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Abstract - Textural and compositional variations of apatite from rift-related gabbros, 20 

syenogabbros, syenites, quartz-syenites and nepheline syenites of the Mid-21 

Proterozoic Gardar Province (South Greenland) are presented and compared to 22 

apatite compositions from other rock suites. 23 

The observed zoning textures of apatite are interpreted to represent (i) primary 24 

growth zonation (concentric and oscillatory) that formed during magmatic 25 

differentiation and (ii) secondary irregular overgrowths, patchy zonation and 26 

resorption textures, assigned to metasomatic overprinting due to interaction with 27 

fluids/melts and intra-crystalline diffusion. Compositional variation in the apatites is 28 

mainly due to coupled substitutions of Ca and P by variable amounts of Si, Na and 29 

REE, which show increasing concentrations during magmatic differentiation. Further, 30 

F concentrations in apatites increase from gabbroic through syenogabbroic to 31 

syenitic rocks, whereas Cl concentrations show the opposite trend.  32 

Compared to apatite compositions from gabbroic, dioritic, and granitic rocks in 33 

general, apatites from alkaline rock suites are characterized by exceptionally high 34 

contents of REE and Si and in some alkaline rocks they attain Sr contents 35 

comparable to those reported from carbonatites. Typical low Mn and S contents are 36 

probably a result of low oxygen fugacity during crystallization at relatively high 37 

temperatures. 38 

 39 

 40 

Introduction 41 

Apatite is a common accessory mineral in a wide range of igneous rocks (Liferovich 42 

and Mitchell 2006; Marks et al. 2012; Piccoli and Candela 2002; Sha and Chappell 43 
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1999; Seifert et al. 2000; Teiber et al. 2015a). The apatite supergroup covers 44 

minerals with the structural formula M5(TO4)3X including phosphates, arsenates, 45 

sulfates, vanadates, and silicates that can exhibit a wide range of solid solution 46 

(Pasero et al. 2010). In igneous apatites, the major cation in the M site is generally 47 

Ca, the T site is mainly occupied by P and the X site by F, OH, and Cl (e.g., Piccoli 48 

and Candela 2002; Pan and Fleet 2002). Geochemically important elements 49 

including Sr, Na, Fe, Mn, Rare Earth Elements (REE), Si, and S substitute for Ca and 50 

P (cf., Belousova et al. 2002; Chu et al. 2009; Pan and Fleet 2002; Piccoli and 51 

Candela 2002; Marks et al. 2012; Sha and Chappell 1999; Teiber et al. 2015a; Zirner 52 

et al. 2015).  53 

Apatite compositions are controlled by temperature, pressure, oxygen fugacity, and 54 

composition of coexisting phases as well as by the bulk composition of the host 55 

magma (Ayers and Watson 1993; Belousova et al. 2001; Boyce and Hervig 2008; 56 

Chu et al. 2009; Hoskin et al. 2000; Miles et al. 2014; Sha and Chappell 1999; 57 

Watson and Green 1981; Parat et al. 2002). Consequently apatite can be a sensitive 58 

recorder of magmatic processes (e.g. fractional crystallization or magma mixing) as 59 

well as of subsequent hydrothermal overprinting, metasomatism, and re-equilibration 60 

during cooling (e.g., Harlov and Föster 2003; Harlov et al. 2005; 2011; Chu et al. 61 

2009; Rønsbo 2008; Tepper and Kuehner 1999; Wang et al. 2014; Teiber et al. 62 

2015b). In igneous rocks, apatite may occur as an early crystallizing phase, 63 

precipitating over a very long crystallization interval or may start crystallizing very late 64 

(e.g., Boudreau et al. 1993; Hoskin et al. 2000).  65 

On the basis of an extensive data set on apatite compositions from variably 66 

differentiated rift-related alkaline igneous rocks, we aim to (1) evaluate the potential 67 

of apatite for monitoring magmatic and hydrothermal processes in such rock types 68 
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and (2) compare these data with apatite compositions from gabbroic, dioritc and 69 

granitic rocks from non-alkaline associations and from carbonatites (e.g. Belousova 70 

et al. 2001; Piccoli and Candela 2002; Sha and Chappell 1999; Teiber et al. 2015a). 71 

 72 

Geological background 73 

The Gardar Province in South Greenland represents an uplifted and eroded 74 

continental rift province of Mesoproterozoic age (see Upton et al. 2003 for a recent 75 

review). Between 1350 and 1140 Ma, a thick (~3500 m) sequence of lavas and 76 

sediments (the Eriksfjord Formation) accumulated (Poulsen 1964; Larsen 1977; 77 

Halama et al. 2003), which was intruded by a large number of dike rocks and several 78 

composite plutonic complexes (Fig. 1). The mostly Paleoproterozoic (Ketilidian) 79 

country rocks consist of calc-alkaline granitoids of the Julianehåb batholith that 80 

formed between 1850 and 1725 Ma after presumed subduction of an oceanic plate 81 

beneath the Archean craton to the north (Garde et al. 2002). In the NW of the 82 

province, Archean high-grade gneisses form the country rocks for some of the 83 

Gardar intrusives (Allaart 1976).  84 

The dikes vary in composition from mafic to salic (basaltic to trachytic, phonolitic, and 85 

rhyolitic) and also include lamprophyres and carbonatites. These strike mostly WNW-86 

ESE and NE-SW following zones of inferred lithospheric thinning and graben 87 

development (Upton et al. 2003; Upton 2013). Two major dike swarms are located in 88 

the Tugtutôq-Ilímaussaq and the Nunarssuit-Isortoq zones. Abundant anorthosite 89 

xenoliths in some of the dike rocks imply the presence of a large anorthosite body 90 

underlying South Greenland (Bridgwater 1967; Bridgwater and Harry 1968). 91 
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The intrusive complexes consist of syenites, nepheline syenites, alkali granites, 92 

gabbros, syenogabbros, and carbonatites (in order of decreasing abundance). With 93 

few exceptions, they follow either a SiO2-undersaturated or a SiO2-oversaturated 94 

trend, depending mainly on crustal contamination (e.g. Marks et al. 2003; 2004a; 95 

Stevenson et al. 1997). The rocks crystallized about 3-5 km below the surface and it 96 

is likely that most of the complexes had surface expressions (Upton 2013). Most of 97 

the larger Gardar intrusions are characterized by layered cumulates. The remarkable 98 

abundance of cumulate layering (attributed to crystal sinking or floating), together 99 

with unusually coarse-grained textures and extensive in situ differentiation, has been 100 

related to low viscosities in F-rich melts (Upton et al. 2003). Previous field and 101 

experimental investigations indicate that these relatively reduced melts evolved 102 

through Fe-enrichment to extremely alkaline differentiates (e.g. Upton 2013; Giehl et 103 

al. 2012). Some of them that contain eudialyte-group minerals 104 

(Na15Ca6Fe3Zr3Si(Si25O73)(O,OH,H2O)3(Cl,OH)2) and other Na-Zr-Ti silicates are 105 

classified as agpaitic rocks. They represent some of the most evolved magmatic 106 

rocks on Earth (e.g., Bailey et al. 2001; Sørensen 1997; Marks et al. 2011). Based on 107 

the available age data, the intrusive rocks are divided into older and younger Gardar 108 

intrusions (Upton 2013). Older Gardar intrusions include Grønnedal-Ika, Kûngnât, 109 

Motzfeld, North Qôroq, and North Motzfeld with intrusive ages between about 1300 110 

and 1250 Ma. Most other intrusives (e.g., Isortoq, Tugtutôq, Puklen, Ilímaussaq) 111 

belong to the Younger Gardar period with ages between about 1180 and 1140 Ma 112 

and are interpreted as constituting a coherent magmatic system (Upton 2013).  113 

