1	Revision 1
2	
3	Mafic Replenishments Into Floored Silicic Magma Chambers
4	
5	Robert A. Wiebe
6 7	Department of Earth and Planetary Sciences, University of California at Davis
, 8	One Shields Avenue Davis California 95616 U.S.A
9	
10	Abstract
11	
12	Commingling between contemporaneous mafic and felsic magmas is now widely
13	recognized in a broad range of intrusions and intrusive complexes. These interactions are
14	important features for two main of reasons: (1) the rapidly chilled margins of mafic
15	magma against silicic magma commonly preserve the compositions of mafic liquids, and
16	(2) because the mafic magma solidifies rapidly, the resulting (final) configurations of
17	mafic and felsic magmas can provide insights into physical processes and changing
18	viscosity contrasts and rheologies of magmas and felsic crystal mush during
19	crystallization of the mafic magma.
20	Mingling of contrasted magmas was first recognized in the 1950s. Wider recognition
21	of interactions between mafic and silicic liquids led to concepts of "net-veining" in the
22	1960s, "intramagmatic flows" (chilled basaltic layers separated by felsic cumulates) in
23	the 1970s, and in the 1990s to "mafic-silicic layered intrusions" (MASLI), which could
24	be as much as a few kilometers thick and more than 100 km ² in area. It was quickly
25	appreciated that these MASLI preserved stratigraphic records of mafic replenishments
26	into silicic magma chambers floored by felsic crystal mush. Volcanic studies had

27	anticipated the occurrence of this last type of intrusion on the grounds that extensive
28	ponding of basaltic magmas beneath silicic chambers was seen to be essential to keep
29	large silicic systems like Yellowstone active for millions of years. This paper looks at the
30	history of changing perceptions and interpretations of magma mingling and whether or
31	not "sill complexes" are distinct from mafic-silicic layered intrusions. The stratigraphy of
32	mafic-silicic layered intrusions records changing magmatic compositions, events and
33	processes in a temporal framework comparable to that provided by coeval volcanic rocks.
34	As a result, careful study of MASLI has great potential for linking plutonic and volcanic
35	processes and events.
36	Keywords: Magma mingling, granite, gabbro, net-veining, mafic-silicic layered
37	intrusions
38	
39	Introduction
39 40	Introduction
39 40 41	Introduction Mafic and silicic plutonic associations have long fascinated field geologists and their
39 40 41 42	Introduction Mafic and silicic plutonic associations have long fascinated field geologists and their students - probably because of the striking character of different geometric arrangements
 39 40 41 42 43 	Introduction Mafic and silicic plutonic associations have long fascinated field geologists and their students - probably because of the striking character of different geometric arrangements of the highly contrasted rock types and because of the implications for separate magmatic
 39 40 41 42 43 44 	Introduction Mafic and silicic plutonic associations have long fascinated field geologists and their students - probably because of the striking character of different geometric arrangements of the highly contrasted rock types and because of the implications for separate magmatic reservoirs at depth that brought the contrasted magmas together. Wilcox (1999) surveyed
 39 40 41 42 43 44 45 	Introduction Mafic and silicic plutonic associations have long fascinated field geologists and their students - probably because of the striking character of different geometric arrangements of the highly contrasted rock types and because of the implications for separate magmatic reservoirs at depth that brought the contrasted magmas together. Wilcox (1999) surveyed the history of ideas about mixing magmas from the 1850s to the 1970s in both volcanic
 39 40 41 42 43 44 45 46 	Introduction Mafic and silicic plutonic associations have long fascinated field geologists and their students - probably because of the striking character of different geometric arrangements of the highly contrasted rock types and because of the implications for separate magmatic reservoirs at depth that brought the contrasted magmas together. Wilcox (1999) surveyed the history of ideas about mixing magmas from the 1850s to the 1970s in both volcanic and plutonic associations. Many early reports described rounded fine-grained mafic rock
 39 40 41 42 43 44 45 46 47 	Introduction Mafic and silicic plutonic associations have long fascinated field geologists and their students - probably because of the striking character of different geometric arrangements of the highly contrasted rock types and because of the implications for separate magmatic reservoirs at depth that brought the contrasted magmas together. Wilcox (1999) surveyed the history of ideas about mixing magmas from the 1850s to the 1970s in both volcanic and plutonic associations. Many early reports described rounded fine-grained mafic rock in association with granite, and some of these suggested that gabbro and granite were
 39 40 41 42 43 44 45 46 47 48 	Introduction Mafic and silicic plutonic associations have long fascinated field geologists and their students - probably because of the striking character of different geometric arrangements of the highly contrasted rock types and because of the implications for separate magmatic reservoirs at depth that brought the contrasted magmas together. Wilcox (1999) surveyed the history of ideas about mixing magmas from the 1850s to the 1970s in both volcanic and plutonic associations. Many early reports described rounded fine-grained mafic rock in association with granite, and some of these suggested that gabbro and granite were emplaced at nearly the same time (Lossen 1882; Erdmannsdorffer 1908 – in Wilcox,

50 and particularly common in the British Tertiary, but all were interpreted as later 51 injections of rhyolite after the basalt had solidified (e.g., Judd 1893). Although hybrid-52 looking rocks commonly occurred in other gabbro-granite associations, none were 53 unambiguously interpreted as liquid-liquid interactions. Nonetheless, liquid-liquid 54 interactions were considered a possible interpretation of hybridization (Harker 1904, 55 Bailey and Thomas 1930). Reaction and metasomatism were other common explanations 56 on into the 1960s (e.g., Compton 1955, Chapman 1962) for features that we would now 57 recognize as mingling and hybridization between coexisting magmas. Surprisingly, it was 58 not until the 1950s that a study unequivocally interpreted basalt-granite contacts to have 59 formed initially between two liquids (Wager and Bailey 1953). Their observations led to 60 several studies that similarly recognized liquid-liquid contacts (Bailey and McCallien 1956, Elwell et al. 1962, Blake et al. 1965) between gabbro and granite. Initially, nearly 61 62 all studies suggested that silicic magma invaded gabbro, probably because the gabbro 63 was the more abundant lithology and because silicic melt remaining after the basalt had 64 solidified commonly intruded fractures in basalt. The name applied to many of these 65 occurrences, "net-veining", emphasized that interpretation (e.g., Windley 1965). We now 66 know that "net-vein complexes" where silicic "veins" separate closely packed chilled, 67 pillow-like bodies of gabbro, either in dikes or in larger plutons, formed by flow of 68 basaltic magma into granitic magma (Snyder et al. 1997); these now might more properly 69 be termed basaltic pillow mounds that formed within silicic magma instead of water 70 (Wiebe et al. 2001). The term "net-veining" should probably be restricted only to 71 occurrences where granitic veins intrude solid gabbro and liquid-liquid contacts are 72 absent.

3

73 Since the 1960s, interactions between mafic and silicic magmas have been widely 74 recognized around the world both in extensional and arc terranes of all ages (Table 1). 75 These occurrences have provided many new insights into plutonic plumbing systems that 76 potentially link with volcanic activity at the earth's surface. Some of the most 77 volumetrically significant composite intrusions occur when mafic dikes rise through the 78 crust and encounter silicic magma chambers in the upper crust: there basaltic flows on the 79 floors of silicic chambers can build up to kilometers-thick accumulations (Wiebe 1993). 80 It is here, particularly, where composite intrusions match inferences from volcanic 81 studies: that under-plating of basaltic magmas is essential in explaining the longevity of 82 large silicic systems – e.g., Long Valley (Hildreth and Wilson 2007, Wark et al. 2007) 83 and Yellowstone (Hildreth et al. 1991). 84 The purpose of this paper is to trace the history of the changing interpretations of

85 mafic-silicic magma interactions and composite intrusions since the 1950s, leading to the 86 recognition that basaltic magmas commonly pond within silicic chambers. It includes a 87 review of work that led to the concept of a mafic-silicic layered intrusion (MASLI) and 88 the currently known range of occurrences throughout the geologic record of basaltic 89 injections into floored chambers of more silicic magmas. It does not focus on the history 90 of ideas on mixing or hybridization, since Wilcox (1999) has ably reviewed that subject. 91 A brief review of changing perceptions of granite origin and volcanology is essential to 92 provide a broader context. This paper also addresses some current controversies in the 93 interpretation of characteristic features of MASLI, and closes with a look at what MASLI 94 have contributed to our understanding of emplacement and solidification of composite 95 plutonic bodies and their connections to volcanic activity.

4

97	Evolving concepts of granite formation, magma chambers and volcanism
98	
99	In the last fifty years or so, there have been many new insights into the emplacement
100	and crystallization of granitic plutons. Although granitization, metasomatism and
101	replacement were still considered significant emplacement modes in the late 1950s (e.g.,
102	Compton 1955; Buddington 1959), experimental studies of the granite system (e.g.,
103	Tuttle and Bowen 1958) led to overwhelming support for emplacement and
104	crystallization of silicic magma. Magma, of course, consists of melt and crystals (+/-
105	vapor), and from the 1950s to the 1980s, the proportion of crystals in the magma during
106	ascent and emplacement was commonly considered substantial (e.g., "addition of crystal-
107	charged magma", Davis 1963, p. 331). For some, the crystal cargo was assumed to be
108	"restite" – unmelted crystals from the partially melted source rocks (Chappell et al. 1987;
109	Chappell 1997). For plutons at mid-crustal levels, diapirs or nested diapirs were widely
110	proposed (Buddington 1959; Paterson and Fowler 1993), as was "ballooning" - feeding
111	an expanding and crystallizing chamber by dikes of silicic magma (Akaad 1956).
112	Experimental studies of natural granitic rocks indicated that granodiorite and tonalite
113	samples when brought to the expected conditions of crystallization (e.g., 900°C and 2 Kb
114	water pressure) still retained abundant unmelted crystals (Piwinksii and Wyllie 1968). To
115	explain this, they suggested that the magma was emplaced with a high percent of crystals
116	because they apparently assumed the samples they studied represented the magmas that
117	fed the intrusion.

118	Problems encountered with both diapirs and balloons (Paterson and Vernon 1995,
119	Hutton and Siegesmund 2001) and improved knowledge of silicic melt properties
120	(temperature, viscosity, volatile content) led many workers in the 1990s to propose
121	growth of plutons through multiple episodes of ascent of crystal-poor magma in dikes
122	(Clemens and Mawer 1992; Petford et al. 2000). With the expectation that silicic
123	intrusions were fed by crystal-poor silicic liquids, not crystal-rich mush, it became
124	possible to envision, at least in some cases, active magma chambers that could undergo
125	fractional crystallization and replenishment, and feed volcanic eruptions. The probable
126	existence of crystal-poor magma chambers, at least at times, increased the likelihood of
127	crystal accumulation on a chamber floor, and many recent studies provide strong support
128	for that process (Collins et al. 2006; Walker et al. 2007). So the experimental results of
129	Piwinskii and Wyllie (1968) can be explained in a different way: relative to the magmas
130	emplaced into the intrusion, the samples probably lost as much as 30% liquid - they
131	were, in a sense, cumulates (Irvine 1982).
132	In the 1970s, volcanologists were increasingly aware that magma chambers beneath
133	silicic volcanic systems commonly contained a range of magma compositions -
134	particularly from compositionally variable ash-flow sheets, which were recognized to
135	provide an inverted record of a chamber with the least evolved deeper magmas residing at
136	the top of the ash-flow (Lipman et al. 1966; Christiansen 1979). Many volcanic centers
137	were also known to produce erupted material with a wide compositional range – e.g.,
138	Askja (Sigurdsson and Sparks 1981) and Crater Lake (Bacon and Druitt 1988), and some
139	workers proposed that compositionally diverse magmas fed these chambers (Eichelberger
140	1978, Eichelberger et al. 2000). In some systems the likely role of crystal fractionation in

