12/2

1

1 Revision 3

2

- 3 Crystal/melt partitioning of water and other volatiles during the near-solidus melting of mantle
- 4 peridotite: comparisons with non-volatile incompatible elements and implications for the
- 5 generation of intraplate magmatism
- 6

7 JOHN. ADAM^{1*}, MICHAEL TURNER¹, ERIK H. HAURI² AND SIMON TURNER¹

- ¹Department of Earth & Planetary Sciences, Macquarie University, N.S.W. 2109, Australia
- ⁹ ²Carnegie Institution of Washington, 5424 Broad Branch Road, Washington, D.C. 20005, USA

10

- ^{*}Corresponding author. Tel.: +61 (02) 98504405; Email address: john.adam@mq.edu.au (John Adam)
- 13 Michael Turner <u>Michael.turner@mq.edu.au</u>
- 14 Simon Turner <u>Simon.turner@mq.edu.au</u>
- 15 Erik Hauri <u>ehauri@ciw.edu</u>
- 16
- 17
- 18

19

ABSTRACT

20	Concentrations of H ₂ O, F, Cl, C, P and S have been measured by secondary ion mass-spectrometry
21	(SIMS) in experimentally produced peridotite phases (including clinopyroxene, orthopyroxene, olivine,
22	garnet, amphibole and mica) and co-existing basanitic glasses. Because only two experiments produced
23	glasses on quenching (with the melt phase in others reverting to felt-like crystallite masses) H_2O
24	concentrations in melts were also separately determined from mass balance relationships and by
25	assuming constant H ₂ O/La in melts and starting materials. The resulting values were used to calculate
26	mineral/melt partition coefficients (D values) for H_2O (where $D_{H2O}^{crystal/melt} =$
27	$\frac{mass\ fraction\ of\ H20\ in\ crystal}{mass\ fraction\ of\ H20\ in\ melt})$ for conditions of 1025-1190 °C and 1.0-3.5 GPa. These gave 0.0064-
28	0.0164 for clinopyroxene, 0.0046-0.0142 for orthopyroxene, 0.0015-0.0016 for olivine, and 0.0016-
29	0.0022 for garnet. Although less information was obtained for the other volatiles, F was found to be
30	significantly more compatible than H ₂ O during peridotite melting, whereas Cl is significantly less
31	compatible. S also has small but appreciable solubilities in amphiboles and micas, but not in pyroxenes
32	or olivine. The solubility of C in silicate minerals appears to be negligible, although C was present in
33	co-existing melts (~ 0.5 weight % as CO_2) and as residual graphite during experiments. The D values
34	for H ₂ O in clinopyroxene and orthopyroxene are positively correlated with ^{iv} Al but negatively
35	correlated with the H ₂ O concentrations of melts (when considered as weight %). These relationships are
36	consistent with the broad trends of previously-published partitioning data. Although some of the
37	concentration dependence can be related to cross-correlation between ^{iv}Al in pyroxenes and H_2O
38	concentrations in melts (via the latter's control of liquidus temperatures) this relationship is too
39	inconsistent to be a complete explanation. A concentration dependence for $D_{H2O}^{mineral/melt}$ can also be
40	independently predicted from speciation models for H ₂ O in silicate melts. Thus it is likely that
41	$D_{H2O}^{pyroxene/melt}$ is influenced by both ^{iv} Al and the absolute concentration of H ₂ O in melts. D_{H2O}/D_{Ce} for

42	clinopyroxene is inversely correlated with M2 site radii. Because the latter decrease with increasing
43	pressure and temperature, relatively hot and/or deeply derived melts should be enriched in Ce relative to
44	$\mathrm{H_{2}O}$ when compared to melts from cooler and shallower mantle sources. Conversely, melts from $\mathrm{H_{2}O}$ -
45	rich settings (e.g. subduction zones) should have higher H_2O/Ce than their source rocks. When
46	combined with previously obtained partitioning data for non-volatile elements (from the same
47	experiments), our data are consistent with the enrichment of intraplate basalt sources in both volatile
48	and non-volatile incompatible elements by small-degree melts derived from local mid-ocean ridge
49	basalt sources. In this way, volatiles can be seen to play an active role (via their promotion of partial-
50	melting and metasomatic processes) in the auto-regulation of incompatible element concentrations in
51	the depleted upper mantle.

52

Key words: experiments; partitioning; basanite melts; peridotite minerals; H₂O; water; halides; carbon;
sulphur; volatiles; incompatible elements; intraplate magmatism

56

57

58

INTRODUCTION

59 The capacity of nominally volatile-free minerals (e.g. pyroxenes, olivine and garnet) to store 60 volatiles (e.g. H₂O and halogens) within the mantle (e.g. Wilkins and Sabine 1973; Aines and 61 Rossman 1984; Bell and Rossman 1992; Kohn 1996; Hervig and Bell 2005) has significant 62 implications for the Earth's deep volatile cycle. This can be linked to the ability of volatiles to promote melting and thereby regulate not only their own concentrations in the mantle, but also 63 those of other (non-volatile) incompatible elements. Thus knowledge of how volatile and non-64 65 volatile elements partition between mantle minerals and melts is important for understanding the inter-linkage of the Earth's deep volatile cycle with the history of chemical exchange between its 66 67 mantle and crust/hydrosphere. Such an understanding is pertinent to long standing debates regarding the origins of intraplate magmatism (e.g. Morgan 1971; Hofmann and White 1982; 68 69 Michael 1995; Pilet et al. 2005; Putirka et al. 2007).

In this study, we take advantage of materials available from a previous experimental study (Adam and Green 2006) to examine the partitioning of H₂O, Cl, F, S and C between peridotite minerals (including clinopyroxene, orthopyroxene, olivine, garnet, amphibole and mica) and coexisting nepheline basanite melts. The analyses were conducted by secondary ion massspectrometry (SIMS) at the Carnegie Institution of Washington. Because the same experiments (at 1.0-3.5 GPa and 1025-1190 °C) were previously used to study non-volatile element partitioning in an intraplate magma (Adam and Green 2006), we use our data to investigate the

12/2

5

- origins of linked volatile and non-volatile element enrichments in intraplate magmas and howthese might be shaped by regional geodynamic processes.
- 79
- 80

EXPERIMENTAL AND ANALYTICAL METHODS

81 Starting material

The nepheline basanite (UT-70489) used in experiments is from Bow Hill in Tasmania, Australia 82 83 (see Adam 1990; Adam and Green 2011). It belongs to a Cainozoic intraplate basalt province that extends discontinuously along eastern Australia from Tasmania to Cape York (see Johnson 84 85 1989). It is also notable because of the xenoliths of garnet lherzolite that it contains (Sutherland et al. 1984). The basanite has a primitive composition and may represent either a primary or 86 near-primary partial-melt of mantle peridotite. Adam (1990) determined liquidus conditions for 87 88 multiple saturation with garnet lherzolite at approximately 1200 °C and 2.7 GPa, with 4.5 weight % of dissolved H₂O and 2.0 weight % of dissolved CO₂. 89

90

91 High-pressure experiments

A list of experimental conditions and run products for the experiments described in this study is given in Table 1. Details of the procedures and materials used in the experiments are contained in Adam and Green (2006). In brief, the experiments were performed in end loaded pistoncylinder apparatus at Macquarie University. The starting material was a trace element enriched glass (prepared from the natural basanite and ~1.4 weight % of added trace element oxides) together with 5-10 weight % of H₂O (added with a graduated micro-syringe), contained in

6

graphite-lined Pt capsules. All additions were carefully monitored by weighing at each stage of 98 99 capsule preparation to insure against unintended alterations to planned H₂O concentrations. 100 Experimental conditions varied from 1.0 to 3.5 GPa and 1025 to1190 °C. Oxygen fugacities 101 were not buffered, but are believed to be relatively low in the furnace types used [between Ni-102 NiO and magnetite-wustite (see discussion of Green 1976)]. Pressure and temperature tended to 103 be positively correlated, since most experiments followed the positive slope of the basanite's liquidus. Run durations were 48 hours. To encourage the growth of large crystals, experimental 104 105 temperatures were initially raised to 110 °C above final run temperatures. They were then held 106 constant for 30 minutes before being gradually lowered over the next thirty minutes to final run 107 temperatures. 108 Although none of the experiments was simultaneously saturated with more than two peridotite 109 phases (clinopyroxene, orthopyroxene and olivine), the experiments were designed to bracket previously-identified conditions of liquidus saturation with garnet lherzolite (~ 2.7 GPa and 1200 110 111 °C). Thus for a subset of the experiments performed (1955, 1956, R80, 1948, R77) conditions 112 approximated those of actual peridotite melting. Additional experiments were also conducted

that extend the range of conditions investigated (1.0-3.5 GPa and 1025-1190 °C). These allow

the effects of pressure, temperature and H₂O concentration on D values for individual minerals to

be separately investigated.

116

117 Analyses of non-volatile elements

The methods used to analyse major, minor and trace element concentrations are reported in
Adam and Green (2006). Major elements were analysed with a Cameca[®] SX50 electron

12/2

microprobe. Trace, minor and some major elements were analysed with a laser microprobe
 coupled to an Agilent[®] 7500S ICP-MS.

122

123 Analyses of H₂O, F, Cl, S and C

124 The concentrations of water, F, Cl, P, S and C (as CO₂) in experimentally made minerals and

125 glasses were measured by SIMS using a Cameca 6F ion probe at the Carnegie Institution of

126 Washington. The methods employed were similar to those developed for the micro-analysis of

trace concentrations of volatiles in mantle minerals by Hauri et al. (2002, 2006) and Koga et al.

128 (2003). Pressure in the ion probe sample chamber was $< 6 \times 10^{-10}$ Torr during all analyses.

Background limits (typically 5-50 ppm H_2O ; 1-2 ppm CO_2 ; < 1 ppm F and Cl) were determined

by the repeated analysis of synthetic forsterite located on each sample mount. Before each

analysis the secondary ion images of ${}^{12}C$, ${}^{16}O^{1}H$, ${}^{19}F$, ${}^{31}P$, ${}^{32}S$ and ${}^{35}Cl$ were projected on the

channel plate. This helped to avoid inclusions and cracks, which appear as bright features on the

133 projected image. After each beam spot was carefully examined, the field aperture was inserted to

134 permit transmission of ions only from the central 8 μ m of the 20 μ m beam crater, thus avoiding

transmission of hydrogen ions from the edge of the sputter crater and the surface of the sample.

136 Rastering of the primary beam over a 50 µm by 50 µm area for 2 minutes was also done to

remove any surface contaminates prior to each analysis. The number of analyses obtained for

individual phases in each experiment ranged from 1 to 5, depending upon the availability of

suitable spots.

All analyses were acquired during a single session and calibrations for water in glass, olivine,
clinopyroxene, orthopyroxene and garnet were verified prior to the analytical session (Koga et al.