 114 

Material and Methods 115 
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For this study we used otherwise well-characterized sample material from the 116 

Grønnedal-Ika complex (Emeleus 1964; Blaxland et al. 1978; Halama et al. 2005); 117 

the Kûngnât complex (Upton et al. 2013); the Motzfeldt complex (Jones 1980; Jones 118 

and Larsen 1985; Schönenberger and Markl 2008; McCreath et al. 2012); the Isortoq 119 

dike swarm (Bridgwater and Harry 1968; Bridgwater and Coe 1970; Upton and 120 

Emeleus 1987; Halama et al. 2002; 2004); the Tugtutôq region, where two major 121 

giant dike complexes (Older and Younger Giant Dike Complexes; OGDC and YGDC) 122 

are distinguished (Upton and Thomas 1980; Upton et al. 1985 Upton 2013); the 123 

nearby island of Igdlutalik (Upton et al. 1976; Upton 2013); the Puklen complex 124 

(Pulvertaft 1961; Parsons 1972; Finch et al. 2001; Marks et al. 2003); and the 125 

Ilímaussaq complex (Ferguson 1964; Larsen and Sørensen 1987; Bailey et al. 2001; 126 

Marks et al. 2004a; Krumrei et al. 2006; Marks and Markl in press). The intrusion is 127 

the type locality of agpaitic rocks, as well as for a lot of uncommon (and some 128 

unique) minerals including a number of Nb-, Zr-, REE-rich minerals. An ENE-WSW 129 

trending peralkaline (agpaitic) phonolite dike is spatially associated with the 130 

Ilímaussaq complex. This 10-30 m wide dike is traceable for about 18 km and 131 

provides insight into the nature of the magma(s) from which the Ilímaussaq agpaities 132 

formed (e.g., Larsen & Steenfelt 1974; Marks and Markl 2003). 133 

The textures and compositions of apatite from these localities are described below. 134 

This includes previously published apatite data from Ilímaussaq (Rønsbo 1989; 2008; 135 

Zirner et al. 2015) and the North Qôroq complex (Rae et al. 1996), for comparison. 136 

Accordingly, we present apatite compositions from a continuous spectrum of broadly 137 

co-genetic, rift-related igneous rocks ranging from gabbros, syenogabbros, syenites, 138 

quartz- and nepheline syenites to highly evolved agpaites (Table 1; Fig. 2). 139 

 140 
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Sample Material 141 

From the Grønnedal-Ika complex, five samples of the coarse-grained and layered 142 

nepheline syenites were studied. Major magmatic mineral phases are cumulus 143 

clinopyroxene, nepheline, alkali feldspar, and Fe-Ti oxides with minor amounts of 144 

apatite. Amphibole is an intercumulus phase in sample GM 1531 and biotite is 145 

present only in sample GM 1559. 146 

From the Kûngnât complex, two samples of coarse-grained gabbros, one of 147 

syenogabbro, and seven of syenite were investigated. The gabbros consist of olivine, 148 

Fe-Ti oxides, plagioclase, apatite, and sulfides. Clinopyroxene and alkali feldspar are 149 

late-crystallizing phases, and biotite is present as reaction fringes around the oxides. 150 

The modal amount of alkali feldspar increases at the expense of plagioclase in the 151 

syenogabbros; Fe-Ti oxide and apatite reach their modal peaks in these rocks. In the 152 

syenites the feldspars are all perthitic alkali feldspars, accompanied by olivine, 153 

clinopyroxene, Fe-Ti oxides, and apatite. Intercumulus amphibole is ubiquitous and, 154 

as in the mafic rocks, reaction fringes of biotite surround the oxides. In the more 155 

highly differentiated syenites interstitial quartz is present.  156 

From the Motzfeldt complex, three samples of coarse-grained nepheline syenite were 157 

studied. They mainly consist of amphibole, clinopyroxene, tabular alkali feldspar, 158 

nepheline, and Fe-Ti oxides with accessory zircon, apatite and calcite. Further, a 159 

larvikite sample contains olivine, clinopyroxene, amphibole, nepheline, alkali feldspar, 160 

plagioclase, apatite, and Fe-Ti oxides. The Fe-Ti oxides are also typically rimmed by 161 

biotite. 162 

From the Isortoq dike swarm, nine samples were selected. One was an anorthosite 163 

xenolith mainly containing plagioclase, clinopyroxene, and Fe-Ti oxides, with minor 164 

amphibole, quartz, and apatite. A larvikite sample consists of clinopyroxene, Fe-Ti 165 
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oxides, plagioclase, and alkali feldspar, with subordinate interstitial quartz, 166 

amphibole, and biotite and accessory apatite and zircon. A sample of olivine gabbro 167 

contains subhedral olivine, plagioclase, and interstitial clinopyroxene as major 168 

components and minor apatite and Fe-Ti oxides. Olivine and Fe-Ti oxides are 169 

commonly rimmed by biotite. A further six samples were selected from the Isortoq 170 

Giant Dikes. The gabbroic samples from Giant Dikes 1 and 3 are coarse-grained and 171 

contain plagioclase, alkali feldspar, olivine, interstitial clinopyroxene, Fe-Ti oxides, 172 

and apatite. The syenitic samples lack plagioclase and olivine but contain euhedral to 173 

subhedral clinopyroxene, together with amphibole and epidote. Transition from 174 

gabbro to syenite is exemplified by the syenogabbro sample. In all Giant Dike 175 

samples, olivines, clinopyroxenes, and/or Fe-Ti oxides have biotite overgrowths.  176 

From the Tugtutôq region we investigated six gabbros, four syenograbbros, six 177 

syenites, one pulaskite, and three foyaites from the OGDC and YGDC. The gabbroic 178 

samples contain plagioclase, olivine, clinopyroxene, Fe-Ti oxides (some rimmed by 179 

biotite) and apatite. Syenitic samples (including pulaskite and foyaites) lack 180 

plagioclase and olivine but contain additional amphibole. Syenitic rocks of the OGDC 181 

are invariably nepheline-bearing, whereas some syenites from the YGDC contain 182 

minor amounts of quartz. As at Isortoq, syenogabbros from the Tugtutôq region 183 

display the transition from gabbro to syenite with minor amounts of plagioclase still 184 

present in the latter.  185 

The pantelleritic, trachyte dike from Igdlutalik is remarkable for containing 186 

narsarsukite (Na2(Ti,Fe3+)Si4(O,F)11) phenocrysts. They lie in a fine-grained 187 

devitrified matrix showing flow-banding (defined by differing conentrations of finely 188 

dispersed albite, aegirine, biotite and Fe-Ti oxides). Minor components are apatite, 189 
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pectolite, zircon, nordite (Na3SrCeZnSi6O17), emeleusite (Li2Na4Fe2
3+Si12O30), 190 

unidentified REE silicate(s), and calcite. 191 

From the Puklen complex, six syenite and two peralkaline granite samples were 192 

investigated. The syenites are medium- to coarse-grained and contain alkali feldspar, 193 

clinopyroxene, amphibole, Fe-Ti oxides, apatite, and zircon as primary magmatic 194 

phases, with aenigmatite (Na4[Fe2+
10Ti2]O4[Si12O36]) and quartz occuring as a late 195 

magmatic phases in two samples. The peralkaline granites consist of alkali feldspar, 196 

quartz, clinopyroxene, amphibole, zircon, and scarce apatite. 197 

 198 

Methods 199 

The major- and minor-element compositions of the apatites from Grønnedal-Ika, 200 