141	magma chambers was increasingly supported by the evolution of erupted compositions
142	(Bacon and Druitt 1988). Volcanologists also began to see indirect evidence for
143	emplacement of basaltic magmas within silicic chambers: (1) contemporaneous basaltic
144	vents on the flanks of silicic volcanic centers (Hildreth et al. 1991), (2) thermal
145	considerations suggesting heat from basalt was needed to explain the life-span of these
146	centers and (3) the occurrence of mafic enclaves within erupted rhyolites (Eichelberger
147	and Gooley 1977). Increased interest in the physics of magma chambers led to a growing
148	appreciation of physical processes likely to act in magma chambers that fed eruptions
149	(Sparks and Huppert 1984, Huppert and Sparks 1984, Turner 1984, and Clark et al,
150	1987).
151	By the late 1970s, substantial volumes of basaltic magma were presumed to have
152	accumulated under large rhyolite calderas like Long Valley and Yellowstone
153	(Christiansen 1979). One disconnect between the volcanic record and the plutonic record,
154	was the apparent scarcity of large composite intrusions comparable to those inferred to
155	exist. Although the only two, layered composite bodies recognized by the mid-1970s
156	(Blake 1966, and Wiebe 1974a, b) were too small to appear to be relevant, the criteria for
157	recognizing such bodies became available and would, within the next 20 years, lead to
158	the discovery of larger composite layered bodies of more appropriate size.
159	
160	From net-veining to intramagmatic basaltic flows
161	
162	The idea that two contrasted magmas might encounter each as liquids had long been
163	considered a possible explanation for some composite dikes and hybrid rocks (e.g., Judd

164	1893, Harker 1904). Nonetheless, before 1953 finer-grained margins of mafic rocks were
165	typically attributed to metamorphism or reaction with granitic magma (Richey 1937,
166	Bishop 1964), fusion by gas streaming brought in by vein material (tuff) (Reynolds 1951)
167	or metasomatism (granitization) (e.g., Chapman 1962). Then in 1953 Wager, working in
168	St. Kilda, Scotland, and Bailey, working in Slieve Gullion, Ireland, independently came
169	to the same conclusion: that the fine-grained margins of basaltic rocks against granite
170	were due to chilling because of the temperature contrasts of two contemporaneous
171	magmas, and, together in their 1953 paper, they established criteria for recognizing a
172	basaltic chill against a granitic melt, and pointed out that the much higher solidus
173	temperature basalt explained why, on cooling, it was so common to see later injections of
174	silicic magma (back-veining) into basalt and gabbro (Wager and Bailey 1953). Bailey
175	and McCallien (1956) revisited Slieve Gullion, focusing on the sequence of ~ horizontal
176	interlayered basaltic (dolerite) and felsic layers with dolerite having basal chills on
177	underlying felsic layers. Some of the dolerite layers consisted of chilled pillow-like
178	bodies separated by silicic veins. Where Reynolds (1951) had interpreted these relations
179	as metamorphosed pillow lavas, Bailey and McCallien (1956) believed they "resulted
180	from entry of basic magma into relatively cool acid magma" (p. 484). Volcanic studies
181	provided further support for commingling of basaltic and granitic magmas in plutonic
182	rocks. Bailey and McCallien (1956) cited a study of commingling and mixing basalt and
183	rhyolite in Yellowstone (Wilcox 1944). At a later date Gibson and Walker (1964)
184	recognized composite dikes (basalt margins and rhyolite interior) that fed composite
185	rhyolite-basalt lava flows in eastern Iceland, showing a clear link between plutonic and
186	volcanic phenomena.

187	These papers triggered a renewed interest in mafic-silicic complexes, and many
188	papers on new field studies were published into the mid 1960s. Slieve Gullion, Ireland,
189	drew particular attention: it had been studied closely from the 1930s (Richey and Thomas
190	1932, Reynolds 1941) and had recently been restudied by Reynolds (1951), who re-
191	interpreted the Tertiary complex as "highly metamorphosed basaltic and rhyolite lava-
192	flows, agglomerates and tuffs, together with some gabbro sills" (Reynolds 1951, p. 85).
193	She strongly disagreed with Wager's interpretations of the rocks (Reynolds 1953, 1961)
194	and provided a stimulus for subsequent workers to document their observations carefully.
195	Elwell (1958) studied the many silicic pipes that occur in a basally chilled dolerite layer
196	and recognized that the dolerite must have been partially molten when the pipes were
197	emplaced and that the source of pipes was the granitic layer beneath the dolerite. Bailey
198	and McCallien (1956) carefully documented the evidence for co-existing basaltic and
199	granitic magmas and effectively refuted Reynolds' (1951, 1953) metamorphic
200	interpretation.
201	In the next several years, "net-vein complexes" (Fig. 1) were studied in the Channel
202	Islands (Elwell et al. 1960, 1962), Greenland (Windley 1965), Ardnamurchan, Scotland
203	(Skelhorn and Elwell 1966) and Iceland (Blake 1966). Elwell and his colleagues as well
204	as Windley (1965) presented the then-dominant view of their formation: that silicic veins
205	invaded a larger, homogeneous and partially molten mass of gabbro that was capable of
206	fracturing. The description in Elwell et al. (1962) recognized that the veins did not have
207	matching walls and that the resulting bodies of chilled gabbro resembled rounded pillows

208 or tubes (Elwell et al. 1962, Figure 5, p. 222). The relationships described in these papers

were subsequently reviewed in two widely read papers: Blake et al. (1965) and Walkerand Skelhorn (1966).

211 Windley (1965) described and illustrated with numerous field photos a wide range of 212 relations in mafic-silicic associations in Proterozoic rocks in Greenland, and particularly 213 concentrated on net-veining. For these associations he rejected the simultaneous injection 214 of basaltic and granitic magmas and proposed these three steps to their origin: (1) 215 rheomorphism at depth of granitic rocks, (2) granitic material introduced along the walls 216 of the gabbro and penetrated inward in contraction cracks in the gabbro and (3) granitic 217 veins formed by reaction of granite with diorite and granite replacement to produce the 218 rounded shapes (Windley 1965, p. 57).

219 There were several problems, some recognized then and others not, with forming a 220 net-vein complex by injecting felsic veins into a homogeneous mass of partially molten 221 gabbro. Beyond some doubt that gabbro in that state would fracture in such a way to 222 provide entry of felsic magma as thin veins, Elwell et al. (1962) recognized that there was 223 no correlation between the thickness of the felsic vein and the degree of chilling of the 224 basalt, and felt uneasy with that. They also wondered how so little felsic material could 225 chill the margins of the gabbroic bodies. They suggested that abundant gas streaming 226 (fluidization) must have occurred prior to vein injection. They were apparently not 227 concerned why felsic veins intruding the gabbro did not become superheated, being 228 surrounded by so much hot gabbro, and mix into the partially melted gabbro. Further, 229 they recognized that the veins were quartz diorite to granodiorite with up to 75% euhedral 230 plagioclase, 2-3 mm in diameter, and 10-25% mafic minerals (mainly hornblende) with 231 minor, commonly, granophyric matrix. These textures and compositions now would be

10

more likely interpreted as those of a cumulate than an injected liquid (Collins et al. 2006;Walker et al. 2007).

234 Although Bailey and McCallien (1956) suggested it for Slieve Gullion, Blake (1966) 235 at Austurhorn, Iceland, explicitly recognized and carefully provided observations that 236 demonstrated a mafic-silicic "net-veined" complex was produced by tholeiitic basaltic 237 magmas flowing sequentially into a rhyolitic chamber - not by silicic magma invading 238 gabbro, thereby resolving many of the problems just mentioned (Fig. 2). "The basic 239 pillows represent originally liquid inclusions of basic magma which were emplaced in 240 liquid acid magma in a manner analogous to the extrusion of pillow lavas emplaced into 241 water. The basic magma chilled against acid magma, and formed a solid or semisolid 242 "skin" around the pillows. This skin inhibited mixing of the two magmas at pillow 243 contacts. The basic pillows remained in a plastic condition for a short time after their 244 intrusion, and during this period they were able to change their shapes ... and hence 245 were able to accommodate themselves to the shapes of adjacent pillows" (Blake 1966, p. 246 904). "The thin acid layers between closely spaced pillows may best be explained by the 247 gravitational settling of the pillows on top of one another and the consequent squeezing 248 out of most of the acid magma from between the pillows. This would explain why the 249 degree of chilling of the pillow margins has little relation to the volume of silicic magma 250 between the pillow" (p. 905). In these statements Blake implied that the pillows and 251 sheets accumulated on the floor of a silicic magma chamber. After Blake's 1966 252 publication, and into the 1970s, most studies of mafic-felsic interactions were focused on 253 mingling or mixing of magmas in composite dikes (e.g., Gunn and Watkins 1969, Wiebe 254 1973, Vogel and Wilband 1978) or small composite intrusions (Vogel and Walker 1975).

11

255 A small, layered gabbro-diorite intrusion near Ingonish, Cape Breton Island, Nova 256 Scotia provided new lines of evidence for basaltic injections into a floored chamber of 257 more silicic magma (Wiebe 1974a, b). This intrusion was emplaced in a continental arc 258 setting and involved injections of hydrous high-Al basaltic magmas into an intermediate 259 (andesitic?) magma chamber that initially produced hornblende + plagioclase cumulates 260 that varied upward from diorite to quartz diorite and recorded incoming of cumulus 261 biotite, titanite and quartz at increasingly higher levels. Average plagioclase compositions 262 varied upward from about An_{50} to An_{30} (Wiebe 1974b). The basaltic input formed basally 263 chilled layers from 0.5 to 12 meters thick. Layers less than a few meters thick typically 264 had chilled tops and bottoms and were commonly separated by only a few cm of diorite 265 (Fig. 3a). Where basaltic layers rested on thicker layers of diorite they typically had 266 strongly chilled, highly irregular, lobate bases (Fig. 3b). Two main lines of evidence 267 indicated that the basaltic layers were deposited on a chamber floor and beneath a crystal-268 poor magma. First, when an upper layer extended further than an underlying one, the 269 upper layer flowed over the lower nose and continued flowing at the same level as the 270 lower layer, providing evidence that both were deposited on a subhorizontal magma 271 chamber floor. Second, layers greater than 6 meters thick typically had tops that lacked a 272 chilled margin and graded up into diorite containing mafic enclaves. Upward, the 273 enclaves decreased in size and increased in the degree of hybridization (Fig. 3c). These 274 relations recorded disruption of the upper chilled margin, upward convection of partly 275 crystallized basalt in dioritic liquid above the basalt layer, and deposition of diorite 276 crystal mush and mafic enclaves as convection waned. For these reasons Wiebe (1974a)

12

described the mafic layers as "intramagmatic flows" analogous to lavas at the earth'ssurface.

279	Basaltic dikes of similar composition cut the layered gabbro-diorite and may have fed
280	basaltic layers at higher stratigraphic levels. Steep cylindrical pipes (1-2 meters in
281	diameter) of remobilized diorite and mafic enclaves also cut the diorite. One fortuitous
282	set of exposures showed a clear connection between the top of a pipe and a layer of mafic
283	enclaves within the diorite, thereby again demonstrating the presence of a magma
284	chamber floor that would been otherwise invisible (Wiebe 1974a, Figs. 15, 16).
285	
286	Increased recognition of mafic-felsic complexes
287	

288 Throughout the remainder of the 1970s and into the early 1990s, many papers 289 reported on mafic-felsic complexes, for the most part concentrating on mingling and 290 mixing processes to produce hybrids (e.g., Gamble 1979, Vogel et al. 1984, Brown and 291 Becker 1986, Mattson et al. 1986). The origin of mafic enclaves within granitic plutons 292 also received much attention. A landmark paper by Vernon (1984) established criteria for 293 recognizing enclaves in granite that formed by quenched mafic to hybrid magma. 294 During this time period several workers recognized chilled mafic layers or layers of 295 abundant mafic enclaves within felsic plutonic rocks. These were either interpreted as 296 having been deposited on a silicic chamber floor or emplaced into homogeneous, 297 incompletely crystallized felsic crystal-rich material. In the Massif Central of France, 298 Barbarin (1988) recognized that the Piolard diorite (a tabular body about 1 km in 299 diameter and a few hundred meters thick) sat with a basally chilled margin on top of the

13

Saint-Julien-la-Vetre monzogranite and was overlain by the same monzogranite with
abundant dioritic inclusions (Barbarin 1988, Figs. 2, 7). The upper contact of the diorite
was irregular with evidence for mechanical mingling and mixing, which he attributed to
convection in overlying monzogranite magma due to heat from the top of the diorite
layer.