142	2003). Halides, C and S were calibrated using glass standards following Hauri et al. (2002).
172	
143	Calibration involved simple multiplication of ${}^{16}O^{1}H/{}^{30}Si$ ratios by calibration factors. The
144	determination of these factors was done at the beginning of the analytical session and involved a
145	comparison of ${}^{16}\text{O}^{1}\text{H}/{}^{30}\text{Si}$ ratios determined by SIMS analysis and water concentrations in glass
146	and mineral standards that had been independently analyzed by Fourier transform infrared
147	spectroscopy, manometry or nuclear reaction (Koga et al. 2003).
148	Koga et al. (2003) showed that calibration factors for micas and amphiboles are similar to those
149	for basaltic glasses. However, they also noted that the calibration might be affected by amphibole
150	Fe concentrations with relatively low Fe phases (< 8 weight % FeO total) having calibration
151	factors similar to those of orthopyroxene. Our experimentally produced amphiboles and micas
152	have relatively low Fe contents and thus (following Koga et al. 2003) we have used the
153	calibration factor for orthopyroxene to determine H ₂ O concentrations.
154	

155 The estimation of water and other volatiles in the melt phase

Of the eight experiments analysed by SIMS in this study, only two produced melts that 156 157 transformed to a glass (Fig. 1a) on quenching (runs R79 and 1951). Consequently, only melts from these two experiments were analysed by SIMS for H₂O, F, Cl, S and CO₂. In the other six 158 experiments, quenching of the melt phase produced a felt-like matrix of fine crystals and 159 160 possible interstitial glass (Fig. 1b). H₂O concentrations for these were assessed in three different ways. The first used mass balances of major element concentrations between run products and 161 starting compositions. This approach involved two assumptions. One is that all melts were H₂O-162 undersaturated (and thus H₂O was entirely dissolved in either silicate melts or crystals during 163

9

12/2

164	experiments). The other is that the H ₂ O concentrations added to starting mixes are accurately
165	known and remained unchanged during experiments. Previously-published solubility data (Brey
166	and Green 1977; Eggler and Burnham 1984; Carroll and Blank 1997; Jakobson 1997; Schmidt
167	and Behrens 2008; Behrens et al. 2009) for both diopside and alkaline mafic melts indicate
168	solubilities of approximately 10 weight % H_2O per GPa under H_2O -saturated conditions. This is
169	consistent with our own determination of H_2O solubility (~ 28 weight %) in the molten Bow Hill
170	basanite at 2.5 GPa (from unpublished phase equilibria and liquidus point depressions).
171	For most of our experiments the estimated melt-H ₂ O concentrations are significantly less than
172	expected solubilities. In only one case (run 1951 with an estimated 10.7 ± 0.3 weight % of
173	dissolved H ₂ O at 1.0 GPa) is H ₂ O-saturation likely, but this experiment was not used for the
174	determination of any partition coefficients. The amount of H ₂ O added to capsules was carefully
175	measured and checked at all stages of capsule preparation. However, H ₂ O loss (or gain) during
176	experiments via the diffusion of H ₂ O through capsule walls is difficult to entirely preclude.
177	Nevertheless, a number of factors mitigate against serious losses of this kind. One is that H ₂ O
178	loss should result in a progressive increase in liquidus temperatures with increasing run duration,
179	but this has not been observed for the Bow Hill composition (neither is it a problem widely
180	reported in the experimental literature – unlike the equivalent problem of Fe-loss). In addition,
181	the mass-balance estimates compare well with estimates based on differences between analytical
182	totals and 100 % (i.e. the sums of all non-hydrous components in quenched melts subtracted
183	from 100 %). Although the latter method is relatively imprecise, since it is affected by the
184	accumulated analytical errors of multiple components, it is independent of assumed bulk H ₂ O
185	concentrations during experiments. Thus we are confident that H ₂ O concentrations in capsules
186	were not significantly altered during experiments.

10

187	A second method of estimating H_2O concentrations in melts was to assume that H_2O/La in melts
188	was the same as in starting mixes [on account of both H ₂ O and La having very small
189	compatibilities in the major crystal phases (see Adam and Green 2006; Hauri et al. 2006)]. The
190	$\mathrm{H}_2\mathrm{O}$ concentrations of melts could then be estimated from previously analysed La concentrations
191	(from Adam and Green 2006). Both F and Cl were analysed in a number of glass and matrix
192	samples by Adam and Green (2006) with the Cameca® SX50 electron microprobe at Macquarie
193	University. For this present study, all other runs were similarly analysed using a Cameca [®] SX100
194	electron microprobe. Counting times were 20 seconds for peaks and 10 seconds for each
195	background using a beam current of 20 nA and accelerating voltage of 15 kV. In all cases a 30
196	μ m beam diameter was used. The standards were F-bearing topaz and chlor-apatite. ZAF
197	corrections were performed using the method of Pouchu and Pichoir (1984).

198

199

RESULTS

The experiments produced crystals of clinopyroxene \pm orthopyroxene \pm olivine \pm garnet \pm mica \pm amphibole, together with co-existing basanitic melts. A list of run products and conditions for individual experiments is given in Table 1. Minimum crystal diameters varied, but ranged up to several hundred microns and were in most cases large enough to prevent overlap by the (20 µm diameter) beam of the ion probe.

208 Measurable concentrations of H₂O and F were found in all phases (crystals and glasses). These

Analyses of H₂O, F, Cl, P and C (as CO₂) in individual run products are reported in Table 2, together with pressures and temperatures for each experiment. Mineral/melt D values (where $D_Z^{crystal/melt} = \frac{mass \ fraction \ of \ element \ Z \ in \ crystal}{mass \ fraction \ of \ element \ Z \ in \ melt}$) calculated from these data are shown in Table 3.

209	concentrations are significantly above the measured backgrounds and statistical uncertainties.
210	SIMS analyses of P (analysed concurrently with H ₂ O, F, Cl and C) gave concentrations that were
211	in most cases similar to those obtained previously by laser ICP-MS (see Adam and Green 2006).
212	Concentrations of Cl and S were simply too low in most crystals to be effectively measured,
213	although significant concentrations were found in the glasses. The exceptions were amphibole
214	and mica which both contained measureable concentrations of Cl and S.
215	There is reasonable agreement between the electron microprobe and SIMS analyses of Cl, except
216	for one glass sample (run 1951) containing the highest measured concentration (Table 2).
217	However, F concentrations determined by SIMS are close to double those measured by the
218	electron microprobe. This is probably due to an overcorrection for backgrounds during electron
219	micro-probe analyses of Fe-rich samples.
220	
221	
222	Melts
223	Melt H_2O concentrations estimated from mass balances and assumed H_2O/La vary from 5.6 to
224	16.8 weight % (Table 2). Estimates produced by the two methods are mostly within a few
225	percent of each another on a relative basis (Table 2, Fig. 2). The exceptions are runs 1955 and
226	R78 for which the relative differences are 18 % and 20 % respectively. Estimates from the first
227	two methods also correlate with H_2O concentrations determined by difference (i.e. the analytical
228	totals of all non-hydrous components subtracted from 100 %), although for the third method, the

scatter of results is more pronounced (Fig. 2). The two SIMS analyses of glasses (Table 2, Fig. 2)

230 gave values that are 20-30 % less (on a relative basis) than determined either by mass balance or 231 from H_2O/La .

Halide concentrations measured by both SIMS and electron microprobe [up to 0.41 weight % for

F and 1.45 weight % for Cl (by electron microprobe)] reflect the high concentrations present in

the starting materials. Carbon concentrations are close to 0.5 weight % (as CO_2) in both of the

glasses analysed by SIMS, whereas S concentrations are 185-421 ppm (Table 2).

236

237 Clinopyroxene

Water concentrations in clinopyroxenes vary from 608 to 1390 ppm (Table 2). One sigma

uncertainties (40 -150 ppm H₂O) calculated from replicate analyses are significantly larger than

those attributable to counting statistics alone (8-54 ppm) but mostly within \pm 20 % (relative) of

average values. Calculated D values for clinopyroxene and melt $(D_{H2O}^{cpx/melt})$ vary from 0.006 to

242 0.016, although most are close to 0.009 (Table 3). As found in other studies (e.g. Hauri et al.

243 2006; Tenner et al. 2009; O'Leary et al. 2010) $D_{H2O}^{cpx/melt}$ tends to increase with increasing ^{iv}Al

244 (Fig. 3a). But $D_{H20}^{cpx/melt}$ also correlates negatively with H₂O concentrations in melts (Fig. 3b).

245 When the Bow Hill data (this study) are plotted together with previously published data (Fig.

246 3b), the correlation between $D_{H2O}^{cpx/melt}$ and melt H_2O concentrations produces a distinctively

247 curved trend that is initially very steep (for H_2O concentrations up to ~ 8 weight %), but then

becomes increasingly shallow. Both correlations (Figs. 3a and 3b) show significant scatter.

13

F concentrations in the experimentally produced clinopyroxenes vary from 143 to 326 ppm

251	(Table 2) and are positively correlated with ^{iv} Al (Fig. 4). A partition coefficient for F calculated
252	for coexisting clinopyroxene and glass in run R79 has a value of 0.05. This is several times
253	larger than the value determined for $H_2O(0.013)$ in the same experiment. It falls within the
254	range of values (0.03-0.15) previously obtained by Beyer et al. (2012) and Dalou et al. (2012) for
255	pyroxenes and silicate melts at 1265-1445 °C and 1.2-2.5 GPa.
256	
257	Orthopyroxene
258	Concentrations of H ₂ O and F in orthopyroxene are only slightly less than for coexisting
259	clinopyroxenes and show similar relationships to $^{\mathrm{iv}}$ Al and H ₂ O concentrations in melts (Figs. 5a
260	and 5b).
261	
262	Olivine
263	Olivines suitable for SIMS analysis were produced in only two experiments, R77 and R79 (at 2.0
264	and 1.0 GPa respectively). These have small but measureable concentrations of H_2O (94-166
265	ppm) and F (19-34 ppm). $D_{H2O}^{olivine/melt}$ and $D_{F}^{olivine/melt}$ are correspondingly low but similar for
266	both experiments (Table 3). They plot in the mid-range of values that have been produced in
267	similar experimental studies (e.g. Koga et al. 2003; Aubaud et al. 2004; Hauri et al. 2006; Grant
268	et al. 2007; Tenner et al. 2009) at pressures from 1.0 to 3.0 GPa (Figs. 6a and 6b).
269	

270 Garnet

271	Garnet was produced in only two experiments (runs 1955 and 1956). H ₂ O and F concentrations
272	for these (216-352 ppm and 26-35 ppm respectively) are significantly less than for coexisting
273	clinopyroxenes (Table 2). Measured D values for H ₂ O (Fig. 7) are correspondingly small (0.0022
274	and 0.0016) and similar to values obtained in previous experimental studies (e.g. Hauri et al.
275	2006; Aubaud et al. 2008; Tenner et al. 2009).
276	
277	Amphibole and mica
278	The 1.69 weight % of H_2O in amphibole that was measured by SIMS is higher than previously
279	estimated from structural parameters (1.40 weight %) by Adam et al. (2007), but is still
280	consistent with some replacement of OH ⁻ by O ²⁻ at the O3 site (normally occupied by OH ⁻). Both
281	amphibole and mica also contain significant F, together with small but measureable
282	concentrations of S and Cl. S concentrations in mica are approximately double those measured
283	for amphibole.
284	
285	
286	DISCUSSION
287	
288	Analytical results
289	Measured H ₂ O concentrations in the crystals and melts from our experiments are significantly
290	above backgrounds and statistical uncertainties (~10 ppm for most measurements). They are also

12/2

15

291	consistent with concentrations previously measured in similar phases by a variety of other
292	techniques (e.g. Wilkins and Sabine 1973; Aines and Rossman 1984; Bell and Rossman 1992;
293	Kohn 1996; Koga et al. 2003). Thus they are likely to represent structurally bound H_2O . SIMS
294	analyses of P are also uniform for individual phases and comparable to those previously analysed
295	by Laser ICP-MS (see Adam and Green 2006). Since the ICP-MS data could be filtered for cross
296	contamination (since even minor contamination produces obvious deviations from the ideal
297	parabolic trends of Onuma diagrams), significant inclusions of glass/matrix material during
298	analyses of crystals can be discounted.
299	
300	In the case of C, the possibility of contamination is more difficult to avoid. This is because the
301	samples were previously carbon coated to allow them to be analysed by the electron microprobe.
302	Although samples were subsequently re-polished to remove this coating, it is difficult to be
303	certain that all deposited C was removed. Minor contamination can explain much of the
304	variability in measured C concentrations for crystals (which vary by over a factor of ten). The
305	lowest measured C concentrations are relatively uniform (~ 5 ppm) for all crystal phases, but still
306	high when compared to values (< 1 ppm) determined by Shcheka et al. (2006) for carbon-
307	saturated peridotite phases. These authors employed nearly pure ¹³ C to discriminate the effects of
308	contamination, thus our lowest measured concentrations may still reflect local background
309	values. In contrast, the ~ 0.5 weight % CO ₂ measured for the two glasses (runs R79 and 1951) is
310	likely to be real. It is similar to the solubility estimates of Holloway et al. (1992) for an
311	anhydrous tholeiitic melt equilibrated with graphite at 1400 °C and 1.0 GPa under conditions
312	significantly more reducing than the Ni-NiO buffer. Unfortunately, it is difficult to know how