Motzfeldt, Isortoq and Puklen were determined using a JEOL 8900 electron 201 

microprobe (EMPA) operating in wavelength-dispersive (WDS) mode at the 202 

Fachbereich Geowissenschaften, Tübingen University, Germany. A beam current of 203 

10 nA, an acceleration voltage of 15 kV and a defocused beam diameter of 10 µm 204 

were applied to achieve constant count rates during peak counting times and to avoid 205 

migration of Na, Ca, P, F, and Cl. To further minimize this potential problem, we 206 

avoided analyses where the electron beam was parallel to the apaites c-axis as 207 

much as possible (Goldoff et al. 2012; Stormer et al. 1993; Wang et al. 2014). Details 208 

on standard materials used for calibration and analytical conditions are given in 209 

Teiber et al. (2015a). The well-characterized Durango apatite was periodically re-210 

analyzed to ensure consistency between the analytical sessions. Data reduction was 211 

performed using the internal ZAF correction of JEOL (Armstrong, 1991). Apatites 212 

from Kûngnât, Tugtutôq and Igdlutalik were analyzed by Peter Hill at the Institut für 213 

Petrologie, Universität Wien using a Cameca SX100 applying a beam current of 20 214 
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nA, an acceleration voltage of 20 kV and a focused beam. Therefore, concentrations 215 

of halogens should be interpreted with caution, as the mobiliy of F and less so Cl 216 

during analyses was not considered at the time of their analysis.  217 

 218 

Results 219 

Apatite is much more abundant in the gabbroic samples than in the syenites and is 220 

rare in the peralkaline granites. It is regarded as an early magmatic phase in all 221 

investigated samples as it occurs as inclusions in all the other rock-forming minerals 222 

and along grain boundaries. Apatite typically occurs as euhedral to subhedral prisms 223 

with diameters <100 µm and lengths of <800 µm, with no large differences between 224 

the various localitites and rock types. In peralkaline granites from the Puklen 225 

complex, apatite crystals are too small (generally <10 µm in diameter) for analysis. In 226 

a few samples, additional acicular apatites with diameters <15 µm and lengths of up 227 

to about 800 µm occur. Such apatites could not be reliably analyzed by EMPA.  228 

 229 

Apatite zoning textures 230 

Based on BSE imaging, apatites from Isortoq, Tugtutôq, and Igdlutalik are 231 

homogeneous. In contrast, apatites from composite intrusive complexes display 232 

various types of zoning, which we summarize in the following. Zonal textures of 233 

apatites from the Ilímaussaq and North Qôroq are described in detail in Rønsbo 234 

(1989; 2008), Zirner et al. (2015), and Rae et al. (1996). 235 

Apatites from Grønnedal-Ika display variable zoning textures. Some crystals appear 236 

homogeneous in BSE images, some show concentric and oscillatory zoning, whilst 237 

others display zoning with dark cores (sometimes euhedral, sometimes rounded) and 238 
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brighter rims (Figs. 3a-c). Furthermore, many apatite grains are overgrown by 239 

irregularly formed, discontinuous, and mostly <5 µm wide very bright rims (termed 240 

overgrowth textures in the following), which have compositions with higher average 241 

atomic numbers (Figs. 3a, c and d). 242 

In the Motzfeldt syenites most apatites are concentrically and oscillatory zoned. As in 243 

the Grønnedal-Ika samples, a small proportion of the apatites display zoning with 244 

euhedral to rounded cores and BSE imaging reveals abrupt to gradational 245 

compositional changes across these minerals (Figs. 4a-c). The common overgrowth 246 

textures, as observed in the Grønnedal-Ika, are, however, mostly absent. In one 247 

sample (JS 104) patchy zoning is observed (Fig. 4d). Apatites from the larvikite (JS 248 

215) appear homogeneous in BSE images. 249 

Apatites from Puklen are mostly homogeneous (Fig. 4e). However, in sample GM 250 

1615, otherwise homogeneous apatites are overgrown by irregular and discontinuous 251 

bright rims (Fig. 4f), similar to textures found the Grønnedal-Ika rocks.  252 

 253 

Compositional variability 254 

The compositional variability of the Gardar apatites is illustrated in Figs. 5-7, where 255 

the samples of each locality are shown from left to right by decreasing XMg of their 256 

respective whole-rock and mafic mineral compositions. Apatite formulas were 257 

normalized to eight cations, assuming stoichiometry. The amount of OH was 258 

calculated assuming charge balance on a fully occupied OH-site (sum of F + Cl + OH 259 

= 1 apfu) and the potential incorporation of CO3 was not considered further here. The 260 

full dataset is available as an electronic supplement attached to this paper. 261 

During EMPA, La and Ce were analyzed as proxies for the total REE content of the 262 

apatites. Most of the these apatites contain <4 wt.% La2O3 + Ce2O3 (electronic 263 
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supplement). In such analyses, the heavier LREE (Pr, Nd, Sm), the MREE and the 264 

HREE would be close to or below the detection limit of EMPA, which would render 265 

most of these values meaningless. Therefore, we did not include heavier LREE, 266 

MREE and HREE in our EMPA protocol. Some apatites of the evolved rocks from 267 

Ilimaussaq are very REE-rich (Rønsbo 1989; 2008; Zirner et al. 2015), and the 268 

EMPA totals for such apatites imply up to about 5 wt.% missing REE. However, 269 

because of the LREE-rich and HREE-poor nature of such apatites (Zirner et al. 270 

2015), and because of the high masses of REE in general, the effects on the formula 271 

calculation are relatively minor. A comparison between EMPA and LA-ICP-MS data 272 

(Zirner et al. 2015) for such apatites show that the omission of heavier REE´s during 273 

EMPA has no significant effect on the derived conclusions. 274 

 275 

Substitutions on the Ca-site - Apatites from the relatively primitive gabbroic rocks 276 

have low La + Ce contents (mostly <0.05 apfu), whilst those from miaskitic syenites 277 

are generally higher in La + Ce (mostly 0.05 - 0.15 apfu). Exceptionally high LREE 278 

contents occur in agpaitic syenites (up to 0.75 apfu) and in overgrowth textures from 279 

the miaskitic syenites (up to 0.56 apfu) of the Ilímaussaq complex (Fig. 5a; Rønsbo 280 

1989; 2008; Zirner et al. 2015). The within-sample variation of La + Ce contents is 281 

much larger in the syenitic rocks than in the gabbroic rocks. In samples from a given 282 

locality, the LREE contents generally increase with degree of differentiation, although 283 

this trend is less clear for the Gronnedal-Ika and Motzfeld samples. Invariably the 284 

LREE contents increase from core to rim (Fig. 6).  285 

As in the case of La + Ce, Na contents of the apatite increase from gabbroic (<0.03 286 

apfu) to syenitic rocks (mostly between 0.02 and 0.1 apfu). Exceptionally high Na 287 

contents occur in apatites from evolved syenites (foyaites) from Tugtutôq (up to 0.42 288 
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apfu) and in agpaites from Ilímaussaq (up to 0.56 apfu), but not in the overgrowth 289 

textures from the Ilímaussaq miaskitic syenites as was observed for LREE (Figs. 5a 290 

and b). In samples from a given locality, Na contents generally increase with degree 291 

of magma differentiation, although this is less clear in some syenitic complexes. The 292 

Na concentrations are higher in the cores than at the rims of concentrically zoned 293 

crystals. In those with rounded cores, however, Na contents show no systematic 294 

variation (Fig. 6). 295 

Contents of Sr vary from 0.001 – 0.10 apfu Sr, and are highest in apatites from the 296 

Ilímaussaq agpaites (Fig. 5c). Relatively high and variable Sr contents (up to 0.06 297 

apfu) also occur in apatites from the Grønnedal-Ika and the Motzfeldt miaskitic 298 

syenites. Apatites from all other intrusive complexes (North Qôroq, Kûngnât and 299 