305 Associated with the Nain anorthosite complex, the Proterozoic Newark Island layered 306 intrusion contains an exceptional suite of cumulates ranging from troctolites and gabbros 307 to quartz monzonites and intermediate hybrid rocks (Wiebe 1988). It was divided into a 308 lower mafic Layered Series, about 3 km thick, and a much larger Hybrid Series 309 consisting of a sequence of basally chilled troctolitic to gabbroic layers, typically 310 hundreds of meters thick, that graded upward through 10s of meters at the top to hybrid 311 rocks with varying proportions of resorbed, coarse-grained feldspars (sodic plagioclase 312 and alkali feldspar) and a fine-grained mafic matrix and, in some layers, to coarse-313 grained two-pyroxene granite. The hybrid rocks were thought to form at the upper contact 314 of troctolitic layers with overlying silicic magma. Kolker and Lindsley (1989) described a 315 similar mafic-felsic layered body, the Maloin Ranch pluton, associated with the 316 Proterozoic Laramie anorthosite complex. It contained chilled layers of fine-grained 317 monzonite and biotite gabbro within coarse-grained leucocratic monzosyenite to quartz 318 syenite. The compositions of these chilled layers closely matched the compositions of 319 dikes elsewhere within the Laramie complex. 320 A tabular and layered body of gabbro to monzodiorite occurs in the Cordillera del

322 was not exposed, individual mafic layers were chilled against underlying thin, irregular

Paine granitic pluton of southern Chile (Michael 1991). While the base of the mafic body

321

323	layers of more felsic rock in the lower gabbros. In the upper part of the mafic body, more
324	evolved mafic rocks (monzodiorites and quartz monzodiorites) were also chilled against
325	thin irregular more felsic layers and in contact with the overlying granite. Michael (1991)
326	concluded that the mafic rocks were emplaced into and flowed across a granitic magma
327	chamber floor. A superb set of recent papers (Leuthold et al. 2012, 2013 and 2014) sheds
328	much new light on the origin of this complex (see below).
329	In a paper mainly focused on mafic enclaves in granitoids, Blundy and Sparks (1992)
330	also described a series of tonalitic to dioritic rocks interlayered with chilled and
331	fragmented mafic rocks (the Val Freda complex) that appears to have much in common
332	with these other intrusions. They thought that the mafic sheets were emplaced into
333	(apparently homogeneous) "hot tonalite probably still containing some melt" (Blundy and
334	Sparks 1992, p. 1049), rather than at a rheological transition within a magma chamber. I
335	visited the Val Freda complex briefly with Blundy and others in 2006. The relations we
336	observed between tonalite and chilled gabbroic layers and lenses appeared similar to
337	those in the Ingonish intrusion, though in most instances, it was impossible to tell if the
338	gabbros were randomly emplaced or represented a stratigraphic sequence. In only one
339	outcrop was it possible to see that an upper layer was younger than the one below: in this
340	case, the upper layer disrupted and removed the upper chilled margin of the underlying
341	layer (Fig. 4).
342	In the early 1990s, Chapman and Rhodes (1992) and Wiebe (1993, 1994) described
343	three Paleozoic composite layered intrusions along the coast of Maine. The Isle au Haut
344	igneous complex (Chapman and Rhodes 1992) consists of alternating thick basally

345 chilled gabbro layers (from 7 to 106 meters thick) and coarser-grained dioritic layers

15

346	(from 7 to 24 meters thick), which become increasingly evolved upward to quartz
347	monzodiorite at the top, above which occurs a thick granite layer beneath a roof of coeval
348	rhyolite. Chilled mafic pillows are common just beneath the gabbroic layers, and the
349	underlying dioritic layers have fed prominent cylindrical felsic pipes that typically widen
350	upward, acquiring gradational contacts with the gabbro in contrast to chilled gabbroic
351	margins near the base. The Cadillac Mountain intrusive complex (Wiebe 1994) has a
352	section roughly 2 km thick of interlayered gabbroic, dioritic and granitic rocks that was
353	emplaced into the lower portion of the Cadillac Mountain hypersolvus granite. The
354	relatively minor felsic layers in the gabbro-diorite unit range from felsic diorite to granite.
355	Many layers grade upward in only a few meters from diorite to granite and record steep
356	compositional variation in magmas at the base of the chamber between the rapidly
357	solidifying basalt and overlying silicic magma. This body is also associated with coeval
358	rhyolite and basalt (Seaman et al. 1999).
359	
360	Mafic-silicic layered intrusions
361	
362	The third composite body in Maine, the Pleasant Bay layered intrusion (Wiebe 1993),
363	consists of more than 90% gabbro and mafic diorite and lacks an overlying body of
364	granite. So it was no surprise that it was initially mapped as a layered gabbro intrusion
365	(Bickford 1963). I was fortunate to meet and talk with Bickford at a 1988 GAC/MAC
366	meeting in St John's, Newfoundland, where he said that he did remember seeing some
367	features associated with the scarce felsic layers in the Pleasant Bay intrusion that greatly
368	resembled those involving mingling and mixing between basalt and granite, which, in an

369	earlier talk, I had described in the Newark Island layered intrusion (Wiebe 1988). In our
370	conversation, he mentioned that he and Chapman presumed the felsic layers were later
371	and therefore not important for the study of the layered gabbros. So he encouraged me to
372	begin a restudy of the body. (Bickford's thesis advisor, C. A. Chapman, had recently
373	interpreted pillow-like bodies of basalt in a granite dike as products of granitization of a
374	homogeneous basalt dike, leaving only rounded remnants of basalt in granite (Chapman
375	1962). So Chapman was apparently not receptive to the concept of magma mingling and
376	likely rejected it as a reasonable interpretation of the field relations.) The intrusion turned
377	out to provide superb exposures that recorded many types of interactions between basaltic
378	injections with resident silicic crystal mush and liquids – all in the context of a layered
379	intrusion.
380	I eventually described the Pleasant Bay pluton as a "mafic-silicic layered intrusion"
381	(MASLI) in part, because, it had already been described as a layered intrusion, but
382	especially because of a thorough manuscript review by T. N. Irvine, who viewed the
383	intrusion as an end-member of a layered intrusion - one fed by highly contrasting
384	magmas rather than just by basalt - and strongly recommended that I frame my
385	description in that context and use a nomenclature consistent with Irvine (1982) (e.g.,
386	macrorhythmic layers). MASLI seemed the simplest and most direct name for such a
387	body, and it also seemed appropriate for many of the comparable bodies known at the
388	time.
389	Pleasant Bay characteristics:
390	1) It is large in size (12 by 20 km in area and up to 3 km thick) – a scale consistent with

391 many bimodal volcanic systems - e.g., Coso (Bacon and Metz 1984).

392 2) It is dominated by gabbro and mafic diorite (~ 90 %) with thin layers of felsic

393	cumulates and chilled basaltic pillows, tubes and sheets.
394	3) Macrorhythmic layers are from a few meters to > 100 meters thick, with chilled basalt
395	at the base (some beginning with several meters of chilled pillows) that grade upward
396	to cumulate gabbro (typically plagioclase + olivine) variably though diorite to monzo-
397	diorite and granite.
398	4) Fractional crystallization is typically dominant near the base, while hybridization with
399	silicic magna becomes increasingly important upward.
400	5) The chilled base of a macrorhythmic layer may rest on any lithology from medium-
401	grained gabbro to granite. This demonstrated that the levels of emplacement were not
402	levels of neutral buoyancy, but rheological transitions from strong crystal mush to
403	crystal-poor melt.
404	6) Silicic layers (and the silicic tops of macrorhythmic layers) commonly consist of a
405	touching framework of blocky to tabular, subhedral plagioclase feldspar, often with
406	lamination and modal layering, indicating that silicic layers are cumulates, not
407	intrusive veins, dikes or sills.
408	7) The underlying felsic layers have commonly been remobilized by heat from and
409	pressure of the overlying macrorhythmic layer, causing pipes, diapirs, dikes and veins
410	of silicic liquid and crystal mush to penetrate the base of the overlying
411	macrorhythmic layer.
412	8) Because the pipes are nearly always within ~ 5° of perpendicular to the layers, the
413	layers must have been essentially horizontal when they were emplaced. The present

basin form of the Pleasant Bay intrusion must, therefore, have developed by inwardsagging after the layers crystallized.

416 So, as it was defined, the original MASLI was not a sill complex, but a layered 417 intrusion dominated by mafic input that accumulated as layers at the base of a more 418 silicic magma chamber - i.e., at the rheological boundary between cumulate layers 419 overlying crystal-poor melt. As such, they preserved stratigraphic records of the 420 evolution of periodically replenished silicic magma chambers. Although the layers 421 superficially resembled sills, they were not emplaced into horizontal fractures, and the 422 layers by no means had matching walls as expected in sills and dikes. There was also 423 strong compositional asymmetry within most macrorhythmic layers - with rapid upward 424 variation from basalt to granite near the top of each layer. The typically rapid transitions 425 from mafic to felsic compositions appear to reflect interactions along boundaries between 426 convective cells in the basaltic magma and in the overlying silicic magma (i.e., double 427 diffusive convection). 428 The Pleasant Bay intrusion is cut sharply by later dikes and sills of fine-grained

429 granite and basalt as well as composite dikes and sills consisting of chilled mafic pillow-430 like bodies in fine-grained (non-cumulate) granite. In these dikes, whole-rock analyses of 431 basalt typically match closely the compositions of chilled basaltic margins of layers, and 432 granite compositions typically appear to be appropriate for liquids that produced the most 433 evolved felsic cumulates in the MASLI.

434

435 Fundamental characteristic features of MASLI

436	Wiebe and Collins (1998) proposed criteria for recognizing the key process operating
437	in MASLI formed by emplacement of basaltic magma onto a floored silicic magma
438	chamber - i.e. between a lower crystal mush with plastic rheology and an overlying
439	chamber with Newtonian rheology. Both the base and the top of mafic layers emplaced
440	into a more felsic magma chamber have characteristic features that help distinguish a
441	MASLI. The base of mafic input is typically chilled, but the degree of chilling depends
442	on the thermal contrast between resident magma and mafic input, and the base may be
443	highly convolute with prominent convex downward lobes or essentially planar,
444	depending on the strength of the underlying cumulate (Figs. 5a, b, c). Where basalt flows
445	into a silicic chamber above a thick layer (e.g., 10s of meters) of relatively weak crystal
446	mush, the weight and heat content of the mafic layer will typically compact and
447	remobilize the underlying mush, leading to a highly convolute base (Fig. 5d). In this case,
448	it is common to see extensive contamination (hybridization) of the basal chill because
449	thin septa of silicic melt and remobilized crystal mush rise between much thicker mafic
450	fingers during emplacement of the flow (Snyder and Tait 1995, 1998). There, the large
451	surface area and greater volume of mafic magma promotes mixing (Sparks and Marshall
452	1986). Here also, silicic pipes that develop after emplacement lead to further
453	contamination within a mafic sheet (Fig. 6). Where the compositional and density
454	contrasts between resident crystal mush and a new basaltic injection are small and the
455	underlying weak crystal mush is thin, a planar base typically develops on the basaltic
456	layer and contamination is at a minimum. When a strong, upper chilled margin is
457	established before upwelling felsic magma rises through the chilled base, it is common to
458	find the rejuvenated felsic mush trapped beneath the chilled top (Fig. 7).