12/2

- closely this reflects conditions in our own experiments, since the effect of added H₂O and a more
 SiO₂-poor melt composition on CO₂ solubility is unknown.
- An unexpected finding from the SIMS analyses was the presence of S in the amphiboles and
- micas. Although small, the concentrations are above measured backgrounds (< 1 ppm S).
- Furthermore, S was not detected in any other crystal phases. It is possible that small amounts of
- S (as S^{2-} ions) have substituted for OH⁻ at the O3 sites of the amphiboles and micas. This
- possibility is given weight by the fact that S concentrations in the micas are double those in
- amphibole (consistent with the relative proportions of OH sites in the two crystal structures). The
- radius of six-fold coordinated S^{2-} is also similar to that of Cl⁻ [1.84 Å as opposed to 1.81 Å
- 322 (Shannon 1976)]. Since the latter is known to substitute for OH⁻ in amphiboles and micas (see
- 323 Oberti et al. 1993), it is probable that S^{2-} also has this ability.
- 324 As previously noted, SIMS analyses of H₂O in glasses give lower concentrations than estimated from either mass balances or H₂O/La (Table 2). This may be the result of H₂O loss during 325 experiments caused by diffusion through capsule walls. But it may also reflect the difficulty of 326 327 quantitatively retaining high H₂O concentrations in silicate melts during quenching. The relative consistency of concentrations determined from mass-balances and H₂O/La with estimates based 328 on the analytical totals of non-hydrous components (relative to 100 %) [Fig. 2] doesn't suggest 329 330 systematic H_2O loss during experiments. Thus we accept that the melt H_2O concentrations 331 derived from mass balances and H₂O/La are reliable and have used the latter for the calculation 332 of mineral/melt partition coefficients (Table 3).
- 333

334 Controls on the partitioning of H₂O between minerals and melts

17

Most of the data obtained in this study are for pyroxenes and so our discussion is largely 335 focussed on this group. The two most evident influences on $D_{H20}^{pyroxene/melt}$ are ^{iv}Al and the H₂O 336 concentrations of melts (Figs. 3a-b and 5a-b). But there is significant scatter in both of these 337 relationships, combined with a noticeable degree of cross-correlation between ^{iv}Al and melt-H₂O 338 concentrations (Fig. 3c). Because temperature inversely correlates with melt-H₂O concentrations 339 and most experiments also shadow the positive P/T slope of the liquidus, the influence of 340 individual factors is difficult to isolate. But in the case of ^{iv}Al, experiments on simple systems 341 (e.g. Stalder 2004; O'Leary et al. 2010) have independently demonstrated a strong positive 342 influence on H₂O solubility. Thus some of the negative correlation between $D_{H2O}^{pyoxene/melt}$ and 343 melt H₂O concentrations can be attributed to the previously mentioned cross-correlation between 344 ^{iv}Al in pyroxenes and H₂O concentrations in melts (Fig. 3c). But the latter relationship is too 345 346 inconsistent to be a complete explanation, so it remains possible that (while being influenced by ^{iv}Al) $D_{H2O}^{pyroxene/melt}$ is also governed by the activity-composition relations of H₂O in silicate 347 melts. 348

We examined the role of melt-activity relations by considering two contrasting models for the 349 350 solution of H₂O in silicate melts. These were the models of Burnham (1975), and Silver and Stolper (1985). The first treats hydrous silicate melts as mixtures of OH⁻ ions and 8-oxygen 351 silicate melt units (based on the albite structural formula); whereas in the second, dissolved H₂O 352 is present as both OH^{-} anions and molecular H_2O which mix with individual O^{2-} anions of the 353 silicate melt. In the case of Burnham's model (1975), the very different molecular weights of the 354 mixing units involved (17 for OH and \sim 293 for basanitic melts) result in large mole fractions for 355 356 even modest additions of H_2O (considered on a weight basis). The relationship between H_2O concentrations determined as weight % and mole fractions is also strongly non-linear (Fig. 8a). 357

12/2

18

358 This influences the relationship between partition coefficients calculated as weight fractions (D values) and those calculated as molecular exchange K_Ds. This can be demonstrated if Burnham's 359 360 (1975) model is used to independently calculate D values for a range of melt H₂O concentrations, 361 but the molecular exchange K_D is held constant. The exchange K_D that we considered was for the reaction: 362 $[melt]H^{+} + [melt]Al^{+3} + [pyx]Si^{+4} \leftrightarrow [pyx]H^{+} + [iv]Al^{+3} + [melt]Si^{+4}$ (1)363 where 364 $\mathbf{K}_{\mathrm{D}} = \frac{[cpx]_{H^+ \times [iv]_{Al^{+3} \times [melt]_{Si^{+4}}}}{[melt]_{H^+ \times [melt]_{Al^{+3} \times [iv]_{Si^{+4}}}}$ 365 366 and $^{[melt]}H^+$ = the mole fraction of H⁺ (equivalent to OH⁻) in the silicate melt 367 ^[iv]Al^{cpx} = the mole fraction of tetrahedrally co-ordinated Al in pyroxene 368 $^{[iv]}Al^{melt}$ = the mole fraction of Al in the silicate melt. 369 $^{[pyx]}Si^{+4}$ = the mole fraction of Si in pyroxene 370 $^{[pyx]}H^+$ = the mole fraction of H⁺ (equivalent to OH⁻) in pyroxene 371 $^{[melt]}Si^{+4}$ = the mole fraction of Si in the silicate melt 372 373 This reaction describes the substitution of H^+ and Al^{+3} for Si^{+4} in pyroxenes as the result of 374

375 chemical exchange between pyroxenes and co-existing melts. Although other substitutions are

19

possible, we assumed that it was the dominant mechanism active in our experiments. Mole 376 fractions for pyroxenes were calculated by assuming that $^{[pyx]}H^+ = H$ per 3 oxygens; $^{[iv]}Al^{cpx} =$ 377 ^{iv}Al per 3 oxygens; and $^{[pyx]}Si^{+4} = Si$ per 3 oxygens. Mole fractions of H⁺ in the melt phase were 378 calculated following Burnham's (1975) protocol and assuming that $OH^{-} = H^{+}$. Mole fractions of 379 Al and Si were then calculated on the basis of their anhydrous mole fractions (of total cation 380 sums) multiplied by the mole fractions of 8-oxygen melt units. When applied to the Bow Hill 381 382 data, these relationships produced an average K_D of 0.0014 (range = 0.0009 to 0.0021). This was used to calculate $D_{H20}^{cpx/melt}$ for melt H₂O concentrations from near zero to 40 weight % (but 383 with otherwise constant melt and pyroxene compositions). The resulting D values produce a 384 distinctively curved trend when plotted against melt H₂O concentrations (Fig. 8b). This follows 385 both the Bow Hill data and the broad sweep of previously published results (Fig. 8b). 386 In the case of the solution model of Silver and Stolper (1985), the concentration dependence of 387 D_{H2O} can be related to changes in the relative proportions of OH⁻ anions and molecular H₂O that 388

between the relative concentrations of OH^2 , H_2O and O^{2-} in melts that is described by the

occur as the total concentration of both species increases. This is a consequence of equilibrium

391 equilibrium constant:

392
$$k = \frac{[OH^-]^2}{[H_2 O][O^{2^-}]}$$
 (2)

where $[H_2O]$ is the mole fraction of molecular H_2O dissolved in the melt, $[O^{2-}]$ is the mole fraction of oxygen in the melt not chemically bound to H, and $[OH^-]$ is the mole fraction of hydroxyl within the melt.

396

12/2

20

A consequence of this relationship and a fixed value of k is that OH⁻ progressively decreases 397 relative to molecular H_2O as the total concentration of $OH^2 + H_2O$ increases (Fig. 9a). This was 398 first demonstrated for silicate glasses by Silver et al. (1990) who used infrared spectroscopy to 399 400 measure changes in the relative concentrations of molecular $H_2O + OH^2$ as the total concentration 401 of both species increased. Although subsequent studies (Nowak and Behrens 1995; Sowerby and Keppler 1999) have shown that the ratio of OH⁻ anions to molecular H₂O is significantly higher 402 403 in melts than compositionally equivalent glasses, molecular H₂O persists as a significant species, 404 and equation 2 remains applicable. Consequently, we used the formulation of Sowerby and Keppler (1999) to calculated k for silicate melts at 1150-1350 °C and from this derived variations 405 in $D_{H2O}^{cpx/melt}$ as a function of melt H₂O (from almost to zero to 40 weight %). It was assumed 406 that $D_{OH}^{cpx/melt}$ remains constant (at an arbitrary value of 0.05) for all H₂O concentrations and 407 408 that H_2O dissolves in pyroxenes only as OH^2 . The resulting relationship (Fig. 9b) is less strongly curved than that previously calculated using Burnham's (1975) model (Fig. 8b) but still 409 reproduces the broad trends of the experimental partitioning data. Although raising temperature 410 increases k (Sowerby and Keppler 1999) its effect on $D_{H20}^{crystal/melt}$ was found to be relatively 411 412 small within the temperature range considered.

In spite of the significant differences between the two solution models considered, it is evident that key aspects of both models can be used to independently predict a concentration dependency for $D_{H20}^{crystal/melt}$. On this basis and the trends shown in Figs. 3b and 5b, we propose that $D_{H20}^{crystal/melt}$ for all crystal phases is significantly influenced by the activity-composition relations of H₂O in silicate melts, as well as by crystal-chemical influences. The second influence is illustrated in Figs. 8b and 9b where the concentration dependency of $D_{H20}^{cpx/melt}$ is cross-cut by the independent influence of ^{iv}Al in pyroxenes. This is most noticeable for the data of O'Leary et

420 al. (2010) (who deliberately varied Al concentrations in their pyroxenes) and for melt H₂O concentrations of 6-10 weight % (where Al concentrations in pyroxenes are also highly variable). 421 The effect of melt-H₂O concentrations is less evident for garnet and olivine than it is for 422 423 pyroxenes. In the case of olivine (Fig. 6a) there is a dearth of data at intermediate H_2O concentrations so that any correlation is reliant on just two data points at the high end of the 424 425 concentration range. The relationship is also complicated by a positive pressure dependence (Fig. 426 6b) (although this is only obvious at pressures ≥ 6 GPa) and by what may be inter-laboratory 427 biases related to differences in the base-levels adopted for FTIR calibrations (since the later become critical at the very low H₂O concentrations typical of olivines). Most of the garnet data 428 (Fig. 7) cluster at relatively low values (with $D_{H2O}^{\text{garnet/melt}} \approx 0.0025$), but data for both high and 429 430 low melt H₂O concentrations are lacking so a consistent trend is difficult to define.

431

432 The behaviour of F, Cl, CO₂ and S during peridotite melting

We were unable to reliably detect Cl in pyroxenes, olivine and garnet (in spite of high melt 433 434 concentrations), and only obtained limited data for the partitioning of F. Based on the lower 435 limits of detection for Cl (1-2 ppm) during SIMS analyses of our run products, D values for Cl are typically ≤ 0.001 and in some cases considerably smaller. This suggests that Cl is 436 437 significantly less compatible than H_2O during peridotite melting (compare results for D_{H2O} in 438 Table 3). This relationship is supported by results from Dalou et al. (2012) in combination with 439 our own partitioning data for H_2O and non-volatile elements. Thus Dalou et al. (2012) found that Cl partitions similarly to Th during peridotite melting, whereas in the Bow Hill experiments (this 440 study; Adam and Green 2006) Th was significantly less compatible that H₂O. 441

22

442 In contrast to Cl, F is significantly more compatible than H₂O during peridotite melting. For the two experiments for which D values for F were determined in our study (runs R79 and 1950) $D_{\rm F}$ 443 $\approx 5 \times D_{H20}$. Comparable results were obtained by Hauri et al. (2006) for experiments on a similar 444 445 basanite composition. Dalou et al. (2012) also showed that F is markedly more compatible than 446 La during peridotite melting, whereas in our own experiments the compatibility of H_2O is either similar to or less than that of La. 447 Although neither S nor C is significantly retained in silicate minerals during peridotite melting, 448 449 they can be held in sulphides and graphite (or diamond at high pressure). Under the conditions prevailing in our experiments, C (as CO₂) has a solubility of ~ 0.5 weight % (Table 1) and S ~ 450 0.15 weight % (Adam and Green, unpublished data). At low degrees of melting these limited 451 solubilities will promote the preferential retention of C and S in solid residues. In this way they 452 also provide a potential explanation for the apparent compatibilities of C and S in the depleted 453 454 mantle (see Jambon 1994; Hirschmann and Dasgupta 2009). Without residual graphite and sulphide, however, both CO₂ and S can be expected to be highly incompatible. It may be for this 455 reason that carbonatites, although notably enriched in incompatible elements generally, are pre-456 457 eminently enriched in C (see data of Wooley and Kempe 1989).