Ilímaussaq, exluding the agpaitic rocks) and rocks from the Isortoq and Tugtutôq 300 

regions are relatively poor in Sr (<0.02 apfu). In contrast to REE contents (see 301 

above), the Sr contents of apatites from a given locality show no obvious changes 302 

with degree of differentiation. Yet, Sr contents in concentrically zoned apatites are 303 

higher in the cores than at the rims of crystals, very similar to Na. In grains with 304 

rounded core textures, however, this is not always the case (Fig. 6). 305 

The FeO and MnO contents for all investigated apatites are low (<0.9 and <0.1 wt%, 306 

respectively), and show no systematic differences between localitites, rock types, or 307 

degree of differentiation (Figs. 5d and e). 308 

 309 

Substitutions on the P-site - The Si contents of apatite are generally <0.04 apfu in 310 

the gabbros and syenogabbros, reaching about 0.27 apfu Si in the miaskitic syenites 311 

and attaining the highest levels in secondary overgrowth textures and agpaites from 312 

Ilímaussaq (up to 1.01 apfu; Fig. 5f). Zoning profiles and core-rim variations of 313 
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apatites show increasing concentrations of SiO2 from core to rim, which behave in a 314 

very similar manner as the REE contents (Fig. 6). Like the REE (and to some extent 315 

Na), Si increases with degree of differentiation in any single intrusive complex. There 316 

is, however, large data scatter within and between samples, especially in the 317 

syenites.  318 

Sulfur and As contents in apatite are mostly below the EMPA detection limit (around 319 

230 μg/g for SO3 and 290 µg/g for As2O5). Only in a few analyses do the S contents 320 

rise to 0.07 wt% SO3 (0.004 apfu S), with As reaching 0.06 wt% As2O5 (0.003 apfu 321 

As). 322 

 323 

Substitutions on the OH-site - Apatites from most of the investigated samples are 324 

fluorapatite, as is typical for most igneous rocks (Piccoli and Candela 2002). A few 325 

analyses from the more mafic samples from Tugtutôq and Kûngnât yield low sums of 326 

(F + Cl), apparently indicating the presence of a significant hydroxylapatite 327 

component (Fig. 7). Note that F (and less so Cl contents) for these analyses should 328 

be interpreted with caution, as the mobility of F and less so Cl during analyses was 329 

not considered at the time of their analysis. However, F and Cl contents for the 330 

Isortoq samples are partly equally low although these samples were analyzed with 331 

appropriate conditions for halogens (see methods section for details). The potential 332 

incorporation of carbonate is not discussed here, as no data for C for these apatites 333 

are available.  334 

In general, F contents are lowest in apatites from the gabbroic rocks and reach much 335 

higher values in the syenites (Fig. 7a). In apatites from the Isortoq region a clear F 336 

increase in the apatite with differentiation is indicated. Fluorine contents are known to 337 

increase from primitive towards more evolved rocks (Belousova et al. 2002; Sha and 338 
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Chappell 1999; Teiber et al. 2015a). Such a trend is, however, not observed in the 339 

sample sets from the investigated syenitic complexes, where there is relatively little 340 

change in apatite compositions. Furthermore, there are no major differences in 341 

apatite compositions from the different syenitic complexes although apatites from the 342 

Motzfeld complex are slightly poorer in F than those from the Grønnedal-Ika, Puklen, 343 

and Ilímaussaq complexes. 344 

Chlorine contents (up to 0.49 wt%; 0.05 apfu Cl) show a crude inverse correlation 345 

with F and are relatively high in the gabbroic rocks but very low in syenites from the 346 

various intrusive complexes (Fig. 7b). The apatites from the two larvikites have 347 

notably higher Cl contents than those from the other samples from the same 348 

localities, irrespective of whether it is the most primitive (Motzfeld complex) or the 349 

most evolved (Isortoq) rock. 350 

 351 

Predominant substitution mechanisms - The contents of Sr, Fe, Mn, S, and As in 352 

apatites from the Gardar Province are generally low and their variations do not show 353 

any obvious systematic behavior in terms of rock type and degree of differentiation. 354 

Apart from some variation in F and Cl, most of the compositional variation in the 355 

apatites is related to their Na, Si, and REE contents. Positive correlations between 356 

REE, Si, and Na (Fig. 8) are consistent with the incorporation of REE by a 357 

combination of the following charge-compensating substitution mechanisms: 358 

Ca2+ + P5+   ↔   REE3+ + Si4+ (1) 359 

2 Ca2+   ↔   REE3+ + Na+ (2) 360 

Both substitution mechanisms have been described before (e.g., Pan and Fleet 361 

2002; Fleet et al. 2000; Zirner et al. 2015; Rønsbo 1989, 2008). Their combined 362 

appearance may be related to the alkalinity and/or silica activity of the magma from 363 
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which these apatites crystallize, if these substitutions are not limited by the overall 364 

abundance of REE’s in the magma (see below). 365 

 366 

Discussion 367 

Interpretation of apatite zoning textures  368 

The compositional variability of apatites records magmatic processes (e.g. fractional 369 

crystallization, magma mixing, magmatic degassing). The textural and chemical 370 

signatures may be overprinted by post-magmatic processes, such as hydrothermal 371 

replacement and diffusive reequilibration (Boyce and Hervig 2008; Dempster et al. 372 

2003; Hinton and Paterson 1994; Jolliff et al. 1989; Rae et al. 1996; Shore and 373 

Fowler 1996; Streck 2008; Tepper and Kuehner 1999; Harlov and Förster 2003). The 374 

zoning textures described above can be used to elucidate the evolution of the 375 

magma from which the apatite crystallized during differentiation and post-magmatic 376 

processes (e.g. hydrothermal modification). 377 

Homogeneous (i.e. unzoned) apatites occur mainly in the more primitive Isortoq and 378 

Tugtutôq samples and also in the larvikite from Motzfeld. The other rock-forming 379 

minerals in these rocks also have little or no zoning (e.g., Halama et al. 2004). For 380 

these rocks fast crystallization under dry conditions was inferred, obviously 381 

minimizing compositional zoning during growth (e.g., Upton and Thomas, 1980; 382 

Halama et al. 2004). Furthermore some of these rocks contain acicular apatite, which 383 

grew rapidly due to strong undercooling or loss of volatiles (Reid et al. 1983; Sha 384 

1995; Wyllie et al. 1962; Zirner et al. 2015).  385 

Concentrically zoned apatites, seen mainly in Motzfeldt and Grønnedal-Ika, are due 386 

to compositional changes in the magma during growth, which is attributed e.g. to 387 
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magma mixing and differentiation processes (e.g. Streck 2008). The core-rim 388 

traverses in such apatites show increasing Na, Si, and REE and decreasing Sr (Fig. 389 

6). Similar trends are also recorded for the evolution from gabbros to syenites in the 390 

Isortoq and Tugtutôq samples (Fig. 5). These trends may partly reflect magma 391 

evolution during fractional crystallization but are also partly controlled by the coupled 392 

substitution governing the compositional variability of apatite (Tepper and Kuehner 393 

1999), which will be discussed in more detail below. However, fine-scale oscillatory 394 

zoning is generally interpreted as reflecting non-equilibrium magmatic processes 395 

(e.g., Shore and Fowler 1996). The composition of the very thin (<5 µm) growth 396 

layers depends on the relative element diffusion rates for the elements in the melt 397 

and crystal (Dempster et al. 2003; Shore and Fowler 1996; Tepper and Kuehner 398 

1999). Such zoning is only rarely observed in apatites from Grønnedal-Ika and 399 