459	If the mafic layer is less than a meter thick and the temperature contrast between
460	resident felsic magma and the mafic magma is great (> 100-200°C), the top of the layer is
461	also typically chilled (Fig. 8). Thicker mafic layers typically lack chilled upper margins,
462	indicating destruction of the expected initial upper chill, probably due to double-diffusive
463	convection (Huppert and Turner 1981) with overlying silicic melt, causing shear at the
464	boundary. The resulting macrorhythmic layer develops a compositional gradation
465	between mafic input and the resident felsic magma. This gradient provides the most
466	direct evidence that the mafic layer was emplaced at a rheological boundary between
467	resident felsic cumulates and crystal-poor silicic melt. These compositional transitions
468	may occur over tens of meters to less than a meter of layer thickness (Fig. 9).
469	
470	Fluid mechanic experiments and calculations on processes in MASLI
471	Plutonic evidence for basaltic replenishments into silicic magma chambers inspired
472	some valuable fluid mechanic experiments. Snyder and Tait (1995) and Jellinek and Kerr
473	(1999) showed that a dense and lower viscosity fluid (analogous to basalt) injected into a
474	floored chamber of less dense and higher viscosity (analogous to silicic magma)
475	produced a viscous gravity current that trapped a thin layer of ambient fluid beneath it,
476	and that these injections develop a flow-front instability that forms fingers in the
477	direction of flow. The underlying silicic melt tends to rise buoyantly as thin sheets
478	between the fingers, and Snyder and Tait (1998) addressed the potential for selective
479	contamination of silicic magma by diffusion between the silicic sheets and basalt fingers.
479 480	contamination of silicic magma by diffusion between the silicic sheets and basalt fingers. The thin felsic sheets between mafic fingers also provide a record of the direction of flow

482	basalt injections into a silicic chamber using a parameterized scaling analysis coupled
483	with the thermodynamics of crystallization, providing estimates for the timescale for the
484	start-up of convection, the rates at which basalt cools and silicic magma warms and the
485	life-span of a thermal gradient in silicic magma.
486	
487	Mafic-felsic sill complexes (?)
488	
489	Recently, several intrusions that superficially appear comparable to MASLI have
490	been described as sill complexes. Is a mafic-felsic sill complex distinct from a MASLI, or
491	have the same field relations been interpreted differently? It is not uncommon for dikes
492	and sills to occur within MASLI, but they are easily recognized because both margins are
493	strongly chilled, matching and locally sharply cross-cut macrorhythmic layers. So it
494	would seem that a sill complex in which sills are emplaced at random levels should be
495	easily distinguished from a MASLI.
496	Two intrusions with interlayered mafic and felsic rocks occur near the crest of the
497	Sierra Nevada range: the Aberdeen complex (Coleman et al. 1995) and the mafic
498	intrusive complex of Onion Valley (Sisson et al. 1996). Both contain prominent portions
499	that consist of chilled meter-scale mafic sheets separated by coarser-grained, thin, more
500	felsic septa. In both papers the chilled mafic layers are termed sills, presumably meaning
501	the layers may have been emplaced at random levels and do not form a stratigraphic
502	sequence. Although Coleman et al. (1995) provided little information on field relations,
503	the description provided by Sisson et al. (1996) is extensive, clear and well documented.

504	Intrusive episode two of the Onion Valley "sill swarm" (Sisson et al. 1996) has: (1) a
505	lower section of sills in which chills are observed every 2 to 4 meters, with felsic inter-
506	sill septa usually missing, but locally present, (2) a 200 meter thick middle section of
507	mafic cumulates and (3) an upper section of thin (0.1-1.5 m) chilled basaltic layers
508	separated by thin (a few mm to 15 cm thick) felsic layers that consisted of felsic crystal
509	mush with interstitial liquid. Sisson et al. (1996) suggest the chilled mafic sills formed by
510	the ascent of dikes that "may have been arrested by a density interface between crystal
511	mush, now preserved as inter-sill septa, and higher, melt-rich magma" (Sisson et al. 1996,
512	p. 85). Emplacement of basalt at the interface between felsic crystal mush and melt-rich
513	magma is what marks emplacement in a MASLI, but because the felsic crystal mush is
514	likely to be less dense than the basalt, the effect may be due to the contrast in rheology of
515	the crystal mush and the melt rather than density.
516	Elsewhere, however, on page 86 they also state "Many injections of mafic magma
517	failed to reach the density interface and instead spread laterally between earlier sills along
518	zones occupied by trapped crystal mush". Here the levels of emplacement would be felsic
519	septa that are likely to retain liquid long after the adjacent basaltic layers are solid. How
520	could we distinguish emplacement here from that of a MASLI? Assuming that a new
521	basaltic injection is emplaced within a felsic crystal mush septum (layer) between two
522	older and likely solid basaltic layers, there would seem to be a high probability that, at
523	some point in the emplacement, the solid basaltic layers would fracture, permitting the
524	new basalt "sill" to send apophyses into those fractures. It would be interesting to know if
525	there are examples of basaltic layers feeding apophyses into fractures within adjacent
526	mafic layers.

527	Recent work on the Cordillera del Paine pluton of southern Chile and particularly on
528	the mafic sill complex that lies within the Torres del Paine granite (Leuthold et al. 2014
529	and references therein) provides new insights into the origin of this complex. The sub-
530	horizontal mafic complex is about 250 meters thick with lower gabbro and upper gabbro
531	units and an overlying monzodiorite unit beneath the main granite body, and occurs at
532	elevations between 1000 and 1300 meters. Recent high-precision U-Pb zircon dates of
533	layers within the mafic complex (Leuthold et al. 2012) indicate that these mafic layers
534	decrease in age upward from the base to the top (12.472 to 12.431 Ma), consistent with
535	younging upward expected in a MASLI. However, all of the reported ages of granite at
536	higher and lower elevations are older than any rocks in the mafic complex, and from the
537	roof downward, the granites decrease in age (Michel et al. 2008). While the ages of the
538	mafic layers are younger than the youngest dated granite sample (12.49 Ma), one granite
539	sample was taken about 700 meters higher than the top of the mafic complex and another
540	more than one km to the west at about the same elevation as the mafic complex.
541	Considering the distances between the dated samples and the small differences in the
542	ages (12.47 vs. 12.49 Ma), it seems possible that granites as young as 12.47 Ma exist
543	both above and below the mafic complex.
544	Many layers in the mafic complex show a strong compositional asymmetry and
545	complex relations with the irregular underlying felsic layers. Figure 3b in Leuthold et al.
546	(2012) shows two mafic layers (~ 6 to 10 meters thick) in the lower hornblende gabbro
547	that show the same asymmetry, with mafic enclaves distributed in the lower part of the
548	felsic top. Apparently an original chilled top of each layer was broken up and the
549	transition between lower basalt and upper felsic material in each layer now appears

550	gradational. The chilled base of the second layer has roughly 3 to 4 meter wavelengths of
551	downward projecting lobes, which suggests a comparable thickness of crystal mush over
552	which the basalt flowed - much like Bain et al. (2013) show for layers in the Pleasant Bay
553	intrusion. More leucocratic felsic material (probably filter-pressed interstitial liquid)
554	project upward as flame structures between the lobes. Since mafic layers are basally
555	chilled at most levels, it seems likely that all were emplaced within a cooler chamber.
556	In the upper gabbro unit, Leuthold et al. (2014) indicate the layers grade upward from
557	olivine gabbro to finer-grained monzodiorite at the top. In the overlying monzodiorite
558	unit, the lower monzodiorite layers grade upward to more leucocratic rocks with scarce
559	porphyritic K-feldspar and quartz, while in the upper part of the unit, monzodiorite
560	occurs as ~ 1-meter thick tabular enclaves in porphyritic granite immediately beneath
561	overlying granite. The rapid compositional variation from gabbro to more evolved and
562	leucocratic rocks resembles compositional variation in MASLI macrorhythmic layers
563	(Fig. 9) and suggests that the mafic "sills" were emplaced as intramagmatic lava flows
564	into a more silicic magma chamber which developed strong compositional variation at
565	the base of the chamber due to crystal fractionation of gabbro and mixing with more
566	evolved resident magma at the base of the chamber – an interpretation much like Michael
567	(1991) proposed.

569

Reinterpretations of previously studied MASLI

570

571 Two recent papers take very different approaches to two previously studied
572 interlayered mafic-silicic systems. Padwardhan and Marsh (2011) restudied the Isle au

573 Haut intrusion (Chapman and Rhodes 1992) and offer a totally new interpretation based 574 on the assumption that a steep basalt feeder invaded a partly crystallized homogeneous 575 massive diorite and spread all of the gabbroic layers at the same time rather than 576 sequentially on an aggrading floor of a dioritic magma chamber. There seems to be no 577 objective field evidence for this interpretation. The dioritic rocks are not homogeneous 578 but are increasingly fractionated in the higher layers and likely grade upward to an 579 overlying granite body. There is no evidence for a vertical body of gabbro (basalt) 580 feeding multiple sheets of gabbro at the same time as shown in the first three panels of 581 their Fig. 23. These diagrams closely resemble Figure 14 in Marsh (1995), which 582 illustrates a hypothetical mush melt column beneath a volcano like Kilauea. The authors 583 apparently reject the existence of a magma chamber floor or crystal fractionation of the 584 diorite. The basal chilled margins of the gabbroic layers indicate basalt was emplaced as 585 crystal-poor melt, solidified rapidly, and sank downward in lobes with wavelengths on 586 the order of a few meters, suggesting comparable depths of crystal mush. These relations 587 indicate that the gabbro layer was more dense than the dioritic crystal mush beneath it. 588 Hence, lateral emplacement of basalt into homogeneous diorite seems most unlikely. 589 Some workers have continued to hypothesize that the thin silicic layers were injected 590 into homogeneous, incompletely crystallized gabbro – essentially a return to the original 591 concept of "net-veining" in 1950s and early 1960s, a model that fails completely on 592 thermal grounds. Shortland et al. (1996) suggested this for the Elizabeth Castle igneous 593 complex, Jersey, Channel Islands. Caroff et al. (2011) revisited portions of two different 594 mafic-felsic complexes: Northern Guernsey, Channel Islands and Saint-Jean-du-Doigt, 595 France. The overall model that these authors present for both complexes is emplacement

26

596	of silicic magma as thin sheets within previously emplaced gabbro, rather than the
597	emplacement of basaltic magma into a felsic chamber. They, in some cases, deny that the
598	mafic sheets have chilled margins, but having visited both of these complexes, I feel sure
599	they exist. In any event, it seems mechanically and thermally impossible to inject small
600	amounts of rhyolite into partly crystallized basalt and keep the rhyolite from becoming
601	superheated and mix into the basalt. Barboni et al. (2008) recognized the features in the
602	Saint-Jean-du-Doigt to be consistent with a MASLI (M. Barboni, personal
603	communication 2014).
604	
605	Known occurrences of mafic-silicic layered intrusions
606	
607	Interlayered mafic and felsic rocks in which basaltic magma likely flowed onto the
608	floor of a silicic magma chamber occur widely (Table 1). Examples range in age from
609	Tertiary to Paleo-Proterozoic and from arc to extensional terranes on all continents as
610	well as in Greenland, New Zealand, Japan and Iceland. Those in extensional terranes
611	were typically fed by highly contrasted mafic and silicic magmas (tholeiite basalt and
612	leucogranite) (e.g., the Pleasant Bay intrusion, Mount Hay and Austerhorn). Those in arc
613	settings typically have a wider range of mafic and intermediate magma feeding a silicic
614	chamber (e.g. Cordillera del Paine, Tuross Head pluton and Ingonish).
615	
616	Implications
617	

618	Because the characteristic features of macrorhythmic layers within MASLI are
619	distinctive and robust, they can be recognized even in strongly deformed and
620	metamorphosed terranes. Hence, the same petrologic insights may readily be extracted
621	from them there. The mafic-felsic rocks of Mt. Hay in central Australia provide one
622	example of this. Earlier work (Collins and Sawyer 1996) had interpreted these 1800 Ma
623	mafic granulite facies rocks interlayered with coarse-grained granitic rocks
624	(metamorphosed at about 8 kb) as a record of pervasive transfer of granitic magma
625	through the lower-middle crust. In revisiting these rocks, Bonnay et al. (2000) recognized
626	that the mafic layers typically had one very fine-grained mafic margin with convex
627	outward lobes against coarse-grained granite and that the mafic layers coarsened and
628	became more felsic toward the other boundary with granite, often containing large alkali-
629	feldspars comparable to those within the granitic layers (Fig. 10). These features
630	indicated that the mafic granulites were likely basaltic liquids that were emplaced onto
631	granitic crystal mush and partially mixed with overlying contemporaneous granitic
632	magma. Further, the mafic granulite layers had compositions consistent with
633	crystallization of olivine tholeiite at 1 to 2 kb (Bonnay et al. 2000). So the mafic-felsic
634	layers originally crystallized at a shallow depth long before deformation and
635	metamorphism and provided no information on magma transfer in the deep crust. Of
636	added value were the robust way-up indicators, which are capable of aiding structural
637	interpretations. Here, these way-up indicators that were consistent with the upright and
638	overturned limbs of a large, steep sheath fold.
639	Mafic-silicic layered intrusions are fed multiple times by both mafic and silicic
640	magmas and provide exceptional opportunities for recognizing and sampling rocks,

