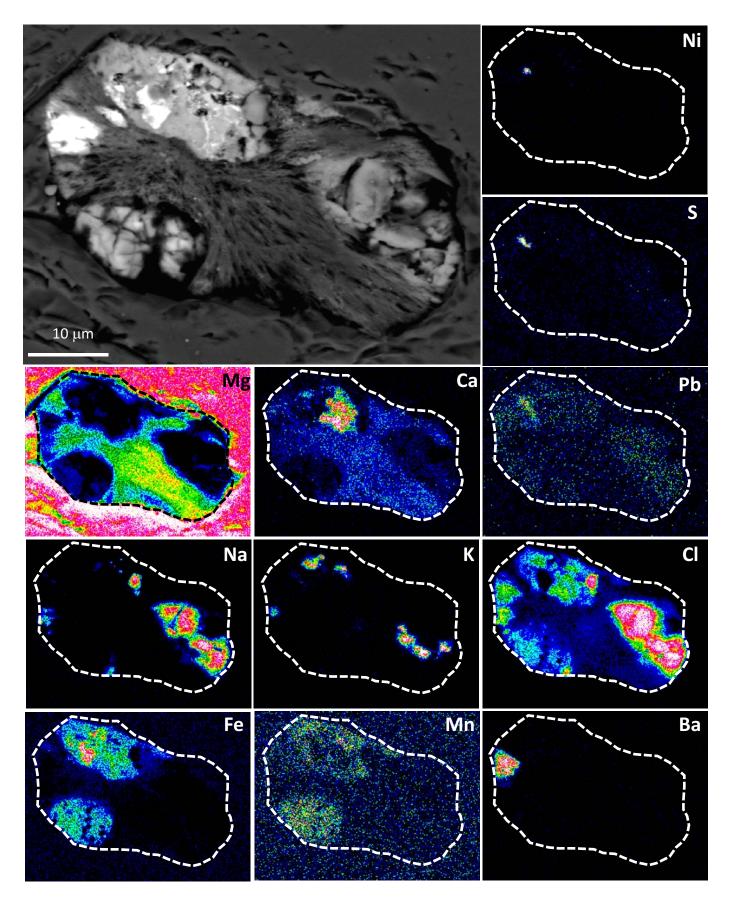
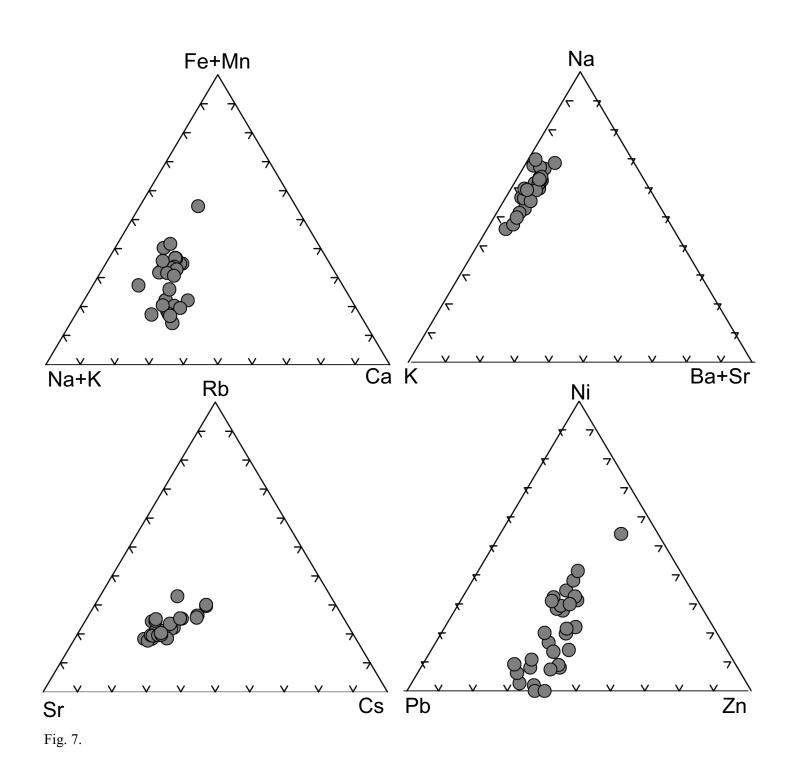




Fig. 4.



Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

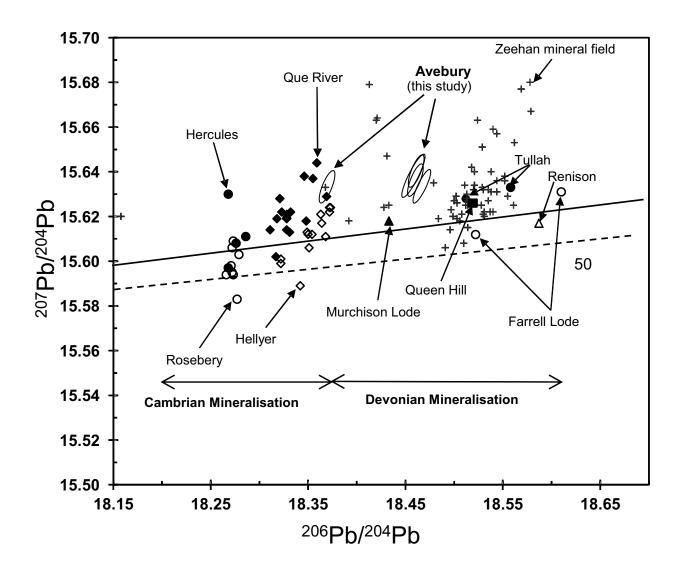


Fig. 8.