Motzfeldt (Figs. 3 and 4). These apatites probably crystallized in segregated melt 400 

pockets over longer crystallization intervals. 401 

Apatites with rounded cores have been attributed to inheritance from country rocks, 402 

magma mixing, changes in crystal/melt element partitioning, or kinetic effects 403 

(Tepper and Kuehner 1999; Sha and Chappel 1999; Wang et al. 2014). Core-to-rim 404 

traverses show increases in Si and REE but no systematic changes in Na and Sr 405 

(Fig. 6). These textures may result from incomplete, sub-solidus, intra-crystalline 406 

diffusion as different crystals show different stages from euhedral to completely 407 

rounded cores (Figs. 3 and 4). The zoning of certain elements in apatite with 408 

rounded cores may have been controlled by their respective substitution mechanism 409 

(Tepper and Kuehner 1999). For example Sr, which substitutes for Ca, does not 410 

show strict core-to-rim variations (Fig. 6), whereas REE and Si, which participate in 411 

coupled substitutions for Ca, display large core-to-rim variations similar to those of 412 

the concentrically zoned apatites (Fig. 6). However, Na, which is also involved in 413 
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coupled substitutions, shows no distinct trends (Fig. 6), and this could be due to 414 

differences in diffusion rates, with Sr diffusing faster than Na and Si (Tepper and 415 

Kuehner 1999).  416 

Irregular and discontinuous overgrowth textures occur in rocks from Grønnedal-Ika 417 

and Puklen (Figs. 3a, c, d and 4f) and are very similar to features in the Ilímaussaq 418 

apatites that are exceptionally rich in Na, Si, and REE (Rønsbo 1989; 2008; Zirner et 419 

al. 2015). Because of their irregular shape, they were ascribed to metasomatic 420 

overprint caused by the interation with evolved melts/fluids. Similar patchy zonation 421 

in samples from Motzfeldt (Fig. 4d), North Qôroq (Rae et al. 1966) and Ilímaussaq 422 

(Zirner et al. 2015) is attributed to the effects of the metasomatizing fluids.  423 

 424 

Significance of Sr contents in apatites from the Gardar Province 425 

In general, the concentration of Sr in apatites decreases with magmatic differentiation 426 

because of the preferred partitioning of Sr into plagioclase (e.g.; Belousova et al. 427 

2001; 2002; Chu et al. 2009). There is, however, no correlation between Sr contents 428 

and the degree of differentiation in the investigated samples from the Gardar 429 

province. The data indicate that apatites from the more primitive rocks do not contain 430 

more Sr than those from the evolved rocks - neither when samples of a single suite 431 

nor those from different localitites are compared (Fig. 5). This is probably related to 432 

the early magmatic evolution of most of the evolved Gardar rocks. These are 433 

assumed to have experienced extensive plagioclase fractionation (e.g., Bridgwater 434 

1967; Bridgwater and Harry 1968; Halama et al. 2002), which could have caused the 435 

generally low Sr contents in apatite. 436 

Apatites from Grønnedal-Ika are richer in Sr than those from the other Gardar rocks 437 

(except the Ilímaussaq agpaites) and their Sr contents decrease from core to rim 438 
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(Figs. 5 and 6). Similarily, Sr contents of clinopyroxene and amphibole from 439 

Grønnedal-Ika are significantly higher than in other Gardar syenites and in contrast to 440 

minerals and rocks from other Gardar complexes, lack any Eu anomalies (Marks et 441 

al. 2004b). Furthermore, Grønnedal-Ika hosts the only large carbonatite body that 442 

intrudes Archean basement rocks. Isotopic data for this complex indicate a slightly 443 

different magma source and the absence of any significant crustal contamination 444 

(Halama et al. 2005). Therefore, the early magmatic history of the Grønnedal-Ika 445 

complex may have been slightly different from that of the other Gardar rocks, 446 

potentially lacking extensive fractionation of plagioclase. This implies that the magma 447 

source of the Grønnedal-Ika intrusions was richer in Sr than in the case of the other 448 

Gardar complexes, which would be a primary feature, not necessarily related to the 449 

associated carbonatite. 450 

Anomalously, a late-stage agpaitic vein from Ilímaussaq has apatite with even higher 451 

Sr contents, although the apatites in the less-evolved rocks of the complex contain 452 

very Sr-poor apatites (Fig. 5; Zirner et al. 2015). This shows that the general 453 

assumption of decreasing Sr contents in apatite with increasing differentiation is not 454 

applicable to such rock types. Because of their evolved character, minerals and rocks 455 

from Ilímaussaq are exceptionally Sr-poor (Bailey et al. 2001; Marks et al. 2004b; 456 

Schilling et al. 2011). Further, it is known that Sr is slightly compatible with alkali 457 

feldspar (which is the dominant fractionation phase) in peralkaline systems (e.g., 458 

Henderson and Pierozynski 2012), which makes the occurrence of relatively Sr-rich 459 

apatite during the latest magmatic stages of the complex even more remarkable. 460 

Although the reason for the late Sr-rich apatites in Ilímaussaq is obscure, it may be 461 

related to the mobilization of Sr during late-magmatic to hydrothermal stages, rather 462 

than Sr enrichment during evolution through fractional crystallization. 463 
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  464 

The combined incorporation of REE, Na and Si in apatite 465 

The concentrations of REE in apatite increase during the evolution from relatively 466 

primitive to more-evolved rocks at all of the investigated localitites. This is 467 

accompanied by a Si increase and partly (but not always) by an increase in Na (Figs. 468 

5 and 6). This agrees with previous investigations on apatite from a wide range of 469 

magmatic rocks (e.g. Belousova et al. 2002; Chu et al. 2009; Nash 1984; Seifert et 470 

al. 2000; Sha and Chappell 1999). As REE are strongly compatible in apatite (e.g., 471 

Hoskin et al. 2000; Watson and Green 1981; Prowatke and Klemme 2006), apatite is 472 

more sensitive to changes in REE concentrations in magmas than most rock-forming 473 

silicate minerals (Cherniak 2000).  474 

Through the coupled substitution of REE with Si and REE with Na for Ca and P (see 475 

above), any secondary or post-magmatic change in the REE concentrations would 476 

require a complementary redistribution of Si and Na. Tepper and Kuehner (1999) 477 

observed that REE diffusion rates in apatite are an order of magnitude slower if the 478 

coupled substitution mechanism is Ca2+ + P5+ ↔ REE3+ + Si4+, compared to the 479 

incorporation of REE3+ via the coupled substitution 2Ca2+ ↔ REE3+ + Na+. However, 480 

Cherniak (2002) has suggested that there is no difference in REE mobility within 481 

apatites with regard to the particular coupled substitution mechanism by which the 482 

REE are charge balanced.  483 

Zoning patterns observed for apatites in this study support the arguments of Tepper 484 

and Kuehner (1999) that the compositional zoning for REE and Si is always 485 

preserved, but partly erased for Na, especially in those apatites with rounded core 486 

textures (Fig. 6). This underlines the high potential for REE and Si contents in apatite 487 

to be used as a powerful petrogenetic indicator, but less so for Na. In our study, 488 
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increasing Na concentrations related to differentiation processes are only observed 489 

at localitites that include relatively primitive and evolved rocks (e.g., Isortoq), whereas 490 

in evolved syenitic complexes (e.g., Puklen and Motzfeld) this relationship is much 491 

less clear (Fig. 5). We assign this to the post-magmatic hydrothermal overprinting 492 

typical for plutonic alkaline complexes. We further suggest that this is preserved in 493 

apatites from syenitic complexes, as these show a relatively wide range for the fast-494 

diffusing elements (e.g. Na and Sr) within single samples (Fig. 5; see above). This is 495 

most pronounced in samples from the Grønnedal-Ika and Motzfeldt complexes. 496 

Apatites from these complexes show abundant zoning textures that are probably 497 

related to the interaction with evolved fluids/melts, such as rounded core textures, 498 

patchy zoning and irregular overgrowths (Figs. 3 and 4; Rae et al. 1996; Zirner et al. 499 