641	which closely approximate liquids in a plutonic setting. Stratigraphic sequences of
642	basally chilled mafic sheets have the potential to provide information on liquid
643	compositions that feed the intrusion through time, though care must be taken to avoid
644	contamination from the adjacent silicic magma. Fortunately, the same basaltic liquids can
645	typically be sampled in cross-cutting dikes that likely fed higher levels of the intrusion,
646	though without a stratigraphic control on relative age. New injections of granite (typically
647	very fine-grained dikes up to 20 meters thick) can be readily sampled and their
648	compositions usually appear to be appropriate for melts that produced the most evolved
649	silicic cumulate layers. It is common for a silicic chamber to trap more than one type of
650	mafic to intermediate magma (e.g., Wiebe 1974a,b, Kolker and Lindsley 1989). The
651	compositions of chilled margins of basaltic layers may vary up-section in MgO
652	(sometimes greatly) and vary randomly (Wiebe 1993). This observation provides strong
653	support for the existence of multiple mafic chambers at depth with different degrees of
654	fractionation and hybridization. The overall major element variations of these chills is
655	commonly consistent with a liquid line of descent controlled by phase equilibria, whereas
656	the trace elements are highly scattered probably due to variable fractionation and
657	contamination in different chambers at depth.
658	Since basaltic magma is more dense than either silicic liquid or crystal mush, the
659	level of emplacement must have occurred within an upward transition from a strong
660	crystal mush with a plastic rheology to a silicic liquid with Newtonian rheology.
661	Emplacement of basalt at this level demonstrates the existence of a silicic magma
662	chamber and has the potential to provide information on its size. The lateral extent of
663	mafic sheets provides a rough estimate of the lateral extent of the silicic chamber at the

664	time of the influx, and the common association of extensive sheets of stoped country rock
665	blocks with the mafic sheets indicates the contemporary existence of an overlying silicic
666	magma with Newtonian rheology beneath a roof of either country rock or solid granite
667	(Hawkins and Wiebe 2004). With knowledge of the chamber extent, the thermal impact
668	of the mafic input on crystals (e.g., quartz) in the felsic magma and the characteristic
669	thickness (volume) of basaltic layers emplaced can yield an estimate of the height (and,
670	hence, the volume) of a silicic magma chamber (Wiebe and Hawkins 2015).
671	Basaltic injections into silicic chambers can also provide insights into how
672	solidification of the silicic chamber occurs. The common occurrence of extensive layers
673	of coarse-grained granite, in some cases many meters thick, between basally chilled
674	mafic sheets indicates that felsic crystal mush was extensively deposited on the floor of
675	the chamber during the time between two sequential mafic injections. Deformations that
676	occur along the contact between an overlying basally chilled mafic layer and underlying
677	granite can also provide insights into the rheology of the underlying granite (Bain et al.
678	2013).
679	A mafic-silicic layered intrusion contains a stratigraphic sequence that records
680	magma chamber processes and events that probably have a time scale comparable to that
681	of a volcanic stratigraphy. In situations where coeval volcanic rocks are exposed (e.g.,
682	Miocene volcano-plutonic systems, southern Nevada - Miller et al. 2005), a MASLI
683	offers the possibility of correlating volcanic and plutonic rocks, processes and events as
684	well as comparing the compositions of liquids that fed a magma chamber with material
685	that erupted from it. Whole rock and mineral compositions as well as mineral zoning
686	could yield new insights into links between magma chamber processes and events. The

687	high temporal resolution now possible with U-Th zircon dating (e.g., Leuthold et al.
688	2012) may, for example, permit recognizing whether the trigger of a specific volcanic
689	event was related to the end of a long period of mafic input or to a significant input of
690	silicic magma.
691	
692	Acknowledgements: I've benefitted greatly from conversations in the field with many
693	colleagues over the years. I particularly want to thank Tony Morse, Don Snyder, David
694	Hawkins, Mark Jellinek, John Eichelberger and Calvin Miller. Helpful reviews by Sheila
695	Seaman and Sandra Barr improved the paper.
696	
697	References cited
698	
698 699	Akaad, M.K. (1956) The Ardara granitic diapir of County Donegal, Ireland. Quarterly
698 699 700	Akaad, M.K. (1956) The Ardara granitic diapir of County Donegal, Ireland. Quarterly Journal of the Geological Society of London, 112, 263-290.
698 699 700 701	 Akaad, M.K. (1956) The Ardara granitic diapir of County Donegal, Ireland. Quarterly Journal of the Geological Society of London, 112, 263-290. Asrat, A., Barbey, P., Ludden, J.N., Reisberg, L., Gleizes, G., and Ayalew, D. (2004)
698 699 700 701 702	 Akaad, M.K. (1956) The Ardara granitic diapir of County Donegal, Ireland. Quarterly Journal of the Geological Society of London, 112, 263-290. Asrat, A., Barbey, P., Ludden, J.N., Reisberg, L., Gleizes, G., and Ayalew, D. (2004) Petrology and isotopic geochemistry of the Pan-African Negash pluton, northern
698 699 700 701 702 703	 Akaad, M.K. (1956) The Ardara granitic diapir of County Donegal, Ireland. Quarterly Journal of the Geological Society of London, 112, 263-290. Asrat, A., Barbey, P., Ludden, J.N., Reisberg, L., Gleizes, G., and Ayalew, D. (2004) Petrology and isotopic geochemistry of the Pan-African Negash pluton, northern Ethiopia: Mafic-felsic magma interactions during the construction of shallow-level
698 699 700 701 702 703 704	 Akaad, M.K. (1956) The Ardara granitic diapir of County Donegal, Ireland. Quarterly Journal of the Geological Society of London, 112, 263-290. Asrat, A., Barbey, P., Ludden, J.N., Reisberg, L., Gleizes, G., and Ayalew, D. (2004) Petrology and isotopic geochemistry of the Pan-African Negash pluton, northern Ethiopia: Mafic-felsic magma interactions during the construction of shallow-level calc-alkaline plutons. Journal of Petrology, 45, 1147-1179.
 698 699 700 701 702 703 704 705 	 Akaad, M.K. (1956) The Ardara granitic diapir of County Donegal, Ireland. Quarterly Journal of the Geological Society of London, 112, 263-290. Asrat, A., Barbey, P., Ludden, J.N., Reisberg, L., Gleizes, G., and Ayalew, D. (2004) Petrology and isotopic geochemistry of the Pan-African Negash pluton, northern Ethiopia: Mafic-felsic magma interactions during the construction of shallow-level calc-alkaline plutons. Journal of Petrology, 45, 1147-1179. Ayuso, R.A., and Arth, J.G. (1997) The Spruce Head composite pluton: An example of
 698 699 700 701 702 703 704 705 706 	 Akaad, M.K. (1956) The Ardara granitic diapir of County Donegal, Ireland. Quarterly Journal of the Geological Society of London, 112, 263-290. Asrat, A., Barbey, P., Ludden, J.N., Reisberg, L., Gleizes, G., and Ayalew, D. (2004) Petrology and isotopic geochemistry of the Pan-African Negash pluton, northern Ethiopia: Mafic-felsic magma interactions during the construction of shallow-level calc-alkaline plutons. Journal of Petrology, 45, 1147-1179. Ayuso, R.A., and Arth, J.G. (1997) The Spruce Head composite pluton: An example of mafic to silicic Salinian magmatism, coastal Maine, northern Appalachians. In Sinha,
 698 699 700 701 702 703 704 705 706 707 	 Akaad, M.K. (1956) The Ardara granitic diapir of County Donegal, Ireland. Quarterly Journal of the Geological Society of London, 112, 263-290. Asrat, A., Barbey, P., Ludden, J.N., Reisberg, L., Gleizes, G., and Ayalew, D. (2004) Petrology and isotopic geochemistry of the Pan-African Negash pluton, northern Ethiopia: Mafic-felsic magma interactions during the construction of shallow-level calc-alkaline plutons. Journal of Petrology, 45, 1147-1179. Ayuso, R.A., and Arth, J.G. (1997) The Spruce Head composite pluton: An example of mafic to silicic Salinian magmatism, coastal Maine, northern Appalachians. In Sinha, A.K., Whalen, J.B., and Hogan, J.P., The Nature of Magmatism in the Appalachian

709	Bachl, C.A., Miller, C.F., Miller, J.S., and Faulds, J.E. (2001) Construction of a pluton:
710	Evidence from an exposed cross-section of the Searchlight pluton, Eldorado
711	Mountains, Nevada. Geological Society of America Bulletin, 113, 1213-1228.
712	Bacon, C.R., and Druitt, T.H. (1988) Compositional evolution of the zoned calcalkaline
713	magma chamber of Mount Mazama, Crater Lake, Oregon. Contributions to
714	Mineralogy and Petrology, 98, 224-256.
715	Bacon, C.R., and Metz, J. (1984) Magmatic inclusions in rhyolites, contaminated basalts,
716	and compositional zonation beneath the Coso volcanic field, California. Contributions
717	to Mineralogy and Petrology, 85, 346-365.
718	Bailey, E.B., and McCallien, W.J. (1956) Composite minor intrusions, and the Slieve
719	Gullion complex, Ireland. Liverpool and Manchester Geological Journal, 1, 466-503.
720	Bailey, E.B., and Thomas, H.H. (1930) The geology of Ardnamurchan, north-west Mull
721	and Coll. Memoirs of the Geological Survey of the United Kingdom, 393 p.
722	Bain, A.A., Jellinek, A.M., and Wiebe, R.A. (2013) Quantitiative field constraints on the
723	dynamics of silicic magma chamber rejuvenation and overturn. Contributions to
724	Mineralogy and Petrology, 165, 1275-1294.
725	Barbarin, B. (1988) Field evidence for successive mixing and mingling between the
726	Poilard diorite and the Saint-Julien-la-Vetre monzogranite (Nord-Forez, Massif
727	Central, France). Canadian Journal of Earth Science, 25, 49-59.
728	Barboni, M., Bussy, F., Schoene, B., and Schaltegger, U. (2008) Architecture and
729	emplacement mechanism of the Saint Jean du Doigt bimodal intrusion, Brittany,
730	France. In Geophysical Research Abstracts (Vol. 10).

- 731 Bickford, M.E. (1963) Petrology and structure of layered gabbro Pleasant Bay, Maine.
- 732 The Journal of Geology, 71, 215-237.
- 733 Bishop, A.C. (1964) Dark margins at igneous contacts. A critical study with special
- reference to those in Jersey, C.I. (1964) Proceedings of the Geologists' Association,
 735 74, 289-300.
- 736 Blake, D.H. (1966) The net-veined complex of the Austurhorn intrusion, southeastern
- 737 Iceland. Journal of Geology, 74, 891-907.
- 738 Blake, D.H., Elwell, R.W.D., Gibson, I.L., Skelhorn, R.R., and Walker, G.P.L. (1965)
- Some relationships resulting from the intimate association of acid and basic magmas.
- 740 Quarterly Journal of the Geological Society of London 121, 31-49.
- 741 Blake, D.H., and Hoatson, D.M. (1993) Granite, gabbro, and migmatite field
- relationships in the Proterozoic Lamboo complex of the East Kimberley region,
- 743 Western Australia. Australian Geological Survey Organisation Journal of Australian
- Geology and Geophysics, 14, 319-330.
- 745 Blundy, J.D., and Sparks, R.S.J. (1992) Petrogenesis of mafic inclusions in granitoids of
- the Adamello Massif, Italy. Journal of Petrology, 33, 1039-1104.
- 747 Bonnay, M., Collins, W.J, Sawyer, E.W., and Wiebe, R.A. (2000) Mt. Hay: granite
- magma transfer through the deep crust or a buried high-level plutonic complex? In:
- 749 Collins, W.J. (ed) Granite magma segregation and transfer during compressional
- deformation in the deep crust? Proterozoic Arunta Inlier, central Australia. Field
- 751 Guide FA4, Geological Society of Australia Incorporated. P. 8-46.