458

459 IMPLICATIONS

460

The relative partitioning of volatiles and other (non-volatile) incompatible elements during
 mantle melting

12/2

23

463	Studies of undegassed submarine glasses from mid-ocean-ridge and ocean island settings (e.g.
464	Dixon et al. 1988; Michael 1995; Workman et al. 2006) have shown that the concentrations of
465	some volatile and non-volatile elements are systematically correlated. For example, Michael
466	(1995) found that H ₂ O/Ce in mid-ocean-ridge (MORB) and ocean island (OIB) magmas is
467	200(50), although Atlantic Ocean MORB and OIB typically have higher ratios, and some Pacific
468	Ocean OIB have lower ratios (see also Workman et al. 2006). In some studies, H ₂ O has also been
469	found to correlate better with La than Ce (e.g. Dixon et al. 1988) and also to decrease with
470	increasing ⁸⁷ Sr/ ⁸⁶ Sr (Workman et al. 2006). Concentrations of Cl and Br correlate with more
471	incompatible elements, such as K and Ba, whereas F correlates better with more compatible
472	elements, such as P (Schilling et al. 1980; Saal et al. 2002; Workman et al. 2006). Although data
473	for CO ₂ are more limited, it has also been found to correlate with highly incompatible elements,
474	such as Nb and Ba (Saal et al. 2002; Michael and Graham 2013). These relationships have been
475	attributed to similar mineral/melt partition coefficients (D values) for matching volatile and non-
476	volatile elements during magmatic differentiation of the mantle (e.g. Michael 1995; Hauri et al.
477	2006; Dalou et al. 2012). In this context, it is interesting to consider the relative partitioning of
478	H ₂ O and light rare earths (LREE) during experiments on the Bow Hill basanite and related
479	compositions. These show that D_{H2O}/D_{Ce} for clinopyroxene (which exerts the largest single
480	control on peridotite/melt partitioning for H ₂ O and Ce) is not fixed but is instead controlled by
481	other variables. The most evident of these is the radius of the M2 site (in which Ce and other
482	LREE are preferentially located). Thus $D_{\rm H2O}/D_{Ce}$ decreases with increasing M2-O distance (from
483	X-ray diffraction data), X_{Ca} and ${}^{M2}r_0^{+3}$ (see Blundy and Wood 1994) [Figs. 10a-b].
484	Although there is some scatter in the afore-mentioned relationships, they are consistent with the

485 M2 site radius exerting a significant influence on D values for Ce, as well as other light rare

12/2

24

486	earths. As the M2 site shrinks, Ce (which is large relative to its M2 host site) is progressively
487	excluded thereby raising $D_{\text{H2O}}/D_{\text{Ce}}$ (it being assumed that D_{H2O} remains unaffected). The radius
488	of the M2 site is itself pressure and temperature dependent, and decreases with increasing
489	pressure and temperature. In peridotite compositions this relationship may be augmented by a
490	positive pressure dependence of $D_{H2O}^{olivine/melt}$. Thus deeply derived and/or high temperature
491	melts can be expected to have lower H_2O/Ce than those derived from shallower depths and/or
492	lower temperatures. Conversely, melts from relatively cool and H2O-rich settings (e.g.
493	subduction zones) can be expected to concentrate H ₂ O more strongly than Ce. In this case the
494	principle cause is the effect of melt H_2O concentration on D_{H2O} (see previous discussion).
495	

496 Application to the problem of intraplate magma genesis

Competing models of intraplate magma genesis (e.g. Morgan 1971; Hofmann and White 1982; 497 498 Dupuy et al. 1989; Michael 1995; Pilet et al. 2005; Putirka et al. 2007; Adam and Green 2011) can produce quite different inferences about the degree to which volatiles either actively or 499 passively participate in the processes involved. Evidence for an active role can be found in an 500 501 observation made by Michael (1995) who noted that H₂O/Ce is similar in MORB and OIB from 502 the same geographic regions, yet more variable between regions. Michael (1995) suggested that this can be explained if OIB source regions are enriched in incompatible elements and volatiles 503 504 by small-degree melts from local MORB sources, thereby inheriting the latter's H₂O/Ce. In this case, H₂O plays an active role in magmatism via its promotion of partial-melting and 505 metasomatic processes. 506

25

507	Michael's (1995) idea can be tested by using mineral/melt partition coefficients for the Bow Hill
508	basanite UT-70489 (the experimental starting material for this study), together with previously
509	published partitioning data for halides. For this purpose, partition coefficients were chosen from
510	Table 3 (this study) and Adam and Green (2006), and used to calculate D values for a pyrolite-
511	based upper mantle assemblage (including 10 % garnet +18 % clinopyroxene + 12 %
512	orthopyroxene + 60 % olivine). The data were selected so as to represent as closely as possible
513	conditions of liquidus saturation with garnet lherzolite (~2.7 GPa and 1200 °C) [runs 1955 and
514	1956 (garnet) at 3.5 GPa and 1180-1190 °C; R80 and 1948 (clinopyroxene and orthopyroxene) at
515	3.0-2.5 GPa and 1170-1160 °C; and R77 (olivine) at 2.0 GPa and 1100 °C]. The results give
516	$D^{pyrolite/melt}$ for H ₂ O, La and Ce equal to 0.0052, 0.0052 and 0.0103 respectively. Because H ₂ O
517	concentrations in our experimentally-produced melts (range 6.8-16.8 weight %) were
518	significantly more than likely in the original basanite magma (~ 4.5 weight %, see Adam 1990)
519	the quoted D value for H ₂ O is probably an underestimate (see previous discussion of the effects
520	of melt H ₂ O concentration on D_{H2O}). Thus $D_{H2O}^{pyrolite/melt}$ may resemble $D_{Ce}^{pyrolite/melt}$ more
521	closely than $D_{La}^{pyrolite/melt}$. This is not a major concern because the relative compatibility of H ₂ O
522	in natural intraplate magmas appears to be variable and may be similar to that of either La or Ce
523	(see Dixon et al. 1988; Michael 1995). Data from Dalou et al. (2012) were used to calculate
524	$D_{Cl}^{pyrolite/melt} \approx 0.0016$, which is very similar to values for Rb and Ba (0.0021 and 0.0016).
525	If the partitioning data are applied to conditions of origin for the Bow Hill basanite [estimated at
526	~ 2.7 GPa and 1200 °C with 4.5 weight % of dissolved H_2O and 2.0 weight % of dissolved CO_2
527	(Adam 1990)] the bulk melting residue will have contained \sim 230 ppm H ₂ O and 2 ppm Cl [based
528	on 1240 ppm Cl in UT-70489 (from Adam and Green 2011)]. These values are comparable to
529	some previous estimates of H_2O and Cl concentrations in the MORB source (e.g. Saal et al.

12/2

26

2002; Workman and Hart 2005; Green et al. 2010). But the need for a finite degree of melting
means that the Bow Hill source is likely to have been significantly more enriched in H₂O, CO₂
and Cl than the MORB source.

533 Similar conclusions were reached by Adam and Green (2011) with respect to concentrations of incompatible non-volatile elements. They noted that although the relative concentrations of 534 535 incompatible elements in UT-70489 are consistent with an E-type MORB source (which UT-70489 isotopically resembles), the absolute concentrations are too high to be a direct result of 536 partially melting such a (non-enriched) source. As an alternative, it was suggested that the Bow 537 538 Hill source was pre-enriched in incompatible elements by metasomatic melts derived from underlying MORB sources. This was modelled by the addition of 30 % of a small degree (0.7 %) 539 540 partial-melt of the E-MORB source of Workman and Hart (2005) to a depleted peridotite (see Adam and Green 2011). The resulting pyrolite-like composition could have produced UT-70489 541 by ~ 5.5 % partial-melting. If this same model is used for volatile concentrations, the Bow Hill 542 source would have contained ~ 0.25 weight % H_2O_2 0.11 weight % CO_2 and 52 ppm Cl. In spite 543 of such high absolute concentrations, key ratios of volatile and non-volatile elements remain 544 comparable to those in MORB. These include: $H_2O/Ce = 230$, $CO_2/Nb = 140$ and Cl/K = 0.07545 546 (by weight). Equivalent values for MORB are: $H_2O/Ce = 200(50)$ (Michael 1995), $CO_2/Nb =$ 239(36) (Saal et al. 2002), and Cl/K = 0.01-0.08 (Michael and Cornell 1998). 547 548 Alternative models of origin for OIB sources have also been proposed in which the role of volatiles is essentially incidental once they have been subducted into the deeper mantle. These 549 550 emphasize the coupled significance of subduction zone processes and deep mantle plumes (e.g. 551 Hofmann and White 1982; Dupuy et al. 1989; Hirschmann et al. 2003; Sobolev et al. 2005). A

problem with this option (at least in its simplest form) is that H_2O is fractioned differently by

27

subduction zone processes than it is by peridotite melting. This is demonstrated in Fig. 11 which 553 554 shows relative enrichments of volatile and non-volatile elements in arc magmas and the continental crust/hydrosphere normalized to concentrations in an average MORB. The relative 555 enrichments of H₂O, Pb and other incompatibles mirror experimentally-obtained partitioning 556 relationships for H₂O-fluids (see also Brenan et al. 1995; Keppler 1996; Kessel et al. 2005) 557 and are very different from those in OIB which, with the minor exception of Pb (possibly held in 558 559 sulphides), mirror peridotite/melt partition coefficients for basanite melts. These relationships do not either preclude or ignore evidence for contributions from re-cycled crustal components to 560 561 OIB sources, but imply instead that the metasomatic processes responsible for OIB magmatism can superimpose themselves on a wide range of mantle materials (since, as pointed out by 562 563 Michael (1995), all of the H₂O in the MORB mantle has probably been re-cycled). If this is indeed the case, and both OIB and MORB owe their source characteristics to a common 564 fractionation mechanism, it is likely that this fractionation occurred under specific conditions of 565 566 pressure, temperature and H₂O activity.

567

568 SUMMARY AND CONCLUSIONS

569 Concentrations of H₂O, F, Cl, C and S have been analysed by SIMS in experimentally-produced

amphibole, mica, garnet, clinopyroxene, orthopyroxene, olivine and basanitic glass (melts).

571 Concentrations of H₂O in melts were also independently estimated from mass-balance

relationships and by assuming constant H_2O/La in melts and starting materials. The data were

used to calculate mineral/melt partition coefficients for H_2O (for conditions of 1.0-3.5 GPa and

574 1025-1190 °C), but only limited information could be obtained for the other volatiles. Consistent

12/2

28

575	with observations from previous experimental studies, both $D_{H2O}^{cpx/melt}$ and $D_{H2O}^{opx/melt}$ correlate
576	positively with ^{iv} Al in pyroxenes. But $D_{H2O}^{cpx/melt}$ and $D_{H2O}^{opx/melt}$ are also negatively correlated
577	with H ₂ O concentrations in melts. Although the same relationship is not demonstrated by the
578	more limited data available for olivine and garnet, it is consistent with key aspects of published
579	solution models for H_2O in silicate melts. D_{H2O}/D_{Ce} for clinopyroxenes and melts is a negative
580	function of the M2 site radius, and can be related to the controlling influence of the M2 site on
581	$D_{Ce}^{epx/melt}$. Because M2 site radii are themselves a function of pressure and temperature, and
582	pyroxenes exert a controlling influence on the partitioning of both H_2O and Ce, deeply derived
583	melts from relatively hot mantle sources should have lower H_2O/Ce than melts from shallower
584	and cooler (but otherwise equivalent) sources. Because melt-H2O concentrations also influence
585	the relative partitioning of H ₂ O and Ce, (H ₂ O-rich) subduction-zone environments should
586	fractionate H ₂ O and Ce differently from other mantle settings.
587	The experimentally-determined compatibilities of H ₂ O, C, F, Cl, Ba, Nb, La, Ce, and Sr are
588	consistent with observed correlations between some volatile and non-volatile components (e.g.
589	H_2O/Ce) in undegassed MORB and OIB glasses. They are also consistent with Michael's (1995)
590	suggestion that intraplate basalt sources are enriched in volatiles and other incompatibles by
591	small-degree melts derived from local MORB sources. In this way, H ₂ O and other volatiles can
592	be held to play an active role (via their promotion of partial-melting and metasomatic processes)
593	in the auto-regulation of incompatible element concentrations in the depleted upper mantle.