2015). Accordingly, primary magmatic processes may be distinguished from 500 

metasomatic processes on the basis of textural arguments. From these observations 501 

and the fast diffusion rates of Na and Sr (Cherniak 2000; Cherniak and Ryerson 502 

1993; Tepper and Kuehner 1999), the overall reliability of these two elements as 503 

petrogenetic indicators for magmatic processes is poor, at least for alkaline plutonic 504 

rocks. 505 

There is no direct link between the relative importance of REE coupled substitution 506 

mechanisms involving Si and the Si contents of the host melts: Apatites from quartz-507 

bearing syenites of Puklen are not dominated by this coupled substitution 508 

meachanism unlike the apatites from the syenites of the Ilímaussaq complex (Fig. 8). 509 

Only in apatites from the agpaitic rocks does the REE coupled substitution 510 

mechanism involving Na become dominant (although not in all cases; Zirner et al. 511 

2015; Fig. 8). Apatites from the other nepheline syenites fall in between these two 512 

extremes as do apatites from both Si-poor (carbonatites) and Si-rich magmas 513 

(granitic rocks; Sha and Chappell 1999; Teiber et al. 2015a). The amount of Si in 514 
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apatite is a good petrogenetic indicator, within a given rock association, for 515 

reconstructing, (for example) magma differentiation paths. However, the Si contents 516 

in apatite do not provide direct information about the melt compositions e.g., SiO2 517 

over- or undersaturation. This suggests, that the amount of Si substitution in apatite 518 

is influenced by the avalailability of REE involved in the frequently observed coupled 519 

substitition Ca2+ + P5+ ↔ REE3+ + Si4+ (Pan and Fleet 2002; Fleet et al. 2000; Zirner 520 

et al. 2015; Rønsbo 1989; 2008). 521 

 522 

Comparison between apatite from alkaline rocks and other rock types 523 

In the following discussion the compositional variation of apatites from the Gardar 524 

Province is compared to that from investigations of (1) alkaline rock suites of the 525 

Pilansberg complex (South Africa; Liverovich and Mitchell 2006) and the Tamazeght 526 

complex (Morocco; Wang et al., unpublished data); (2) carbonatites and phoscorites 527 

from Russia, Canada, USA, Brazil, Australia, Namibia, Tanzania, Kenya, Finland, 528 

Norway and Germany; (3) gabbroic rocks from Canada, USA, China, Australia, South 529 

Africa and Zimbabwe; (4) dioritic rocks from Canada, China, Germany, and the 530 

Tibetan plateau; (5) biotite (± amphibole) granitoids (including monzonites, 531 

granodiorites, and granites) from Australia, Scotland, Greece, Germany, and the 532 

Tibetan plateau; and (6) muscovite-bearing granites from Australia, Greece, 533 

Germany, and the Tibetan plateau as compiled by Teiber et al. (2015a). In doing so, 534 

we try to identify characteristic compositional features of apatite from alkaline rocks 535 

as compared to other rock types (Fig. 9). 536 

 537 

Ca-Sr-Ce systematics - High Sr contents in apatite, approaching end-member 538 

composition, are known from carbonatites (Fig. 9b) and from kimberlites, orangeites, 539 
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and lamprophyres (cf. recent compilation of Chakhmouradian et al. 2002). However, 540 

in some apatites from carbonatites, Sr contents are as low as in gabbroic, dioritic and 541 

granitic rocks. Sr-rich apatites in such rocks are not restricted to late-stage 542 

pegmatites or hydrothermal rocks, but can occur as early magmatic phases. 543 

Although the partition coefficient for Sr between apatite and carbonatitic melts is low 544 

(<1) compared to that between apatite and silicate melts (typically >1; Prowatke and 545 

Klemme 2006; Hammouda et al. 2010), it is suggested that the generally Sr-rich 546 

character of carbonatitic melts overhelms this potential effect in many cases (e.g., 547 

Teiber et al. 2015a). Likewise, apatite from the Tamazeght and Pilansberg 548 

complexes and other alkaline rocks are highly variable but achieve similarly high 549 

amounts of Sr (Fig. 9a; Chakhmouradian et al. 2002). The extremely evolved 550 

agpaitic rocks from Ilímaussaq, however, do not contain unusually Sr-rich apatites. 551 

We suggest that this may be caused by differences in the composition of the melts 552 

from which these apatites crystallized and differences in the fractionating phase 553 

assemblage during magmatic evolution. It is, for example, well established that the 554 

early magmatic history of some Gardar complexes is strongly influenced by the early 555 

fractionation of large amounts of plagioclase (e.g. Bridgwater 1967; Halama et al. 556 

2002; Upton et al. 2003; Marks et al. 2011). This is in strong contrast to the evolution 557 

of the Tamazeght complex (e.g., Marks et al. 2008). As Sr is strongly compatible in 558 

plagioclase, Sr-rich apatite in alkaline rocks may only form if no extensive plagioclase 559 

fractionation happened during early magmatic stages. This may place direct 560 

constraints on parental melt compositions for alkaline rock suites, which are assumed 561 

to be alkali basaltic and nephelinitic (e.g., Upton et al. 2003; Kramm and Kogarko 562 

1994; Arzamatsev et al. 2001). We suggest, that Sr-rich apatite occurs only in rocks 563 

derived from the latter. The stability of plagioclase in other plutonic rocks (gabbros, 564 
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diorites, and other granitoids) may be the reason that Sr contents in apatites from 565 

these rocks normally do not reach elevated Sr contents (Figs. 9c and d). 566 

The Ce content (as a proxy for REE in general) is generally low in gabbroic, dioritic, 567 

and granitoid rocks but reaches higher values in carbonatites. The most REE-rich 568 

apatite-group minerals are known from the Ilímaussaq agpaites (Fig. 5, Rønsbo 569 

1989, 2008; Zirner et al. 2015). By no means do all the apatites from the other 570 

Gardar syenitic rocks, Tamazeght, and Pilansberg reach high Ce contents (Fig. 9a). 571 

The highest Ce-enrichments found in late-stage overgrowth textures of apatites. 572 

These are probably due to interaction with REE-rich residual melts and metasomatic 573 

fluids (Zirner et al. 2015). This is most likely related to the exceptional REE-rich 574 

nature of the Ilímaussaq melts (e.g., Larsen and Sørensen 1987), obviously not 575 

present in alkaline rocks in general and certainly not in gabbroic, dioritic, and 576 

granitoid rocks. It was suggested that the Late Gardar mantle source underwent 577 

metasomatic enrichment in LREE, Nb, F, and P that was inherited by the basaltic 578 

magmas derived from it. Extreme differentiation under reduced conditions ultimately 579 

led to the production of the Ilímaussaq agpaites (Upton 2013). In these rocks, large 580 

amounts of other REE-rich phases (e.g., eudialyte-group minerals, rinkite, and 581 

others; Larsen and Sørensen 1987; Petersen 2001) occur, mainly after apatite 582 

crystallization, implying that the residual melts were indeed REE-rich. Extensive 583 

apatite crystallization happened during the augite syenite stage prior to agpaite 584 

formation where only small amounts of apatite crystallized. During late-magmatic and 585 

hydrothermal stages, however, large amounts of various phosphates (e.g., monazite, 586 

natrophosphate, vitusite) and silico-phosphates (e.g., steenstrupine, lomonosovite) 587 

appear in the Ilímaussaq rocks, especially in so-called hyper-agpaites (e.g. Sørensen 588 

and Larsen 2001). Some of these minerals (e.g. steenstrupine) are very REE-rich 589 

giving rise to one of the largest REE deposits of the world (Marks and Markl 2015). 590 
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 591 