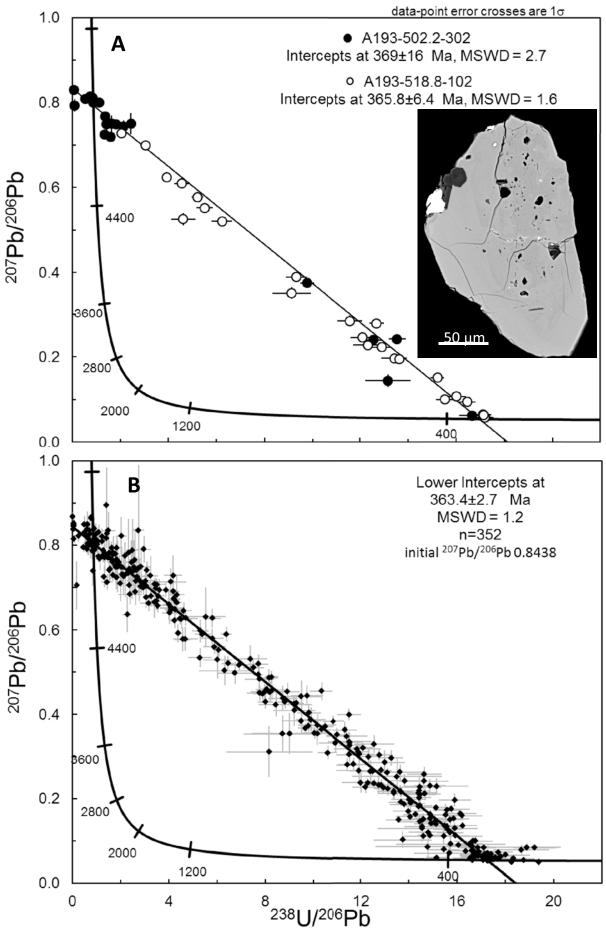


Fig. 9.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

	UO66-5	UO66-12	UO66-13	UO66-20	UO66-21
SiO ₂	33.38	37.60	35.21	30.35	21.74
Al ₂ O ₃	0.21	0.29	0.19	0.02	0.12
Fe ₂ O ₃	14.30	14.26	16.36	20.78	39.67
MnO	0.31	0.30	0.26	0.37	0.34
MgO	38.24	34.88	35.41	35.77	26.72
CaO	0.10	1.75	0.29	0.01	< 0.01
Cr ₂ O ₃	0.25	0.40	0.28	0.15	0.17
NiO	0.38	0.26	0.70	0.67	2.36
S wt%	0.19	0.22	0.58	0.37	1.53
Rb ppm	0.064	1.467	1.830	0.064	0.151
Sr ppm	0.159	0.985	0.491	0.252	0.478
⁸⁷ Rb/ ⁸⁶ Sr	1.160	4.322	10.86	0.735	0.913
⁸⁷ Sr/ ⁸⁶ Sr	0.72607±2	0.74105±2	0.77380±2	0.72317±2	0.72358 ± 2
Sm ppm	0.037	0.174	0.073	0.013	0.010
Nd ppm	0.107	0.519	0.216	0.039	0.032
¹⁴⁷ Sm/ ¹⁴⁴ Nd	0.2070	0.2024	0.2043	0.2053	0.1892
¹⁴³ Nd/ ¹⁴⁴ Nd	0.512452±8	0.512461±7	0.512493±6	0.512494±28	0.512482±17
$\epsilon_{\rm Nd}$ now	-3.5	-3.3	-2.7	-2.7	-2.9
U ppm	0.231	0.419	0.347	0.185	0.309
Th ppm	0.089	0.150	0.102	0.058	0.082
Pb ppm	5.6	4.4	8.7	4.5	32.0
²³⁸ U/ ²⁰⁴ Pb	2.63	6.07	2.54	2.62	.61
²³² Th/ ²⁰⁴ Pb	1.05	2.25	0.77	0.85	0.7
²⁰⁶ Pb/ ²⁰⁴ Pb	18.607	18.708	18.603	18.612	18.490
²⁰⁷ Pb/ ²⁰⁴ Pb	15.644	15.652	15.648	15.642	15.638
²⁰⁸ Pb/ ²⁰⁴ Pb	38.418	38.436	38.433	38.399	38.390
⁸⁷ Sr/ ⁸⁶ Sr(i)	0.72028	0.71947	0.71958	0.71950	0.71902
$\varepsilon_{\rm Nd}(i)$	-4.0	-3.6	-3.1	-3.1	-2.6
²⁰⁶ Pb/ ²⁰⁴ Pb(i)	18.46	18.36	18.46	18.46	18.45
²⁰⁷ Pb/ ²⁰⁴ Pb(i)	15.64	15.63	15.64	15.63	15.64
208 Pb/ 204 Pb(i)	38.40	38.40	38.42	38.38	38.39

Table 1. Selected major and trace elements and Rb-Sr, Sm-Nd and U-Th-Pb isotope compositions of Avebury peridotites

Rb-Sr and Sm-Nd results corrected for blank (0.1ng Sr, Rb/Sr=0.3, 87 Sr/ 86 Sr=0.715, 0.1 ng Nd, Sm/Nd=0.16, 143 Nd/ 144 Nd=0.5115). Uncertainties given for present-day (blank-corrected) 87 Sr/ 86 Sr and 143 Nd/ 144 Nd are measured 2se. Age-corrected isotope ratios (i) are calculated at 357 Ma.