595 Acknowledgements

- 596 This study was supported by an ARC Professorial Fellowship to Simon Turner and a New
- 597 Zealand Foundation of Research in Science and Technology postdoctoral fellowship to Michael
- 598 Turner. It also made use of instrumentation funded by ARC, LIEF and DEST Systematic
- 599 Infrastructure Grants, Macquarie University and Industry. Hugh O'Neil is thanked for his
- 600 comments on an earlier draught of this manuscript. Roland Stalder and István Kovács are also
- thanked for constructive and thoughtful reviews. This is contribution number 669 from the ARC
- 602 Centre of Excellence for Core to Crust Fluid Systems (<u>http://www.ccfs.mq.edu.au</u>) and number
- 1034 from the GEMOC Key Centre for the Geochemical Evolution and Metallogeny of
- 604 Continents (<u>http://www.gemoc.mq.edu.au</u>).
- 605

606 FIGURE CAPTIONS

607

609	Longitudinal	sections of ex	perimental ca	psules s	howing run	products after	r experiments. l	Run

- 610 R79 (Fig. 1a) conducted at 1075 °C and 1.0 GPa produced a red-brown glass containing crystals
- of olivine and less common clinopyroxene. In Run R80 (Fig. 1b) the melt phase (produced at
- 612 1170°C and 3.0 GPa) quenched to a felt-like matrix of fine crystallites. Accumulated at the base
- of the capsule are crystals of clino- and orthopyroxene. Both pictures were taken in ordinary light
- 614 with a binocular microscope.

615

616 Figure 2

A comparison of results for the different methods used to estimation H_2O concentrations in the experimentally-produced melts of this study. The diagonal straight line shows a 1:1 relationship.

619

620 Figure 3

- 621 Variation of clinopyroxene/melt D values for H_2O as a function of ^{iv}Al (3a) and melt H_2O
- 622 concentrations (3b). Also shown is the cross-correlation between ^{iv}Al and the H₂O concentrations
- of melts (3c). Data for the Bow Hill basanite are from this study and Adam and Green (2006).
- Other data sources include: Adam and Green (1994), Dobson et al. (1995), Green et al. (2000),
- 625 Hauri et al. (2006), Koga et al. (2003), Aubaud et al. (2004, 2008), Tenner et al. (2009), O'Leary

626	et al. (2010) and Kovacs et al. (2012). D values were estimated from the data of Kovacs et al.
627	(2012) by assuming melt-H ₂ O solubilities of ~ 10 weight % per GPa (see text). Except for the
628	basanite from Bow Hill (UT-70489, the subject of this work), symbols and author's names
629	correspond to the original experimental studies used to produce crystals and melts.
630	
631	Figure 4
632	Variations in F concentrations and ^{iv} Al in the experimentally produced pyroxenes of this study.
633	
634	Figure 5
635	Variation of orthopyroxene/melt D values for H_2O as a function of ^{iv}Al (5a) and melt H_2O
636	concentrations (5b). Data for the Bow Hill basanite are from this study and Adam and Green
637	(2006). Other data sources include: Dobson et al. (1995), Gaetani and Grove (1998), Green et al.
638	(2000), Aubaud et al. (2004), Koga et al. (2003), Hauri et al. (2006), Tenner et al. (2009) and
639	Kovács et al. (2012). D values were estimated from the data of Kovács et al. (2012) by assuming
640	melt-H ₂ O solubilities of ~ 10 weight % per GPa (see text). Except for the basanite from Bow Hill
641	(UT-70489, the subject of this work), symbols and author's names correspond to the original
642	experimental studies used to produce crystals and melts.
643	
644	Figure 6

645 Variation of olivine/melt D values for H_2O as a function of melt H_2O concentrations (5a) and

646 pressure (b). Data for the Bow Hill basanite are from this study. Other data sources include:

32

647	Koga et al. (2003), Aubaud et al. (2004), Hauri et al. (2006), Grant et al. (2007), Kovács et al.
648	(2012), Tenner et al. (2012) and Novella et al. (2014). D values were estimated from the Kovács
649	et al. (2012) data by assuming melt-H ₂ O solubilities of ~ 10 weight % per GPa (see text). Except
650	for the basanite from Bow Hill (UT-70489, the subject of this work), symbols and author's
651	names correspond to the original experimental studies used to produce crystals and melts.
652	
653	Figure 7
654	Variation of garnet/melt D values for H ₂ O as a function of melt H ₂ O concentrations. Data
655	sources include: this study, Hauri et al. (2006), Aubaud et al. (2008), Tenner et al. (2009) and
656	Novella et al. (2014). Except for the basanite from Bow Hill (UT-70489, the subject of this
657	work), symbols and author's names correspond to the original experimental studies used to
658	produce crystals and melts.
659	
660	
661	Figure 8
662	Mole fractions of OH ⁻ versus weight % H_2O in basanite melts (a) calculated using Burnham's
663	(1975) albite-based model for the solution of H_2O in silicate melts; and (b) accompanying
664	variations in $D_{H2O}^{cpx/melt}$ calculated for a constant exchange $K_D = 0.0014$ (see text). Sources for
665	other accompanying data are as for Fig. 3b.
666	

667 Figure 9

33

12/2

668	(a) Calculated mole fractions of OH^2 and molecular H_2O versus weight % of total H_2O in silicate
669	melts at 1150 °C (based on Sowerby and Keppler (1999) where $\ln k = -3821.83/T + 1.61$); and
670	(b) resultant variations in $D_{H2O}^{cpx/melt}$ (solid line) calculated assuming $D_{OH}^{cpx/melt} = 0.05$ and that
671	H ₂ O dissolves in pyroxenes only as OH ⁻ . Sources for other plotted data are as for Fig. 3b.
672	
673	Figure 10
674	Variations in D_{H2O}/D_{Ce} for clinopyroxene as a function of: (a) average M2-O distance, (b) X_{Ca} ,
675	and (c) r_0^{+3} values for M2 sites. Error bars show propagated single standard deviations. The M2-
676	O distances are unpublished data of Adam, Oberti and Camara [for methods see Adam et al.
677	(2007)]. Data for D_{H2O} , D_{Ce} , Ca and r_0^{+3} values are from Table 2 (this study), Hauri et al. (2006),
678	Adam and Green (2003, 2006) and Green et al. (2000).
679	
680	Figure 11

681 Bulk partition coefficients for garnet lherzolite/basanite melt and garnet lherzolite/H₂O-fluid. Also shown are the relative enrichments of volatile and non-volatile incompatible elements in 682 683 intraplate basalts, the continental crust/hydrosphere, and three different arc magmas. These are shown normalized to an average mid-ocean-ridge basalt composition from Albarede (2005) with 684 H₂O, CO₂ and halides based on data for H₂O/Ce, CO₂/Nb, Cl/K and F/P from Michael (1995) 685 and Saal et al. (2002). The partition coefficients for basanitic melts are mostly based on data 686 687 from this work and Adam and Green (2006) [see text]. The exceptions are Cl and F which are from Dalou et al. (2012). The partition coefficients for H₂O-fluids are based on this work, Adam 688

- and Green (2006), and Adam et al. (2014). The composition of the combined continental crust
 - and hydrosphere is based on data from Wedepohl (Table 3, 1995), Schubert and Sandwell
 - (1989), and Shiklomanov and Rodda (Table 1.8, 2003). The data for undegassed arc magmas are

- from Rose et al. (1978), Sisson and Layne (1993), Scaillet and Evans (1999), Borisova et al.
- 693 (2006), and Johnson et al. (2009).

694

695 **REFERENCES CITED**

- Adam, J. (1990) The geochemistry and experimental petrology of sodic alkaline basalts from
- 697 Oatlands, Tasmania. Journal of Petrology, 31, 1201-1223.
- Adam, J., and Green, T.H. (2003) The influence of pressure, mineral composition and water on
- trace element partitioning between clinopyroxene, amphibole and basanitic melts. European
- 700 Journal of Mineralogy, 15, 831-841.
- Adam, J., and Green, T.H. (2006) Trace element partitioning between mica- and amphibole-
- bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the
- investigation of controls on partitioning behaviour. Contributions to Mineralogy and Petrology,
- 704 152, 1-17. DOI 10.1007/s00410-006-0085-4.
- Adam, J., Oberti, R., Camara, F., and Green, T.H. (2007) An electron microprobe, LAM-ICP-
- MS and single-crystal X-ray structure refinement study of the effects of pressure, melt-H₂O
- concentration and fO_2 on experimentally produced basaltic amphiboles. European Journal of
- 708 Mineralogy, 19, 641-655. DOI 10.1127/0935-1221/2007/0019-1750.
- Adam, J., and Green, T.H. (2011) Trace element partitioning between mica- and amphibole-
- bearing garnet lherzolite and hydrous basanitic melt: 2. Tasmanian Cainozoic basalts and the
- origins of intraplate basaltic magmas. Contributions to Mineralogy and Petrology, 161, 883-899.
- 712 DOI 10.1007/s00410-010-0570-7.

713	Adam, J., Locmelis, M., Afonso, J.C., Rushmer, T., and Fiorentini, M. (2014) The capacity of
714	hydrous fluids to transport and fractionate incompatible elements and metals within the Earth's
715	mantle. Geochemistry Geophysics Geosystems, DOI 10.1002/2013GC005199.
716	Aines, R.D., and Rossman, G.R. (1984) Water content of mantle garnets. Geology 12: 720-723
717	Albarede, F. (2005) The survival of geochemical heterogeneities. In: Earth's Deep Mantle:
718	Structure, Composition and Evolution. Geophysical Monograph van der Hilst R.D., Bass J.,
719	Matas J., and Trampert, J. (eds) Washington D. C., American Geophysical Union, 160, pp. 27-
720	46.
721	Aubaud, C., Hauri, E.H., and Hirschmann, M.M. (2004) Hydrogen partition coefficients between
722	nominally anhydrous minerals and basaltic melts. Geophysical Research Letters, 31, L20611 doi:
723	10.1029/2004GL021341.
724	Aubaud, C., Hirschmann, M.M., Withers, A.C., and Hervig, R.L. (2008) Hydrogen partitioning
725	between melt, clinopyroxene, and garnet at 3 GPa in a hydrous MORB with 6 wt. $\%$ H ₂ O.
726	Contributions to Mineralogy and Petrology, 156, 607-625.
727	Bell, D.R., and Rossman, G.R. (1992) Water in Earth's Mantle: The role of nominally anhydrous
728	minerals. Science, 255, 1391-1331.

- Behrens, H., Misiti, V., Freda, C., Vetere, F., Botcharnikov, R.E., and Scarlato, P. (2009)
- Solubility of H₂O and CO₂ in ultrapotassic melts at 1200 and 1250 °C and pressure from 50 to
- 731 500 MPa. American Mineralogist, 94, 105-120.
- 732 Beyer, C., Klemme, S., Wiedenbeck, M., Stracke, A., and Vollmer, C. (2012) Flourine in
- nominally fluorine-free mantle minerals: experimental partitioning of F between olivine,

- orthopyroxene and silicate melts with implications for mantle processes. Earth and Planetary
- 735 Science Letters, 337, 1-9.
- Blundy, J., and Wood, B.J. (1994) Prediction of crystal-melt partition coefficients from elastic
- 737 moduli. Nature, 372, 452-454.
- Borisova, A.Y., Pichavant, M., Polvé, M., Wiedenbeck, M., Freydier, R., and Candaudap, F.
- (2006) Trace element geochemistry of the 1991 Mt. Pinatubo silicic melts, Philippines:
- 740 Implications for ore-forming potential of adakitic magmatism. Geochimica et Cosmochimica
- 741 Acta, 70, 3702-3716.
- 742 Brenan, J.M., Shaw, H.F., Ryerson, F.J., and Phinney, D.L. (1995) Mineral-aqueous fluid
- partitioning of trace elements at 900 C and 2.0 GPa: constraints on the trace element
- chemistry of mantle and deep crustal fluids. Geochimica et Cosmochimica Acta, 59,
- 745 3331-3350.
- Brey, G. and Green, D.H. (1977) Systematic study of liquidus phase relations in olivine
- melilitite + $H_2O + CO_2$ at high pressures and petrogenesis of an olivine melilitite magma.
- 748 Contributions to Mineralogy and Petrology, 61, 141-162.
- Burnham, C.W. (1975) Water and magmas: a mixing model. Geochimica et Cosmochimica Acta,
 39, 1077-1084.
- 751 Carroll, M.R., and Blank, J.G. (1997) The solubility of H₂O in phonolite melts. American
- 752 Mineralogist, 82, 549-556.

- 753 Dalou, C., Koga, K.T., Shimizu, N., Boulon, J., and Devidal, J. (2012) Experimental
- determination of F and Cl partitioning between lherzolite and basaltic melt. Contributions to
- 755 Mineralogy and Petrology, 163, 591-609. DOI: 10.1007/s00410-011-0688-2.
- Dixon, J.E., Stolper, E., and Delaney, J.R. (1988) Infrared spectroscopic measurements of CO₂
- and H₂O in Jaun de Fuca Ridge basaltic glasses. Earth and Planetary Science Letters, 90, 87-104.
- Dobson, P., Skogby, H., and Rossman, G.R. (1995) Water in boninite glass and coexisting
- orthopyroxene: concentration and partitioning. Contributions to Mineralogy and Petrology, 118,
- 760 414-419.
- Dupuy, C., Barsczus, H., Dostal, J., Vidal, P., and Liotard, J. (1989) Subducted and recycled
- ⁷⁶² lithosphere as the mantle source of ocean island basalts from southern Polynesia, Central Pacific.