P-Si-S systematics – The lowest S contents occur in apatites from muscovite-592 

bearing granites and from alkaline rocks of the Gardar Province and the Pilansberg 593 

intrusion. Apatites from carbonatites, gabbros, diorites, and biotite (± amphibole) 594 

granitoids are intermediate in S contents. High S contents are found in apatites from 595 

the alkaline Tamazeght complex (Fig. 9). This probably relates to the redox 596 

conditions of the melts from which the apatite crystallized, as S is usually 597 

incorporated as sulfate rather than sulfide in the apatite structure (Peng et al. 1997; 598 

Parrat et al. 2002; Parat and Holtz 2004). This is consistent with our data. Many of 599 

the Gardar intrusions are known to have crystallized under reduced conditions 600 

(Upton and Thomas 1980; Larsen and Sørensen 1987; Marks & Markl 2001). Redox 601 

conditions during the crystallization of gabbros and many granitoids are generally 602 

more oxidized. Also, the relatively high S contents in some of the Tamazeght rocks 603 

are in line with relatively oxidized conditions in some lithologies (Marks et al. 2008). 604 

The abundance of Si in apatite is highly variable in igneous rocks. The highest 605 

concentrations are observed in carbonatites and the Ilímaussaq agpaites. Obviously 606 

the Si contents in apatites do not reflect the Si-contents of the host melts as apatites 607 

from granitic rocks are generally relatively low in Si (Fig. 9d). This can be explained 608 

by the often observed coupled substitution Ca2+ + P5+ ↔ REE3+ + Si4+ (see above) 609 

linking REE with Si contents in apatite (Pan and Fleet 2002; Fleet et al. 2000; Zirner 610 

et al. 2015; Rønsbo 1989; 2008).  611 

 612 

Ca-Fe-Mn systematics – There is no clear relationship between the Fe-content of 613 

the apatites and that of their host rock (Fig. 9). Apatite Mn contents are known to be 614 

relatively high in muscovite-bearing granites. This has been related to their source 615 
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composition and redox conditions during apatite crystallization (Sha and Chappell 616 

1999; Belousova et al. 2002). Recently, a negative correlation between Mn in apatite 617 

and oxygen fugacity (fO2) was proposed as a potential oxybarometer (Miles et al. 618 

2014). Therefore it is surprising that Mn contents in strongly reduced rocks of the 619 

Gardar Province are exceptionally low (mostly below 500 µg/g) as opposed to 620 

muscovite-bearing granites, where apatite may contain Mn at the wt%-level (e.g., 621 

Sha and Chappell 1999; Belousova et al. 2002; Teiber et al. 2014; 2015a). We 622 

suggest that this is because of the strong temperature-dependence of fO2 (e.g., 623 

Huebner 1971; Ohmoto and Kerrick 1977). Thus, reduced conditions may result in 624 

high Mn contents in apatite that crystallized at relatively low temperatures (as 625 

observed in some muscovite-bearing granites) or in low Mn contents, if apatite 626 

crystallized at relatively high temperatures, as is the case in many syenitic rocks. 627 

Therefore redox or temperature estimates based on the Mn content of apatite are 628 

only possible if combined with independent estimates on T or fO2.  629 

 630 

F-Cl-OH systematics - In most igneous rocks, apatite almost invariably comprises 631 

fluorapatite-hydroxylapatite solid solutions. Apatites with significant amounts of Cl 632 

approaching chlorapatite composition are known only from some relative primitive 633 

rocks such as gabbros and diorites (Fig. 9c). This could either relate to source 634 

composition (cf. Sha and Chappell 1999; Teiber et al. 2014) or to the changing 635 

partitioning behavior of F and Cl between apatite and melt/fluid at variable 636 

crystallization temperatures (e.g., Mathez and Webster 2005; Webster et al. 2009; 637 

Patino Douce et al. 2011; Doherty et al. 2014). Interpretion of the significance of the 638 

hydroxylapatite component is hampered by analytical difficulties. Since most 639 

published apatite analyses are based on EMPA data, OH is generally calculated on 640 
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the basis of stoichiometry on the halogen site. Only recently has direct space-641 

resolved analysis of H in apatite has become possible by means of SIMS techniques 642 

(e.g., Boyce and Hervig 2008; McCubbin et al. 2010). Even if EMPA analyses are 643 

performed using appropriate conditions that avoid migration of F and Cl during 644 

analysis (Goldoff et al. 2012; Stormer et al. 1993; Wang et al. 2014), the potential 645 

incorporation of the carbonate anion complex is generally neglected. Relatively few 646 

studies of carbon in apatite are available, mostly from carbonatitic rocks (e.g. 647 

Sommerauer and Katz-Lehnert 1985; Binder and Troll 1989; Santos and Clayton 648 

1995; Nadeau et al. 1999) and apatite from the lithospheric mantle (O’Reilly and 649 

Griffin 2000). Recent data (Riker et al. 2014), however, imply that CO2 may behave 650 

compatibly in apatite such that carbonate might be an important component in apatite 651 

from various igneous rocks. 652 

 653 

Implications 654 

Apatites from alkaline rock suites can contain exceptionally high levels of REE, Si, 655 

and Sr that exceed even those in carbonatites. This is attributed to a combination of 656 

an enriched source composition and the early magmatic differentiation history. At the 657 

same time they are generally (but not always) poor in Fe, Mn, and S as a result of the 658 

usually reduced character of the melts that they grew in  relatively high temperatures.  659 

Most of the observed compositional variation is caused by two coupled substitutions 660 

involving Na, REE, Si, Ca and P, namely Ca2+ + P5+ ↔ REE3+ +Si4+ and 2Ca2+ ↔ 661 

REE3+ + Na+. Consequently REE and Si are considered as reliable petrogenetic 662 

indicators for fractional crystallization because potential redistribution processes are 663 

minimized by the slow diffusion of Si and REE through the apatite. In contrast, Na 664 

(and Sr) are prone to diffusive redistribution because of their rapid diffusion in apatite, 665 



 28

which diminishes their usefulness as petrogenetic indicators in alkaline plutonic 666 

complexes. 667 
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 1027 

Figure captions 1028 

Fig. 1: Geological sketch map of the Gardar Province (South Greenland), showing 1029 

the studied locations (modified from Escher and Watt 1976). 1030 

 1031 

Fig. 2: Whole-rock compositions of the studied sample material. Data from Baileys et 1032 

al. (2001); Halama et al. (2004); (2005); Jones (1980), Larsen and Steenfelt (1974); 1033 

Marks et al. (2003); (2007); Upton and Thomas (1980); and Upton et al. (1976); 1034 

(1985).  1035 
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 1036 

Fig. 3: Apatite textures from the Gønnedal-Ika complex (BSE images), showing 1037 

concentric and oscillatory zoning (a), rounded core textures (b and c), and irregular 1038 

overgrowth textures (d). Mineral abbreviations are the same as in the Table 1. 1039 

 1040 

Fig. 4: Apatite textures from the Motzfeld and Puklen complexes (BSE images), 1041 

showing concentric and oscillatory zoning (a-c), patchy zoning (d), homogeneous 1042 

grains (e), and irregular overgrowth textures (f). Mineral abbreviations are the same 1043 

as in the Table 1. 1044 

 1045 

Fig. 5: Compositional variation of apatites from the Gardar Province. Abbreviations: 1046 