- 752 Brown, P.E., and Becker, S.M. (1986) Fractionation, hybridisation and magma-mixing in
- the Kialineq centre East Greenland. Contributions to Mineralogy and Petrology, 92,
- 754 57-70.
- 755 Buddington, A.F. (1959) Granite emplacement with special reference to North America.
- Geological Society of America Bulletin, 70, 671-747.
- 757 Caroff, M., Coint, N., Hallot, F., Hamelin, C., Peucat, J-J., and Charreteur, G. (2011) The
- mafic-silicic layered intrusions of (France) and north Guernsey (Channel Islands),
- Armorican massif: Gabbro-diorite layering and mafic cumulate-pegmatoid
- association. Lithos, 125, 675-692.
- 761 Castro, A., De la Rosa, J.D., Fernandez, C., and Moreno-Ventas, I. (1995) Unstable flow,
- 762 magma mixing and magma-rock deformation in a deep-seated conduit: the Gil-
- 763 Marquez Complex, south-west Spain. Geologische Rundschau, 84, 359-374.
- 764 Chapman, C.A. (1962) Diabase-granite composite dikes, with pillow-like structure,
- 765 Mount Desert Island, Maine. The Journal of Geology, 70, 529-564.
- Chapman, M., and Rhodes, J.M. (1992) Composite layering in the Isle au Haut igneous
- complex, Maine. Journal of Volcanology and Geothermal Research, 51, 41-60.
- 768 Chappell, B.W. (1997) Compositional variation within granite suites of the Lachlan Fold
- 769 Belt: its causes and implications for the physical state of granite magma. Transactions
- of the Royal Society of Edinburgh: Earth Sciences, 88, 159-180.
- 771 Chappell, B.W., White, A.J.R., and Wyborn, D. (1987) The importance of residual source
- material (restite) in granite petrogenesis. Journal of Petrology, 28, 1111-1138.

- 773 Christiansen, R.L. (1979) Cooling units and composite sheets in relation to caldera
- structure. In: C.E. Chapin and W.E. Elston (eds) Ash-flow tuffs. Geological Society
- of America Special Paper 180, 29-42.
- Clark, S., Spera, F.J., and Yuen, D.A. (1987) Steady state double-diffusive convection in
- magma chambers heated from below. In: Mysen, B. O. (ed.) Magmatic Processes:
- Physicochemical Principles. Geochemical Society Special Publication 1, 289-305.
- 779 Clemens, J.D., and Mawer, C.K. (1992) Granitic magma transport by fracture
- propagation. Tectonophysics, 294, 339-360.
- 781 Coleman, D.S., Glazner, A.F., Miller, J.S., Bradfored, K.J., Frost, T.P., Joye, J.L., and
- Bachl, C.A. (1995) Exposure of a Late Cretaceous layered mafic-felsic system in the
- 783 central Sierra Nevada batholith, California. Contributions to Mineralogy and
- 784 Petrology, 120, 129-136.
- Collins, W.J., and Sawyer. E.W. (1996) Pervasive granitoid magma transfer through the
- 786 lower-middle crust during non-coaxial compressional deformation. Journal of
- 787 Metmorphic Geology. 14, 565-579.
- 788 Collins, W.J., Wiebe, R.A., Healy, B. and Richards, S.W. (2006) Replenishment, crystal
- accumulation and floor aggradation in the megacrystic Kameruka Suite, Australia.
- 790 Journal of Petrology, 47, 2073-2104.
- Compton, R.R. (1955) Trondhjemite batholith near Bidwell Bar, California. Bulletin of
 the Geological Society of America, 66, 9-44.
- 793 Cook, N.D.J. (1988) Diorites and associated rocks in the Anglem Complex at The Neck,
- northeastern Stewart Island, New Zealand: an example of magma mingling. Lithos,
- 795 21, 247-262.

- 796 Currie, K.L. (2003) Emplacement of the Fogo Island batholith, Newfoundland. Atlantic
- 797 Geology, 39, 79-96.
- 798 Davis, G.A. (1963) Structure and mode of emplacement of Caribou Mountain pluton,
- Klamath Mountains, Caliifornia. Bulletin of the Geological Society of America, 74,331-348.
- 801 de Waard, D. (1976) Anorthosite-adamellite-troctolite layering in the Barth Island
- structure of the Nain complex, Labrador. Lithos 9, 293-308.
- Eichelberger, J.C. (1978) Andesitic volcanism and crystal evolution. Nature, 275, 21-27.
- Eichelberger, J.C. and Gooley, R. (1977) Evolution of silicic magma chambers and their
 relationship to basaltic volcanism. The Earth's Crust, 57-77.
- 806 Eichelberger, J.C., Chertkoff, G.D., Dreher, S.T., and Nye, C.J. (2000) Magmas in
- 807 collision: Rethinking chemical zonation in silicic magmas. Geology, 28, 603-606.
- Elwell, R.W.D. (1958) Granophyre and hybrid pipes in a dolerite layer of Slieve Gullion.
- The Journal of Geology, 66, 57-71.
- Elwell, R.W.D., Skelhorn, R.R., and Drysdall, A.R. (1960) Inclined granitic pipes in the
- diorites of Guernsey. Geological Magazine, 97, 89-105.
- 812 Elwell, R.W.D., Skelhorn, R.R., and Drysdall, A.R. (1962) Net-veining in the diorite of
- 813 northeast Guernsey, Channel Islands. The Journal of Geology, 70, 215-226.
- 814 Fernandez, A.N., and Gasquet, D.R. (1994) Relative rheological evolution of chemically
- 815 contrasted coeval magmas: example of the Tichka plutonic complex (Morocco).
- 816 Contributions to Mineralogy and Petrology, 116, 316-326.

817	Franceschelli, M., Puxeddu, M., Cruciani, G., Dini, A., and Loi, M. (2005) Layered
818	amphibolite sequence in NE Sardinia, Italy: remnant of a pre-Variscan mafic-silicic
819	layered intrusion? Contributions to Mineralogy and Petrology, 149, 164-180.
820	Furman, T., Meyer, P.S., and Frey, F. (1992a) Evolution of Icelandic central volcanoes:
821	evidence from the Austurhorn intrusion, southeastern Iceland. Bulletin of
822	Volcanology, 55, 45-62.
823	Furman, T., Frey, F., and Meyer, P.S. (1992b) Petrogenesis of evolved basalts and
824	rhyolites at Austurhorn, southeastern Iceland: the role of fractional crystallization.
825	Journal of Petrology, 33, 1405-1445.
826	Gamble, J.A. (1979) Some relationships between coexisting granitic and basaltic magmas
827	and the genesis of hybrid rocks in the Tertiary central complex of Slieve Gullion,
828	northeast Ireland. Journal of Volcanology and Geothermal Research, 5, 297-316.
829	Gibson, I.L., and Walker, G.P.L. (1964) Some composite rhyolite/basalt lavas and related
830	composite dykes in eastern Iceland, Proceedings of the Geologists' Association. 74,
831	301-318.
832	Gunn, B.M., and Watkins, N.D, (1969) The petrochemical effect of the simultaneous
833	cooling of adjoining basaltic and rhyolitic magmas. Geochimica et Cosmochimica
834	Acta, 33, 341-356.
835	Harker, A. (1904) The Tertiary igneous rocks of Skye. Memoirs of the Geological Survey
836	of the United Kingdom, 476 p.

- 837 Harper, B.E., Miller, C.F, Koteas, G.C., Cates, N.L, Wiebe, R.A., Lazzareschi, D.S., and
- 838 Cribb, J.W. (2004) Granites, dynamic magma chamber processes and pluton

839	construction: the Azte	c Wash pluton,	, Eldorado Mountains,	Nevada, USA.
-----	------------------------	----------------	-----------------------	--------------

- 840 Transactions of the Royal Society of Edinburgh: Earth Sciences, 95, 277-295.
- Hildreth, W., Halliday, A.N., and Christiansen, R.L. (1991) Isotopic and chemical
- evidence concerning the genesis and contamination of basaltic and rhyolitic magma
- beneath the Yellowstone Plateau volcanic field. Journal of Petrology, 32, 63-138.
- Hildreth, W., and Wilson, C.J.N. (2007) Compositional zoning of the Bishop Tuff.
- 845 Journal of Petrology, 48, 951-999.
- Hill, M., and Abbott, R.N. (1989) Commingled gabbroic and granitic magmas in the
- 847 northern Bays-of-Maine igneous complex, Calais area, Maine. InTucker, R.D. and
- 848 Marvinney, R.G. (eds) Studies in Maine Geology Igneous and metamorphic
- geology, 4, 35-43.
- Huppert, H.E., and Sparks, R.S.J. (1984) Double-diffusive convection due to
- crystallization in magmas. Annual Review of Earth and Planetary Sciences, 12, 11-37.
- Huppert, H.E., and Turner, J.S. (1981) Double-diffusive convection. Journal of Fluid
 Mechanics, 106, 299-329.
- Hutton, D.H.W., and Siegesmund, S. (2001) The Ardara granite: reinflating the balloon
- hypothesis. Zeitschrift der Deutschen Geologischen Gesellschaft, 309-323.
- Irvine, T.N. (1982) Terminology for layered intrusions. Journal of Petrology, 23, 127162.
- 859 Ishihara, S., Yoshikura, S., Sato, H., Satake, Y., and Atsuta, S. (2003) Ilmenite-series
- 860 pink and gray granitoids and felsic/mafic magma interaction across the late

861	Cretaceous 1	Inner Zone	Batholith	of SW I	anan I	Hutton S	vmposium	V	Field
001	Cictaceous		Damonui	01 0 11 3	apan. I	i unon b	ymposium	× ,	I ICIU

- Guidebook. Geological Survey of Japan, Interim-Report no.28, 41-60.
- Janousek, V., Braithwaite, C.J.R., Bowes, D.R., and Gerdes, A. (2004) Magma-mixing in
- the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and
- geochemical study of the Savaza intrusion, central Bohemian pluton, Czech Republic.
- Lithos, 78, 67-99.
- B67 Jellinek, A.M., and Kerr, R.C. (1999). Mixing and compositional stratification produced
- by natural convection 2. Applications to the differentiation of basaltic and silicic
- magma chambers and komatiite lava flows. Journal of Geophysical Research, 104,
- 870 No. B4, 7203-7218.
- Judd, J.W. (1893) On the composite dykes of Arran. Quarterly Journal of the Geological
- 872 Society of London, 49, 536-565.
- 873 Kamiyama, H., Nakajima, T., and Kamioka, H. (2007) Magmatic stratigraphy of the
- tilted Tottabesu plutonic complex, Hokkaido, north Japan. The Journal of Geology,
- 875 115, 295-314.
- 876 Kolker, A., and Lindsley, D.H. (1989) Geochemical evolution of the Maloin Ranch
- 877 pluton, Laramie anorthosite complex, Wyoming: Petrology and mixing relations.
- American Mineralogist, 74, 307-324.
- 879 Leuthold, J., Muntener, O., Baumgartner, L.P., Putlitz, B., Ovtcharova, M., and
- 880 Schaltegger, U. (2012) Time resolved construction of a bimodal laccolith (Torres del
- 881 Paine, Patagonia). Earth and Planetary Science Letters, 325-326, 85-92.