Earth and Planetary Science Letters, 114, 477-489.

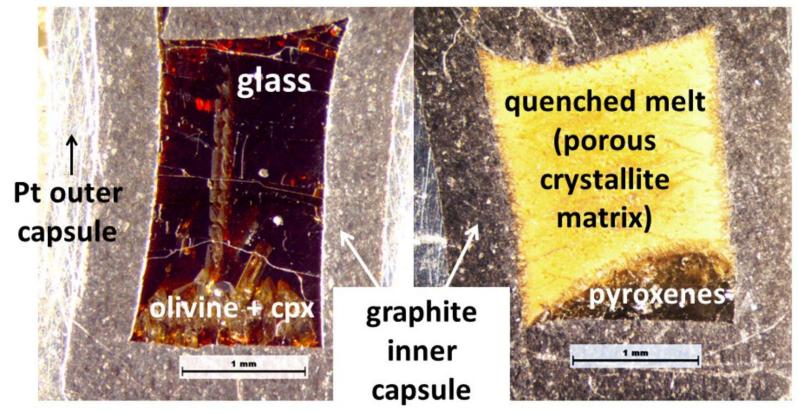
- Eggler, D.H., and Burnham, C.W. (1984) Solution of H₂O in diopside melts: a thermodynamic
- model. Contributions to Mineralogy and Petrology, 85, 58-66.
- Gaetani, G.A., and Grove, T.L. (1998) The influence of water on melting of mantle peridotite.
- Contributions to Mineralogy and Petrology, 131, 323-346.
- Grant, K.J., Kohn, S.C., and Brooker, R.A. (2007) The partitioning of water between olivine,
- orthopyroxene and melt synthesised in the system albite-forsterite-H₂O. Earth and Planetary
- 770 Science Letters, 260, 227-241.
- Green, D.H. (1976) Experimental testing of "equilibrium" partial melting of peridotite under
- water-saturated, high-pressure conditions. Canadian Mineralogist, 14, 255-268.

- Green, D.H., Hibberson , W.O., Kovács, I., and Rosenthal, A. (2010) Water and its influence on
- the lithosphere-asthenosphere boundary. Nature, 467, 448-452. DOI: 10.1038/nature09369
- Green, T.H., Blundy, J.D., Adam, J., and Yaxley, G.M. (2000) SIMS determination of trace
- elements partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2-
- 777 7.5 GPa and 1080-1200 °C. Lithos, 53, 165-187.
- Hauri, E.H., Wang, J., Dixon, J.E., King, P.L., Mandeville, C., and Newman, S. (2002) SIMS
- analysis of volatiles in silicate glasses 1. Calibration, matrix effects and comparisons with FTIR.
- 780 Chemical Geology, 183, 99-114.
- Hauri, E.H., Gaetani, G.A., and Green, T.H. (2006) Partitioning of water during melting of the
- Earth's upper mantle at H₂O undersaturated conditions: Earth and Planetary Science Letters, 248,
- 783 715-734. DOI: 10.1016/j.epsl.2006.06.014.
- Hervig, R.L., and Bell, D.R. (2005) Fluorine and hydrogen in mantle megacrysts. AGU Fall
- 785 Meeting, pp. V41A-1426.
- Hirschmann, M.M., and Dasgupta, R. (2009) The H/C ratios of Earth's near-surface and deep
- reservoirs, and consequences for deep Earth volatile cycles. Chemical Geology, 262, 2-16.
- Hirschmann, M.M., Kogiso, T., Baker, M.B., and Stolper, E.M. (2003) Alkalic magmas
- generated by partial melting of garnet pyroxenite. Geology, 31, 481-484.
- Hofmann, A.W., and White, W.M. (1982) Mantle plumes from ancient oceanic crust. Earth and
- 791 Planetary Science Letters, 57, 421-436.

- Holloway, J.R., Pan, V., and Gudmundsson, G. (1992) High-pressure fluid-absent melting
- experiments in the presence of graphite : oxygen fugacity, ferric/ferrous ratio and dissolved CO₂.
- European Journal of Mineralogy, 4, 105-114. DOI: 0935-1221/92/0004-0105.
- Jakobsson, S. (1997) Solubility of water and carbon dioxide in an icelandite at 1400 °C and 10
- kilobars. Contributions to Mineralogy and Petrology, 127, 129-135.
- Jambon, A. (1994) Earth degassing and large scale geochemical cycling of volatile elements. In:
- 798 Carroll, M.R. and Holloway, J.R. (eds) Volatiles in Magmas, Reviews in Mineralogy, 30, 478-
- 517. Mineralogical Society of America, Washington, D.C.
- Johnson, E.R., Wallace, P.J., Grandos, H.D., Manea, V.C., Kent, A.J.R., Bindeman, I.N., and
- Johnson, R.W. (1989) Intraplate Volcanism in eastern Australia and New Zealand. Cambridge
- 802 University Press, Cambridge
- Johnson, E.R., Wallace, P.J., Delgado Granados, H., Manea, V.C., Kent, A.J.R., Bindeman, I.N.,
- and Donegan, C.S. (2009) Subduction-related volatile recycling and magma generation beneath
- 805 Central mexico: insights from melt inclusions, oxygen isotopes and geodynamic models. Journal
- of Petrology, 50, 1729-1764.
- Keppler, H. (1996) Constraints from partitioning experiments on the composition of
 subduction zone fluids. Nature, 380, 237-240.
- Kessel, R., Schmidt, M.W., Ulmer, P., and Pettke, T. (2005) Trace element signature of
 subduction-zone fluids, melts and supercritical liquids at 120-180 km depth. Nature, 437,
 725-727.
- Koga, K., Hauri, E.H., Hirschmann, M.M., and Bell, D.R. (2003) Hydrogen concentration
- analyses using SIMS and FTIR: Comparison and calibration for nominally anhydrous minerals.
- Geochemistry, Geophysics, Geosystems, 4, DOI 10.1029/2002GC000378.

- Kohn, S.C. (1996) Solubility of H₂O in nominally anhydrous mantle minerals using ¹H MAS
 NMR. American Mineralogist, 81, 1523-1526.
- 817 Kovács, I., Green, D.H., Rosenthal, A., Hermann, J., O'Neill, H., Hibberson, W.O., and Udvardi,
- B. (2012) An experimental study of water in nominally anhydrous minerals in the upper mantle
- near the water-saturated solidus. Journal of Petrology, 53, 2067-2093 DOI
- 820 10.1093/petrology/egs044.
- Michael, P.J. (1995) Regionally distinctive sources of depleted MORB: evidence from trace
- elements and H₂O. Earth and Planetary Science Letters, 131, 301-320.
- Michael, P.J., and Cornall, W.C. (1998) Influence of spreading rate and magma supply on
- crystallization and assimilation beneath mid-ocean ridges: evidence from chlorine and major
- element chemistry of mid-ocean ridge basalts. Journal of Geophysical Research, 103, 18325-
- 826 18356. DOI 10.1002/jgrb.v103.B8/issuetoc.
- 827 Michael, P., and Graham, D. (2013) Concentration and behaviour of CO₂ in MORB and OIB: A
- reevaluation. Abstract, Goldschmidt Conference, DOI: 10.1180/minmag.2013.077.5.1
- Morgan, W.J. (1971) Convection plumes in the lower mantle. Nature, 230, 42-43.
- 830 Novella, D., Frost, D.J., Hauri, E.H., Bureau, H., Raepsaet, C., and Roberge, M. (2014) The
- distribution of H₂O between silicate melt and nominally anhydrous peridotite and the onset of
- hydrous melting in the deep upper mantle. Earth and Planetary Science Letters, 400, 1-13.
- Nowak, M., and Behrens, H. (1995) The speciation of water in haplogranitic glasses and melts
- determined by in situ near-infrared spectroscopy. Geochimica et Cosmoschimica Acta, 59, 3445-
- 835 3450.

- Oberti, R., Ungaretti, L., Cannillo, E., and Hawthorne, F.C. (1993) The mechanism of Cl
 incorporation in amphibole. American Mineralogist, 7, 1049-1063.
- 838 O'Leary, J.A., Gaetani, G.A., and Hauri, E.H. (2010) The effect of tetrahedral Al^{3+} on the
- partitioning of water between clinopyroxene and silicate melt. Earth and Planetary Science
- 840 Letters, 297, 111-120. DOI: 10.1016/j.epsl.2010.06.011.
- Pilet, S., Hernandez, J., Sylvester, P., and Poujol, M. (2005) The metasomatic alternative for
- ocean island basalt chemical heterogeneity. Earth and Planetary Science Letters, 236, 148-166.
- Pouchou, J.L., and Pichoir, F. (1984) A new model for quantitative X-ray microanalysis, Part I.
- application to the analysis of homogeneous samples. La Recherche Aérospatiale, 3, 13-38.
- Putirka, K.D., Pelt, M., Ryerson, F.J., and Jackson, M.G. (2007) Ambient and excess mantle
- temperatures , olivine thermometry, and active vs. passive upwelling. Chemical Geology, 241,177-206.
- Rose, W.I., Anderson, A.T., Woodruf, L.G., and Bonis, S.B. (1978) The October 1974 basaltic
- tephra from Fuego Volcano: description and history of the magma body. Journal of Volcanologyand Geothermal Research, 4, 3-53.
- 851 Saal, A.E., Hauri, E.H., Langmuir, C.H., and Perfit, M.R. (2002) Vapour undersaturation in
- primitive mid-ocean-ridge basalt and the volatile content of the Earth's upper mantle. Nature,419, 451-455.
- Scaillet, B., and Evans, B.W. (1999) The 15 June 1991 Eruption of Mount Pinatubo. I. Phase
- equilibria and pre-eruption P-T- fO_2 - fH_2O conditions of the dacite magma. Journal of Petrology, 40, 381-412.


- 857 Schilling, J-G., Bergeron, M.B., and Evans, R. (1980) Halogens in the mantle beneath the North
- Atlantic. Philosophical Transactions of the Royal Society of London, A297, 147-178.
- 859 Schmidt, B.C., and Behrens, H. (2008) Water solubility in phonolite melts: Influence of melt
- composition and temperature. Chemical Geology, 256, 259-268.
- 861 Schubert, G., and Sandwell, D. (1989) Crustal volumes of the continents and of oceanic and
- continental submarine plateaus. Earth and Planetary Science Letters, 92, 234-246.
- 863 Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic
- distances in halides and chalcogenides. Acta Crystallographica, A32, 751-767.
- Shcheka, S.S., Wiedenbeck, M., Frost, D.J., and Keppler, H. (2006) Carbon solubility in mantle
- 866 minerals. Earth and Planetary Science Letters, 245, 730-742.
- 867 Shiklomanov, I.A., and Rodda, J.C. (2003) *World water resources at the beginning of the*
- 868 twenty-first Century. International Hydrology Series, UNESCO, Cambridge University Press,
- 869 Cambridge, pp. 13.
- Silver, L.A., and Stolper, E. (1985) A thermodynamic model for hydrous silicate melts. Journal
 of Geology, 93, 161-178.
- 872 Silver, L.A., Ihinger, P.D., and Stolper, E. (1990) The influence of bulk composition on the
- speciation of water in silicate glasses. Contributions to Mineralogy and Petrology, 104, 142-162.
- 874 Sisson, T.W., and Layne, G.D. (1993) H₂O in basalt and basaltic andesite glass inclusions from
- four subduction-related volcanoes. Earth and Planetary Science Letters, 117, 619-635.