IGL = Igdlutalik, T(OGDC) = Tugtutôq; Older Giant Dike Complex, T(YGDC) = 1047 

Tugtutôq, Younger Giant Dike Complex; ISQ = Isortoq dike swarm; GRI = 1048 

Grønnedal-Ika complex; PUK = Puklen complex; MOF = Motzfeldt; NQ North Qôroq 1049 

complex (Rae et al. 1996); KUT = Kûngnât complex; and ILM = Ilímaussaq complex 1050 

(Rønsbo 1998; 2008; Zirner et al. 2015). Analyses from IGL, T(OGDC), T(YGDC) 1051 

and KUT (gray symbols) derive from different analytical conditions (see description of 1052 

methods). For each locality the investigated samples are shown from left to right by 1053 

decreasing XMg of their whole-rock and their mafic mineral composition.  1054 

 1055 

Fig. 6: Compositional zoning with respect to Ce, Na, Sr, and Si for apatites from the 1056 

Grønnedal-Ika (1 and 2) and the Motzfeld complexes (3-5). Apatite crystal (4) shows 1057 

a rounded core whilst all the other apatites are concentrically zoned. In the latter type 1058 
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Ce, Na, and Si increase from core to rim, while Sr decreases. In apatite grain (4), 1059 

however, Na and Sr deviate from this general rule. 1060 

 1061 

Fig. 7: Halogen contents for apatites from the Gardar Province. Abbreviations are the 1062 

same as in Fig. 5. For each locality, the investigated samples are shown from left to 1063 

right by decreasing XMg of their whole-rock and their mafic mineral composition. 1064 

Analyses from IGL, T(OGDC), T(YGDC), and KUT (gray symbols) derive from 1065 

different analytical conditions (see description of methods). Therefore, the halogen 1066 

concentrations should be interpreted with caution, due to the mobility of F and less so 1067 

Cl during analyses, which was not considered at the time of their analysis.  1068 

 1069 

Fig. 8: Variation of (Ca + P) versus (REE + Si) for the investigated apatites, 1070 

indicating the importance of the two coupled subtitutions Ca2+ + P5+ = REE3+ + Si4+ 1071 

and 2Ca2+ = REE3+ + Na+. Note that REE represents EMPA data for La and Ce. (a) 1072 

All apatites. (b) Apatites from the intrusive complexes of Kûngnât, Grønnedal-Ika, 1073 

Puklen, Motzfeldt, and Ilímaussaq, which was includes data from Rønsbo (1989), 1074 

(2008) and Zirner et al. (2015). (c) Apatites from the dike rocks of Isortoq and 1075 

Tugtutôq. Note the change of scale in the three subfigures. 1076 

 1077 

Fig. 9: Comparison of apatite compositions (on a molar basis) from alkaline rocks (a), 1078 

carbonatites (b), gabbros and diorites (c), and granites (d). Data for alkaline rocks are 1079 

from this study, Rae et al. (1996), Zirner et al. (2015), Liferovich and Mitchell (2006), 1080 

and Wang et al. (unpublished). Fields for carbonatites, gabbros, diorites, biotite ± 1081 
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amphibole granites, and muscovite granites are taken from the recent compilation of 1082 

Teiber et al. (2015a).  1083 
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Table 1: Overview of the samples considered in this study, including their major mineralogy. 
 

locality sample rock type major minerals 
Ol Cpx Amp Pl Afs Nph Qtz Bt Ox Aen Sod Eud

Grønnedal-Ika 

GR 044 nepheline syenite   x     x x     x       
GM 1559 nepheline syenite   x   x x  x x     
GR 013 nepheline syenite   x   x x   x     
GR 001 nepheline syenite   x   x x   x     

GM 1531 nepheline syenite   x x   x x             

Kûngnât 

86182 gabbro x x   x x     x x       
86186 gabbro x x  x x   x x     
27685 syenogabbro x x  x x   x x     
86194 syenite x x x  x  x x x     
86189 syenite x x x  x  x x x     
26119 syenite x x x  x  x x x     
81143 syenite x x x  x  x x x     
86200 syenite x x x  x  x x x     
81103 syenite x x x  x  x x x     
81108 syenite x x x   x   x x x       

Motzfeld 

JS 215 nepheline syenite   x x   x x     x       
JS 105 nepheline syenite   x x  x x   x     
JS 105 nepheline syenite   x x  x x   x     
JS 181 larvikite x x x x x x   x x       

Isortoq 

GM 1682 anorthosite xenolith   x x x     x   x       
GM 1803 gabbro x x  x x   x x     
GM 1762 gabbro x x  x x   x x     
GM 1761 gabbro x x  x x   x x     
GM 1760 gabbro x x  x x   x x     
GM 1712 syenogabbro   x  x x   x x     
GM 1776 syenite   x x  x   x x     
GM 1778 syenite   x x  x   x x     
GM 1684 larvikite x x x x x   x x x       

Tugtutôq 
(OGDC) 

86120 gabbro x x   x       x x       
86122 gabbro x x  x    x x     
86126 syenogabbro x x x x x   x x     
86100 syenite x x x  x x  x x     
86119 syenite x x x  x x  x x     
50241 pulaskite x x x  x x  x x     
86036 foyaite x x x  x x  x x     
86035 foyaite x x x  x x  x x     
85998 foyaite x x x   x x   x x       

Tugtutôq 
(YGDC) 

40452 gabbro x x   x       x x       
40464 gabbro x x  x    x x     
30636 gabbro x x  x    x x     
212103 gabbro x x  x    x x     
40551 syenogabbro x x x x x   x x     
186221 syenogabbro x x x x x   x x     
216621 syenogabbro x x x x x   x x     
216622 syenite x x x  x x  x x     
186227 syenite x x x  x x  x x     
216627 syenite x x x  x x  x x     
40549 syenite x x x   x   x x x       

Igdlutalik 101204 trachyte  x    x     x x       

Puklen 

GM 1634 syenite x x x   x     x x       
GM 1590 syenite   x x  x    x     
GM 1625 syenite   x x  x    x     
GM 1586 syenite x x x  x    x     
GM 1615 syenite x x x x x  x  x x    
GM 1616 syenite x x x x x  x  x x    
GM 1605 granite   x x x x  x  x     
GM 1606 granite   x x x x   x   x       

North Qoroq DAR278 syenite  x x   x x     x       

Ilimaussaq 

ILM 100 syenite x x x   x     x x       
GM1858 syenite x x x x x   x x     
GM1330 syenite x x x  x x  x x     
GM1332 syenite x x x  x x  x x     
GM1333 syenite x x x  x x  x x     
GM1333* syenite x x x  x x  x x     

U-106 syenite x x x  x   x x     
91937 syenite x x x  x x  x x     
50722 syenite x x x  x x  x x     
150772 syenite x x x  x x  x x     



P-1-5 pulaskite x x x  x x  x x     
91976 pulaskite x x x  x x  x x     
91943 foyaite x x x  x x  x x     
91980 foyaite x x x  x x  x x     
149532 agpaitic syenite x x x  x x  x x x x x 
91922 agpaitic syenite  x x  x x    x x x 
177244 agpaitic pegmatite  x x  x  x     x 
ID 3A agpaitic vein   x x   x   x     x x x 

 GM1852 phonolite x x x   x x     x  x x   x 
 
Aen = aenigmatite (Na4[Fe2+

10Ti2]O4[Si12O36]); Eud = eudialyte (Na15Ca6Fe3Zr3Si(Si25O73)(O,OH,H2O)3(Cl,OH)2) 
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