- Leuthold, J., Muntener, O., Baumgartner, L.P., Putlitz, B., and Chiaradia, M. (2013) A
- detailed geochemical study of a shallow arc-related laccolith: the Torres del Paine
- mafic complex (Patagonia). Journal of Petrology, 54, 273-303.
- Leuthold, J., Muntener, O., Baumgartner, L.P., and Putlitz, B. (2014) Petrological
- constraints on the recycling of mafic crystal mushes and intrusions of braided sills in
- the Torres del Paine mafic complex (Patagonia). Journal of Petrology, 55, 917-949.
- Lindline, J., Crawford, W.A., and Crawford, M.L. (2004) A bimodal volcanic-plutonic
- system: the Zarembo Island extrusive suite and the Burnett Inlet intrusive complex.
- 890 Canadian Journal of Earth Sciences, 41, 355-375;
- Lipman, P.W., Christiansen, R.L., and O'Connor, J.T. (1966) A compositionally zoned
- ash-flow sheet in southern Nevada. United States Geological Survey Professional
- 893 Paper 524-F, 47 p.
- 894 MacColl, R.S. (1964) Geochemical and structural studies in batholithic rocks of southern
- California: Part 1, Structural Geology of the Rattlesnake Mountain pluton. Geological
 Society of America Bulletin, 75, 805-822.
- 897 Mattson, S.R., Vogel, T.A., and Wilband, J.T. (1986) Petrochemistry of the silicic-mafic
- 898 complexes at Vesturhorn and Austurhorn, Iceland: Evidence for zoned/stratified
- magma. Journal of Volcanology and Geothermal Research, 28, 197-223.
- 900 McMillan, N.J., and McLemore, V.T. (2004) Cambrian-Ordovician magmatism and
- 901 extension in New Mexico and Colorado. New Mexico Bureau of Geology and
- 902 Mineral Resources, Bulletin 160, 1-11.

- 903 Michael, P.J. (1991) Intrusion of basaltic magma into a crystallizing granitic chamber:
- 904 The Cordillera del Paine pluton in southern Chile. Contributions to Mineralogy and905 Petrology, 108, 396-418.
- 906 Michel, J., Baumgartner, L., Putlitz, B., Schaltegger, U., and Ovtcharova, M. (2008)
- Incremental growth of the Patagonian Torres del Paine laccolith over 90 ky. Geology,
- 908 36, 459-465.
- 909 Miller, C.F., Miller, J.S., and Faulds, J.E. (2005) Miocene volcano-plutonic systems,
- southern Nevada: a window into upper crustal magmatic processes. In: Stevens, C.,
- 911 Cooper, C. (Eds.), Western Great Basin Geology: Fieldtrip Guidebook and Volume.
- 912 In: GSA Cordilleran Section, 99, 37–66.
- 913 Padwardhan, K., and Marsh, B.D. (2011) Dynamics of the development of the Isla au
- Haut gabbro-diorite layered complex: Quantitative implications for mafic-silicic

915 magma interactions. Journal of Petrology, 52, 2365-2395.

- 916 Paterson, S.R., and Fowler, T.K. (1993) Extensional pluton-emplacement models: do
- 917 they work for large plutonic complexes? Geology, 21, 781-784.
- 918 Paterson, S.R., and Vernon, R.H. (1995) Bursting the bubble of ballooning plutons: A
- return to nested diapirs emplaced by multiple processes. Geological Society of
- 920 America Bulletin, 107, 1356-1380.
- 921 Patrick, D.W. and, Miller, C.F. (1997). Processes in a composite, recharging magma
- 922 chamber: evidence from magmatic structures in the Aztec Wash pluton, Nevada.
- 923 Proceedings of the 30th International Geological Congress, 15, 121-135.

- 924 Perugini, D., Poli, G., and Rocchi, S. (2005) Development of viscous fingering between
- 925 mafic and felsic magmas: evidence from the Terra Nova intrusive complex.
- 926 Mineralogy and Petrology, 83, 151-166.
- 927 Petford, N., Cruden, A.R., McCaffrey, K.J.W., and Vigneresse, J.-L. (2000) Granite
- magma formation, transport and emplacement in the Earth's crust. Nature, 408, 669-
- 929 673.
- 930 Pietranik, A., and Koepke, J. (2009) Interactions between dioritic and granodioritic
- 931 magmas in mingling zones: plagioclase record of mixing, mingling and subolidus
- 932 interactions in the Gesiniec intrusion, NE Bohemian Massif, SW Poland.
- 933 Contributions to Mineralogy and Petrology, 158, 17-36.
- 934 Piwinskii, A.J., and Wyllie, P.J. (1968) Experimental studies of igneous rock series: a
- zoned pluton in the Wallowa batholith, Oregon. The Journal of Geology, 76, 205-234.
- 936 Putirka, K.D., Canchola, J., Rash, J., Smith O., Torrez, G., Patterson, S.R., and Ducea,
- 937 M.N. (2014) Pluton assembly and the genesis of grantitic magmas: Insights from the
- 938 GIC pluton in cross section, Sierra Nevada batholith, California, American
- 939 Mineralogist, 99, 1284-1303.
- 940 Ratajeski, K., Glazner, A.F., and Miller, B.V. (2001) Geological Society of America
- 941 Bulletin, 113, 1486-1502.
- 942 Renna, M.R., Tribuzio, R., and Tiepolo, M. (2006) Interaction between basic and acid
- 943 magmas during the latest stages of the post-collisional Variscan evolution: Clues
- from the gabbro-granite association of Ota (Corsic-Sardinia batholith). Lithos, 90, 92-
- 945 110.

- 946 Reynolds, D.L. (1941) A gabbro-granodiorite contact in the Slieve Gullion area and its
- bearing on Tertiary petrogenesis. Quarterly Journal of the Geological Society of
- 948 London, 97, 1-38.
- Reynolds, D.L. (1951) The geology of the Slieve Gullion, Foughill and Carrickarnan: an
- 950 actualistic interpretation of a Tertiary gabbro-granophyre complex. Transactions of
- 951 the Royal Society of Edinburgh, 62, 85-142.
- 952 Reynolds, D.L. (1953) Comments on an article by Professor L. R. Wager and Sir Edward
- Bailey entitled "Basic magma chilled against acid magma". Nature, 172, 69-70.
- Reynolds, D.L. (1961) Lapies and solution pits in olivine-dolerite sills at Slieve Gullion,
- Northern Ireland. The Journal of Geology. 69, 119-117.
- Richey, J. (1937) Discussion of a paper by D. L. Reynolds entitled "Contact phenomena
- 957 indicating a Tertiary age for the gabbros of the Slieve Gullion district". Proceedings
- 958 of the Geologists' Association, 48, 247-275.
- 859 Richey, J.E., and Thomas, H.H. (1932) The Tertiary ring complex of Slieve Gullion
- 960 (Ireland). Quarterly Journal of the Geological Society of London, 88, 776-849.
- 961 Seaman, S.J., Scherer, E.E., Wobus, R.A., Zimmer, J.H. and Sales, J.G. (1999) Late
- 962 Silurian volcanism in coastal Maine: The Cranberry Island series. Bulletin of the
- 963 Geological Society of America, 111, 686-708.
- 964 Shortland, R.A, Salmon, S., Rowbotham, G., and Regan, P.F. (1996) Coexisting acid and
- basic magmas of the Elizabeth Castle igneous complex, Jersey, Channel Islands.
- 966 Proceedings of the Ussher Society, 9, 121-126.
- 967 Sigurdsson H. and Sparks, R.S.J. (1981) Petrology of rhyolitic and mixed magma ejecta
- from the 1875 eruption of Askja, Iceland. Journal of Petrology, 22, 41-84.

- 969 Sisson, T.W., Grove, T.L., and Coleman, D.S. (1996) Hornblende gabbro sill complex at
- 970 Onion Valley, California, and a mixing origin for the Sierra Nevada batholith.
- 971 Contributions to Mineralogy and Petrology, 126, 81-108.
- 972 Skelhorn, R.R., and Elwell, R.W.D. (1966) The structure and form of the granophyric
- 973 quartz-dolerite intrusion, Centre II, Ardnamurchan, Argyllshire. Transactions of the
- 874 Royal Society of Edinburgh, 66, 285-308.
- 975 Snyder, D. (2000) Thermal effects of the intrusion of basaltic magma into a more silicic
- 976 magma chamber and implications for eruption triggering. Earth and Planetary Science
- 977 Letters, 175, 257-273.
- 978 Snyder, D., and Tait, S. (1995) Replenishments of magma chambers: comparison of
- 979 fluid-mechanic experiments with field relations. Contributions to Mineralogy and
- 980 Petrology, 122, 230-240.
- 981 Snyder, D., and Tait, S. (1998) The imprint of basalt on the geochemistry of silicic
- magmas. Earth and Planetary Science Letters, 160, 433-445.
- 983 Snyder, D., Crambes, C., Tait, S., and Wiebe, R.A. (1997) Magma mingling in dikes and
- sills. The Journal of Geology, 105, 75-86.
- 985 Sparks, R.S.J., and Huppert, H.E. (1984) Density changes during fractional crystallization
- 986 of basaltic magmas: fluid dynamic implications. Contributions to Mineralogy and
 987 Petrology, 85, 300-9.
- 988 Sparks, R.S.J., and Marshall, L. (1986) Thermal and mechanical constraints on mixing
- between mafic and silicic magmas. Journal of Volcanology and Geothermal
- 990 Research, 29, 99-124.

- 991 Sylvester, A.G. (1998) Magma mixing, structure, and re-evaluation of the emplacement
- 992 mechanism of the Vradel pluton, central Telemark, southern Norway. Norsk
- 993 Geologisk Tidsskrift, 78, 259-276.
- Topley, C.G., Brown, M., D'Lemos, R.S., Power, G.M., and Roach, R.A. (1990) The
- 995 Northern Igneous Complex of Guernsey, Channel Islands. In D'Lemos, R.S.,
- 996 Stracham, R.A., and Topley, C.G. (eds) The Cadomian Orogeny, Geological Society
- 997 Speccial Publication No. 51, 245-259.
- 998 Turnbull, R., Weaver, S., Tulloch, A., Cole, J., Handler, M., and Ireland, T. (2010) Field
- and geochemical constraints on mafic-felsic interactions, and processes in high-level
- 1000 arc magma chambers: an example from the Halfmoon pluton, New Zealand. Journal
- 1001 of Petrology, 51, 1477-1505.
- 1002 Turner, J.S. (1984) Some effects of viscosity on the dynamics of replenished magma

1003 chambers. Journal of Geophysical Research 89, 6857-77.

- 1004 Vasek, R.W., and Kolker, A. (1999) Virginia Dale intrusion, Colorado and Wyoming:
- 1005 magma-mixing and hybridization in a Proterozoic composite intrusion. Rocky
- 1006 Mountain Geology, 34, 195-222.
- 1007 Vernon, R.H. (1984) Microgranitoid enclaves in granites globules of hybrid magma
- 1008 quenched in a plutonic environment. Nature, 309, 438-439.
- 1009 Vogel, T.A., and Walker, B.M. (1975) The Tichka Massif, Morocco an example of
- 1010 contemporaneous acidic and basic plutonism. Lithos, 8, 29-38.
- 1011 Vogel, T.A., and Wilband, J.T. (1978) Coexisting acidic and basic melts: Geochemistry
- 1012 of a composite dike. The Journal of Geology, 86, 353-371.

- 1013 Vogel, T.A., Younker, L.W., Wilband, J.T., and Kampmueller, E. (1984) Magma mixing:
- 1014 the Marsco suite, Isle of Skye, Scotland. Contributions to Mineralogy and Petrology,
- 1015 86, 231-241.
- 1016 Wager. L.R., and Bailey, E.B. (1953) Basic magma chilled against acid magma. Nature,
- 1017 172, 68-69.
- 1018 Walker Jr., B.A., Miller, C.F., Claiborne, L.L., Wooden, J.L., and Miller, J.S. (2007)
- 1019 Geology and geochronology of the Spirit Mountain batholith, southern Nevada:
- 1020 Implications for timescales and physical processes of batholith construction. Journal
- 1021 of Volcanology and Geothermal Research, 167, 239-262.
- Walker, G.P.L., and Skelhorn, R.R. (1966) Some associations of acid and basic igneous
 rocks. Earth-Science Reviews, 2, 93-109.
- 1024 Wark, D.A., Hildreth, W., Spear, F.S., Cherniak, D.J., and Watson, E.B. (2007) Pre-
- 1025 eruption recharge of the Bishop magma system. Geology, 35, 235-238.
- 1026 Weidendorfer, D., Mattsson, H.B., and Ulmer, P. (2014) Dynamics of magma mixing in
- 1027 partially crystallized magma chambers: textural and petrological constraints from the
- 1028 basal complex of the Austurhorn intrusion (SE Iceland). Journal of Petrology, 55,
- 1029 1865-1903.
- 1030 Wiebe, R.A. (1973) Relations between coexisting basaltic and granitic magmas in a
- 1031 composite dike. American Journal of Science, 273, 130-151.
- 1032 Wiebe, R.A. (1974a) Coexisting intermediate and basic magmas, Ingonish, Cape Breton
- 1033 Island. The Journal of Geology, 82, 74-87.
- 1034 Wiebe, R.A. (1974b) Differentiation in layered diorite intrusions, Ingonish, Nova Scotia.
- 1035 The Journal of Geology, 82, 731-750.