- 876 Sobolev, A.V., Hofmann, A.W., Sobolev, S.V., and Nikogosian, I.K. (2005) An olivine-free
- mantle source of Hawaiian shield basalts. Nature, 434, 590-597.
- 878 Sowerby, J.R., and Keppler, H. (1999) Water speciation in rhyolitic melts determined by in-situ
- 879 infrared spectroscopy. American Mineralogist, 84, 1843-1849.
- 880 Stalder, R. (2004) Influence of Fe, Cr and Al on hydrogen incorporation in orthopyroxene.
- European Journal of Mineralogy, 16, 703-711.
- 882 Sutherland, F.L., Hollis, J.D., and Barron, L.M. (1984) Garnet lherzolite and other inclusions
- from a basalt flow, Bow Hill, Tasmania. In Kornprobst, J. (ed.) Kimberlites II: The Mantle and
- 884 Crust-Mantle Relationships pp. 145-160. Elsevier, Amsterdam.
- 885 Tenner, T.J., Hirschmann, M.M., Withers, A.C., and Hervig, R.L. (2009) Hydrogen partitioning
- between nominally anhydrous upper mantle minerals and melt between 3 and 5 GPa and
- applications to hydrous peridotite partial melting. Chemical Geology, 262, 42-56, DOI:
- 888 10.1016/j.chemgeo.2008.12.006.
- 889 Tenner, T.J., Hirschmann, M.M., Withers, A.C., and Ardia, P. (2012) H₂O storage capacity of
- olivine and low-Ca pyroxene from 10 to 13 GPa: Consequences for dehydration melting above
- the transition zone. Contributions to Mineralogy and Petrology, 163, 297-316,
- B92 DOI:10.1007/s00410-011-0675-7.
- Wedepohl, K.H. (1995) The composition of the continental crust. Geochimica et Cosmochimica
 Acta, 59, 1217-1232.
- 895 Wilkins, R.W. T., and Sabine, W. (1973) Water content of some nominally anhydrous silicates.
- American Mineralogist, 58, 508-516.

- 897 Wooley, A.R. and Kempe, D.R. (1989) Carbonatites: nomenclature, average chemical
- compositions, and element distribution. In Bell, K (ed) Carbonatites, Genesis and Evolution pp.
- 899 1-14. Unwyn Hymen, London
- 900 Workman, R.K., and Hart, S.R. (2005) Major and trace element composition of the depleted
- MORB mantle (DMM). Earth Planet Sci Lett 231: 53-72
- 902 Workman, R.K., Hauri, E., Hart, S.R., Wang, J., and Blusztajn, J. (2006) Volatile and trace
- 903 elements in basaltic glasses from Samoa: Implications for water distribution in the mantle. Earth
- 904 Planet Sci Lett 241: 932-951

Run R79 1075 °C 1.0 GPa

Run R80 1170 °C 3.0 GPa

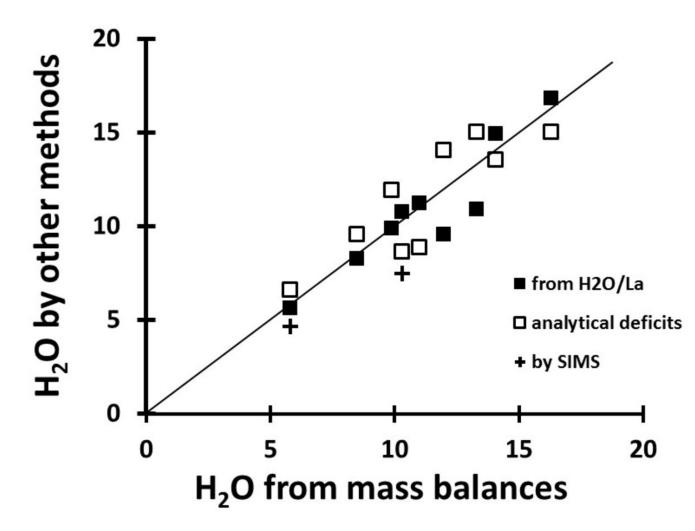
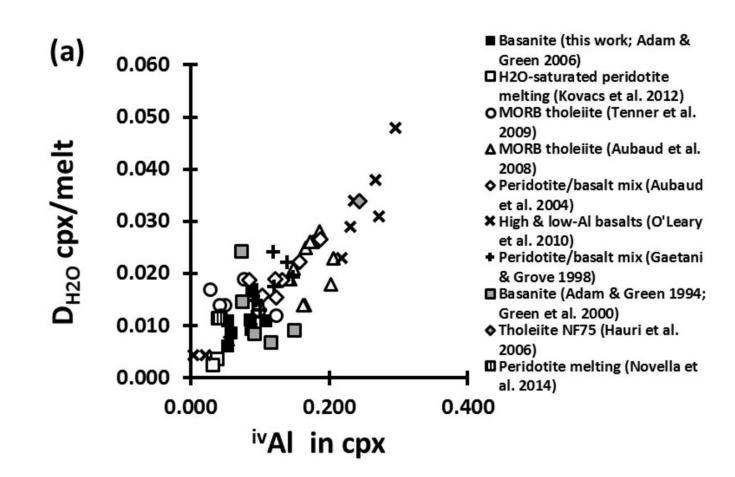



Fig. 2

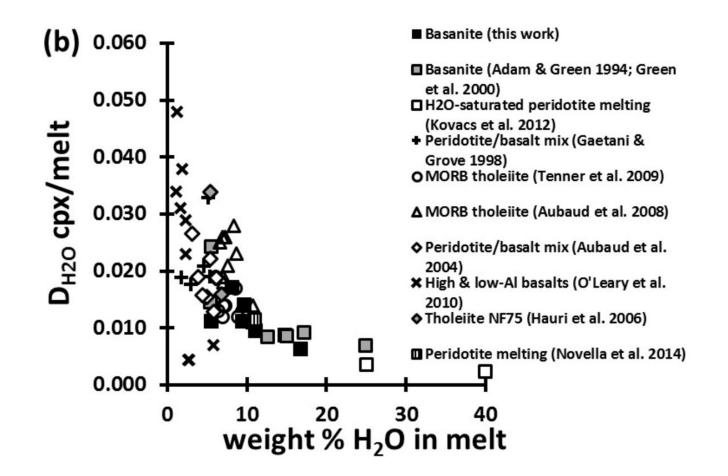
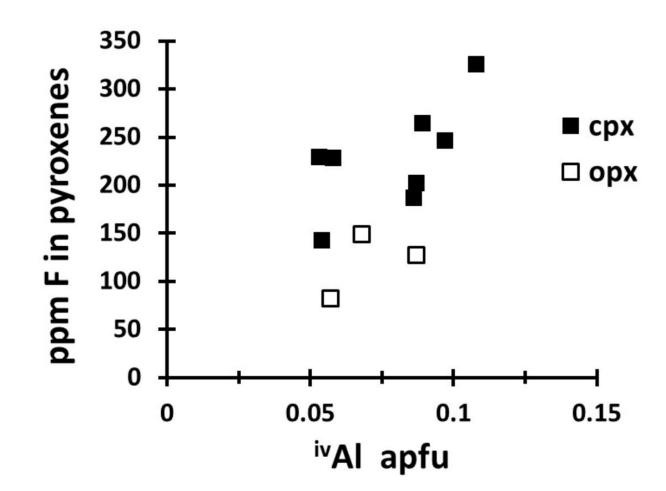
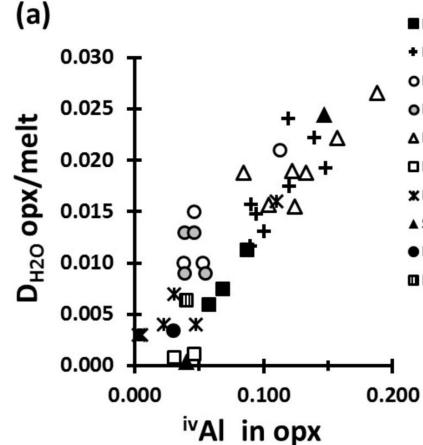
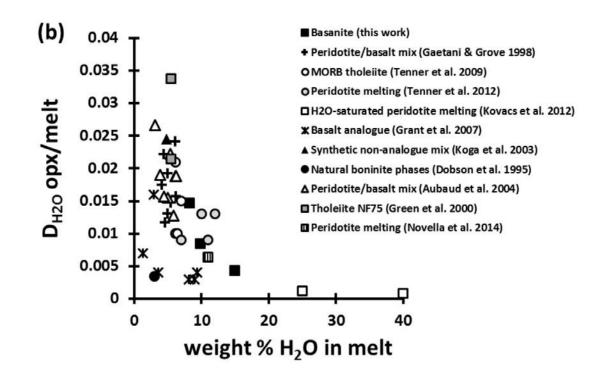
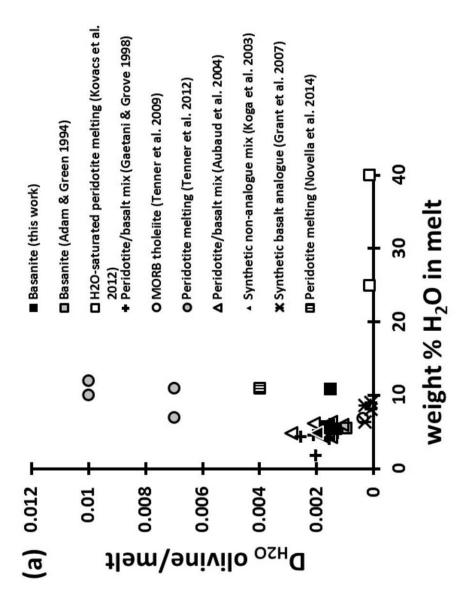
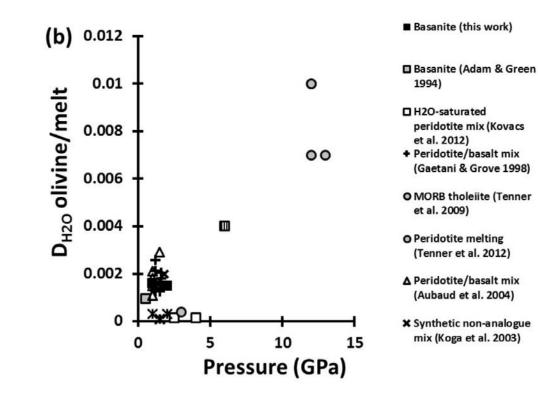
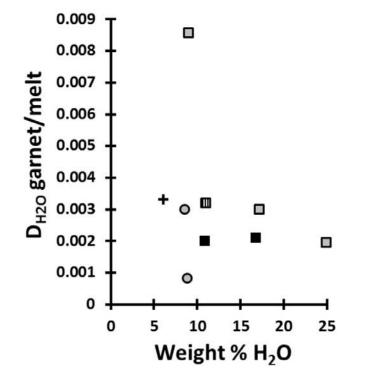




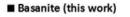
Fig. 3b


Basanite (this work) (c) 0.35 Basanite (Adam & Green 1994) H2O-saturated peridotite 0.3 melting (Kovacs et al. 2012) Peridotite/basalt mix (Gaetani ivAl in cpx 0.25 & Grove 1998) OMORB tholeiite (Tenner et al. 2009) 0.2 ▲ MORB tholeiite (Aubaud et al. 2008) Peridotite/basalt mix (Aubaud) 0.15 et al. 2004) ✗ High & low-Al basalts (O'Leary et al. 2010) 0.1 Deridotite melting (Novella et al. 2014) 0.05 60 m 0 20 10 30 0 40 weight % H₂O in melt

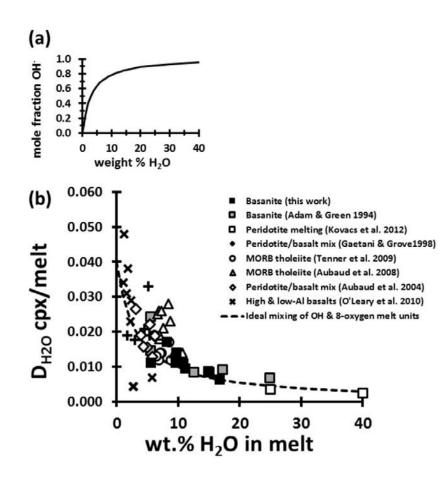

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld


■ Basanite (Adam & Green 1994)
Peridotite/basalt mix (Gaetani & Grove 1998)
O MORB tholeiite (Tenner et al. 2009)
O Peridotite melting (Tenner et al. 2012)
▲ Peridotite/basalt mix (Aubaud et al. 2004)
□ H2O-saturated peridotite melting (Kovacs et al. 2012)
X Basalt analogue (Grant et al. 2007)
▲ Synthetic non-analogue mix (Koga et al. 2003)
● Natural boninite phases (Dobson et al. 1995)
□ Novella et al. (2014)




12/2

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)



- Basanite (Adam & Green 1994)
- Peridotite/basalt mix (Gaetani & Grove 1998)
- MORB tholeiite (Tenner et al. 2009)
- Peridotite melting (Novella et al. 2014)
- Tholeiite NF75 (Hauri et al. 2006)

Fig. 8

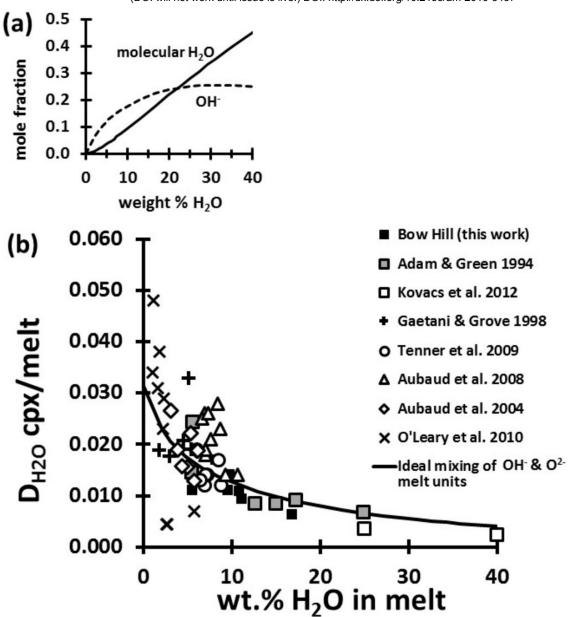
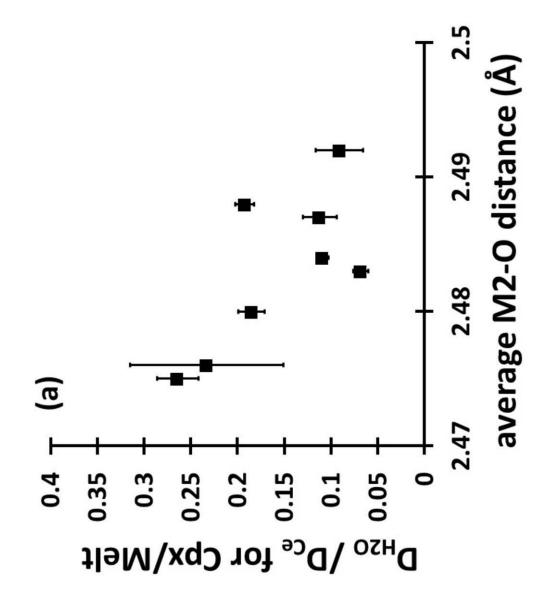



Fig. 9

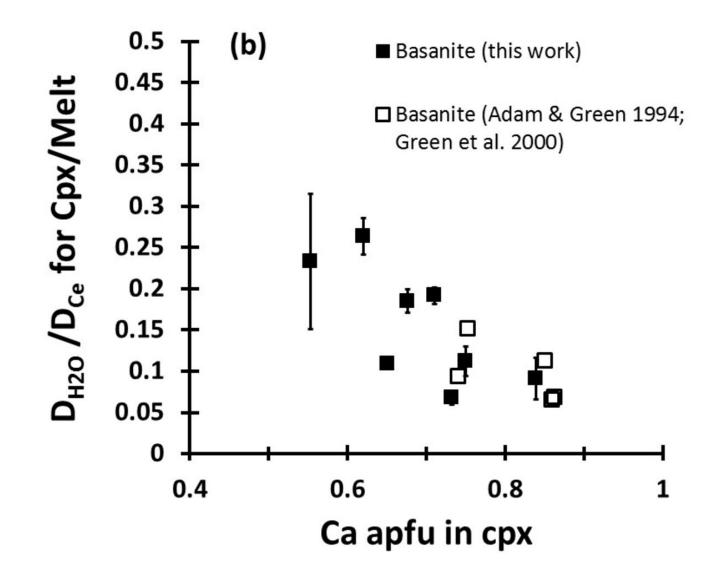
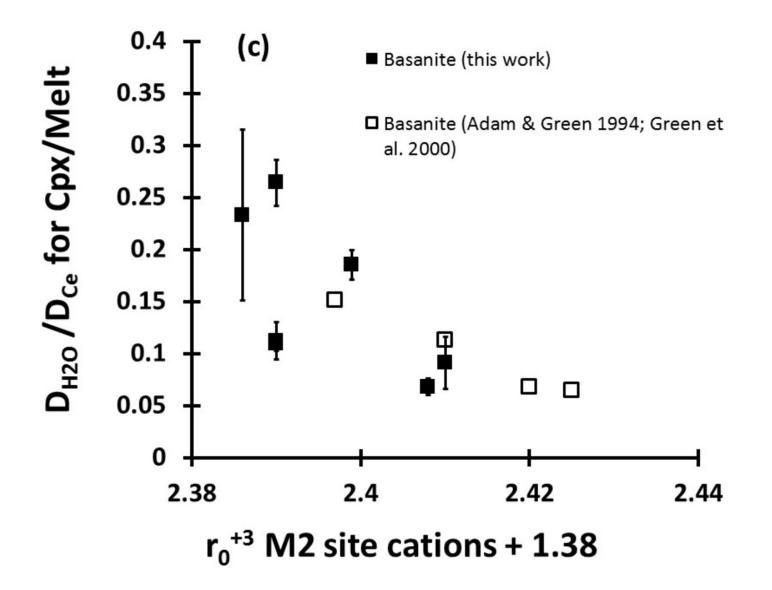
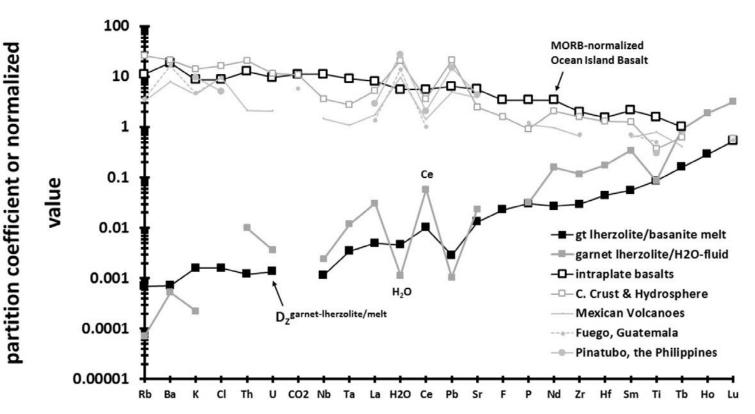




Fig. 10c

Table1

Experimental conditions and run products for experiments on the Bow Hill nepheline basanite that are described in this study

Run	GPa	°C	Wt. %	Run products
			H ₂ O in	
			starting	
			mix	
1951	1.0	1025	7.5	4cpx+9ol+18amph+0.1ap+68.9melt
R79	1.0	1075	5.0	4cpx+10ol+86melt
1950	2.0	1050	10.0	9cpx+1opx+7mica+17amph+66melt
R77	2.0	1100	10.0	6cpx+3ol+91melt
R78	2.5	1100	7.5	13cpx+4mica+83melt
1948	2.5	1160	7.5	11cpx+1opx+88melt
R80	3.0	1170	7.5	18cpx+4opx+78melt
1956	3.5	1180	10.0	24gt+12cpx+64melt
1955	3.5	1190	10.0	14gt+7cpx+79melt

Abbreviations include: Wt. %, weight %; gt, garnet; cpx, clinopyroxene; opx, orthopyroxene; ol, olivine; amph, amphibole; ap, apatite Run product modes were calculated from mass balances with starting materials (see text for method of calculation) Table 2

SIMS, LAM and electron microprobe analyses of volatiles and P in experimental run	
products	

	1956	1 . 1	1955	1 . 1	R80	1 . 1	1948	1 . 1	R78	1 . 1	R77	1 . 1	1950	1 . 1	R79	1 . 1	1951	1 (1
	melt n = 6	1 std	melt n = 6	1 std	melt n = 6	l std	melt = 6	1 std	melt n = 6	1 std	melt $n = 6$	1 std	melt n = 5	1 std	melt = 5	1 std	melt n = 5	1 std
CO ₂ H ₂ O F P P by																(31) (98)	75000 7563	(111) (2000) (203) (337) (88)
LAM S C															185 12612	(2) 2 (152)	421 23171	(18) (1169)
	163000)	133000)	99000		85000)	120000)	110000)	141000)	58000)	103000)
H ₂ O from La	168000	(4000)	109000	0 (4000)) 98000	(2000)) 82000) (2000) 96000) (4000)) 112000	(2000)) 149000) (3000)) 56000	(2000)) 107000)(3000)
H ₂ O by difference F by	135000)	135000)	104000)	80000)	125000)	74000		120000)	66000)	86000	
	4100	(700)			3500	(500)	3300	(200)	3200	(100)	3000	(200)	2300	(200)	3600	(100)	2600	
2	4600	(900)			6200	(500)	4400	(600)	2700	(600)	4200	(800)	3500	(400)	10800	0(200)	14500	(100)
	1956 cpx n = 4	1 std	1955 cpx n = 1	1 std	R80 cpx n = 5	1 std	1948 cpx n = 5	1 std	R78 cpx n = 3	1 std	R77 cpx n = 5	1 std	1950 cpx n = 2	1 std	R79 cpx n = 4	1 std	1956 garnet n = 2	1 std
H ₂ Õ F P	8 1047 229 172 144	7 41 15 35 18	20 1191 143 64 n.a.		16 1375 247 110 160	10 149 15 47 66	13 1390 264 108 64	7 100 13 52 34	26 1060 187 57 65	17 58 14 11 0	347 1045 202 70 63	678 160 20 33 11	48 1275 228 101 459	24 137 10 43 78	3 608 326 75 101	4 135 71 9 12	8 352 35 259 197	1 66 0 9 32
S	n.d. 2	2	n.d. n.d.		n.d. 20	37	n.d. 1	1	n.d. 1	1	1 7	0 0	n.d. 4	3	n.d. n.d.		n.d. 2	0
	1955 garnet n = 1	1 std	R80 opx n = 3	1 std	1948 opx n = 2	1 std	1950 opx n = 1	1 std	R77 olivine n = 2	1 std	R79 olivine n = 5	1 std	1950 amph n = 5	1 std	R78 mica n = 4	1 std	1950 mica n = 2	1 std
H ₂ O F P	22 216 26 254 197	32	13 803 149 39 n.a.	0 12 42 13	49 1211 127 27 n.a.	45 45 6 2	15 649 82 24 396	67	20 166 34 265 245	14 4 0 22 8	44 94 19 406 310	65 14 1 98 93	150 16900 4983 184 147	200 300 98 18 12	237 35100 8177 11 16		425 39100 10423 11 32	
S	n.d. n.d.		n.d. 1	0	n.d. 1	1	n.d. 1		n.d. n.d.		n.d. n.d.		5 811	0 23	12 1329	0 36	14 1436	0 53
F by													2200	300	3600	200	4400	500
EMP Cl by EMP													700	100	1500	600	1000	100

All concentrations are in ppm unless otherwise indicated.

EMP = electron microprobe. LAM = laser ablation micro-probe and inductively-coupled mass spectrometry (from Adam and Green unpublished data).

m.b. = H_2O concentrations derived from mass balances of run products and starting materials. H_2O from $La = H_2O$ concentrations estimated from La concentrations and known H_2O/La in quenched melts. H_2O by difference is the difference in the analytical totals of all non-aqueous components relative to 100 %. All other analyses were by SIMS. Figures in parentheses are single standard deviations calculated from data for replicate analyses.

n = number of replicate analyses

n.d. = not detected; n.a. = not analysed

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1 STD 0.0003 0.0005 0.0015 0.001 0.0008 0.0014 0.0009 0.002 F 0.05
F 0.05
1 STD 0.01
run 1956 1955 R80 1948 R77 1950 R79
GPa 3.5 3.5 3.0 2.5 2.0 2.0 1.0
°C 1190 1180 1170 1160 1100 1050 1075
garnet garnet opx opx olivine opx olivine
H ₂ O 0.0021 0.0020 0.0075 0.0113 0.0015 0.0060 0.0009
1 STD 0.0002 0.0001 0.0002 0.0005 0.0001 0.0002 0.0001
F 0.0031
1 STD 0.0002
run R78 1950 1950
GPa 2.5 2.0 2.0
°C 1100 1050 1050
mica mica amph
H ₂ O 0.33 0.36 0.194
1 STD 0.01 0.01 0.005
F^1 2.6 1.9 1.0
1 STD 0.1 0.3 0.2
Cl^1 0.5 0.29 0.20
1 STD 0.1 0.03 0.02

Table 3 Mineral/melt partition coefficients for H₂O, F and Cl

¹D values for F and Cl in amphibole and mica are based on electron

micro-probe analyses. All other values are based on SIMS data.

 H_2O results are based on La concentrations and assumed H_2O/La in melts (presumed equal to H_2O/La in starting mixes).