- 1036 Wiebe, R.A. (1988) Structural and magmatic evolution of a magma chamber: The
- 1037 Newark Island layered intrusion, Nain, Labrador. Journal of Petrology, 29, 383-411.
- 1038 Wiebe, R.A. (1993) The Pleasant Bay layered gabbro-diorite, coastal Maine: Ponding and
- 1039 crystallization of basaltic injections into a silicic magma chamber. Journal of
- 1040 Petrology, 34, 461-489.
- 1041 Wiebe, R.A. (1994) Silicic magma chambers as traps for basaltic magmas: The Cadillac
- 1042 Mountain intrusive complex, Mount Desert Island, Maine. The Journal of Geology,
- 1043 102, 423-437.
- 1044 Wiebe, R.A., and Hawkins, D.P. (2015) Growth and impact of a mafic-silicic layered
- 1045 intrusion in the Vinalhaven intrusive complex, Maine. Journal of Petrology, 65, 273-1046 298.
- 1047 Wiebe, R.A., and Collins, W.J. (1998) Depositional features and stratigraphic sections in
- 1048 granitic plutons: implications for the emplacement and crystallization of granitic

1049 magma. Journal of Structural Geology, 20, 1273-1289.

- 1050 Wiebe, R.A., and Wild, T., (1983) Fractional crystallization and magma mixing in the
- 1051 Tigalak layered intrusion, the Nain anorthosite complex, Labrador. Contributions to
- 1052 Mineralogy and Petrology, 84, 327-344.
- 1053 Wiebe, R.A., Frey, H. and Hawkins, D.P. (2001) Basaltic pillows mounds in the
- 1054 Vinalhaven intrusion, Maine. Journal of Volcanology and Geothermal Research, 107,1055 171-184.
- 1056 Wiebe, R.A., Blair, K.D., Hawkins, D.P., and Sabine, C.P. (2002) Mafic injections, in
- 1057 situ hybridization, and crystal accumulation in the Pyramid Peak granite, California. .
- 1058 Geological Society of America Bulletin, 114, 909-920.

- 1059 Wilcox, R.E. (1944) Rhyolite-basalt complex on Gardiner River, Yellowstone Park.
- 1060 Wyoming. Geological Society of America Bulletin, 55, 1047-1079.
- 1061 Wilcox, R.E. (1999) The idea of magma mixing: history of a struggle for acceptance. The
- 1062 Journal of Geology, 107, 421-432.
- 1063 Windley, B.F. (1965) The composite net-veined diorite intrusives of the Julianehab
- 1064 District, South Greenland. Meddelelser om Gronland, 172, no. 8, 1-60.
- 1065 Xu, X., Dong, C., Li, W., and Zhou, X. (1999) Late Mesozoic intrusive complexes in the
- 1066 coastal area of Fujian, SE China: the significance of the gabbro-diorite-granite
- 1067 association. Lithos, 46, 299-315.
- 1068
- 1069 Figures
- 1070
- 1071 Figure 1. Field photos of commingled basaltic pillows and granite features once termed
- 1072 net-vein complexes. (a) Vinalhaven intrusive complex. (b) Interior of a composite
- 1073 dike that cuts layered gabbro, Vinalhaven. (Photos: R.A. Wiebe)
- 1074 Figure 2. Two field photos of commingling in Austurhorn, Iceland. (a) Thin chilled mafic
- 1075 sheets in granite. (b) Chilled base of a thicker basaltic layer resting on hybridized
- 1076 felsic material, that grades downward to the disrupted top of an underlying layer.
- 1077 Note leucogranite upwelling between the mafic lobes. This likely represents filter-
- 1078 pressed interstitial liquid within the hybrid felsic material. (Photos: R.A. Wiebe)
- 1079 Figure 3. Field photos of field relations in Ingonish intrusion. (a) Chilled basaltic layers
- 1080 and pillows separated by thin layers of cumulate diorite. (b) Chilled base of a thicker
- 1081 porphyritic basaltic layer resting on hybrid diorite with mafic enclaves. (c) Unchilled

top of a thick basaltic layer with enclaves in overlying diorite that decrease upward in
size. (Photos: R.A. Wiebe)

1084	Figure 4. Mafic and tonalitic layers in the Val Freda complex, Adamello Massif, Italy. (a)
1085	The top and bottom of two mafic layers separated by a thin seam of tonalite. The
1086	lower mafic layer varies upward from (1) medium-grained mafic core to (2) s more
1087	felsic intermediate rock to (3) a strongly chilled upper margin into which dark flame
1088	structures project (arrows). These are likely formed during upward movement of H_2O
1089	as the interior of the layer crystallized. White circle is a coin about 2 cm in diameter.
1090	4 is a thin tonalite seam, and 5 the overlying mafic layer. (b) This photo was taken
1091	about 2 meters to the right of (a) and shows all of the lower layer in (a), the
1092	underlying tonalite seam, and mafic layer layer below that (note prominent tonalitic
1093	diaper). The numbers on the photo match those in (a) with the upward compositional
1094	gradation (1 and 2) and the strong upper chill of that layer (3). The upper tonalite (4)
1095	is not labeled; it varies in thickness from 1 to 2 cm. Walking stick is about 90 cm
1096	long. To the right, the upper mafic layer clearly cuts downward across the underlying
1097	chill (3) and felsic material (2) below that. (Photos: R.A. Wiebe)
1098	Figure 5. Field photos of the chilled basal contacts of mafic sheets. (a) Mafic layer rests
1099	on hybrid rocks with weak gradation upward to more felsic material (Pleasant Bay
1100	intrusion). (b) Strongly lobate, convex downward base of mafic layer with no
1101	apparent upward escape of trapped liquid in felsic cumulate (Pleasant Bay intrusion)
1102	(c) Mafic layer rests on more leucoratic hybrid rocks with highly lobate convex
1103	downward base and prominent accumulation of residual liquid at crests between
1104	lobes. Later solidification of mafic layer led to fracturing and upward escape of

49

1105	trapped felsic magma at the crests (Pleasant Bay intrusion). (d) Highly lobate base of
1106	\sim 50 m thick mafic layer. The amplitude of the mafic lobes are 5 to 10 m and the
1107	wavelength is ~25 m (Vinalhaven intrusion) (see Bain et al. 2013). (Photos: R.A.
1108	Wiebe)
1109	Figure 6. Silicic pipes fed by underlying felsic cumulates beneath the base of mafic
1110	replenishments. (a) 3-D view of pipes (Vinalhaven intrusion) (b) Vertical outcrop
1111	displays a section ~ parallel to the pipe axes (Vinalhaven intrusion). (c) Horizontal
1112	surface ~ perpendicular to pipe axes. These pipes vary upward in composition from
1113	granite near the base to pegmatite and open vugs at higher levels (Pleasant Bay
1114	intrusion). (Photos: R.A. Wiebe)
1115	Figure 7. A thin chilled basaltic layer terminates to the right and presumably flowed in
1116	that direction. Felsic pipes that penetrated the chilled base of the layer and rose
1117	upward, curving to the right, reflecting continued flow after the pipe initiated. By the
1118	time the pipes approached the upper margin of the mafic flow, a chilled margin had
1119	been established, which trapped the upwelling felsic material (Cadillac Mountain
1120	intrusive complex). (Photo: R.A. Wiebe)
1121	Figure 8. Thin mafic layers chilled on base and top that were sequentially emplaced onto
1122	hybrid cumulate material as the chamber floor was aggrading (Pleasant Bay
1123	intrusion). (Photo: R.A. Wiebe)
1124	Figure 9. Gradational compositional variation in macrorhythmic layers. (a) Top to the
1125	left. Gradation from gabbro upward to felsic cumulate within about 1 m. Overlying
1126	basally chilled gabbro layer cut by diapiric felsic material fed from the top of the
1127	gradational layer (Cadillac Mountain intrusive complex). (b) Comparable relations in

1128	the Pleasant Bay intrusion. Here a chilled mafic lens within the gradational layer
1129	caused interstitial melt within the hybrid cumulate to be trapped and collect along its
1130	lower margin. (Photos: R.A. Wiebe)
1131	Figure 10. Strongly metamorphosed and deformed MASLI, Mount Hay, central Australia
1132	(Collins and Sawyer 1996, Bonnay et al. 2000). Top is to the right, and the layers are
1133	overturned. Hammer rests on the felsic upper part of a macrorhythmic layer, which is
1134	basaltic at the left margin of the photo. Note large feldspar crystals, which are equant
1135	on the subhorizontal surface, but highly stretched on the subvertical surface. The base
1136	of overlying basaltic layer consists of lobate lenses within granitic septa; the foot at
1137	the right edge of the photo rests on overlying homogeneous meta-basalt. (Photo: R.A.
1138	Wiebe)
1139	
1140	Table 1. List of plutons with evidence for emplacement of mafic magma into a
1140 1141	Table 1. List of plutons with evidence for emplacement of mafic magma into afloored, more silicic magma chamber - with references.
1140 1141 1142	Table 1. List of plutons with evidence for emplacement of mafic magma into afloored, more silicic magma chamber - with references.Arc settings.
1140 1141 1142 1143	Table 1. List of plutons with evidence for emplacement of mafic magma into a floored, more silicic magma chamber - with references. Arc settings. Halfmoon Pluton, Stewart Island, New Zealand (Mesozoic) (Cook 1988, Wiebe and
1140 1141 1142 1143 1144	Table 1. List of plutons with evidence for emplacement of mafic magma into a floored, more silicic magma chamber - with references. Arc settings. Halfmoon Pluton, Stewart Island, New Zealand (Mesozoic) (Cook 1988, Wiebe and Collins 1998, Turnbull et al. 2010).
1140 1141 1142 1143 1144 1145	Table 1. List of plutons with evidence for emplacement of mafic magma into a floored, more silicic magma chamber - with references. Arc settings. Halfmoon Pluton, Stewart Island, New Zealand (Mesozoic) (Cook 1988, Wiebe and Collins 1998, Turnbull et al. 2010). Tuross Head pluton, Australia (Silurian) (Wiebe and Collins 1998).
1140 1141 1142 1143 1144 1145 1146	Table 1. List of plutons with evidence for emplacement of mafic magma into afloored, more silicic magma chamber - with references.Arc settings.Halfmoon Pluton, Stewart Island, New Zealand (Mesozoic) (Cook 1988, Wiebe and Collins 1998, Turnbull et al. 2010).Tuross Head pluton, Australia (Silurian) (Wiebe and Collins 1998).Tuross Head pluton, Australia (Silurian) (Wiebe and Collins 1998).
1140 1141 1142 1143 1144 1145 1146 1147	Table 1. List of plutons with evidence for emplacement of mafic magma into afloored, more silicic magma chamber - with references.Arc settings.Halfmoon Pluton, Stewart Island, New Zealand (Mesozoic) (Cook 1988, Wiebe and Collins 1998, Turnbull et al. 2010).Tuross Head pluton, Australia (Silurian) (Wiebe and Collins 1998).Composite diorite intrusions of the Julianehab District, south Greenland (Proterozoic) (Windley 1965). ²
1140 1141 1142 1143 1144 1145 1146 1147 1148	Table 1. List of plutons with evidence for emplacement of mafic magma into afloored, more silicic magma chamber - with references.Arc settings.Halfmoon Pluton, Stewart Island, New Zealand (Mesozoic) (Cook 1988, Wiebe and Collins 1998, Turnbull et al. 2010).Tuross Head pluton, Australia (Silurian) (Wiebe and Collins 1998).Composite diorite intrusions of the Julianehab District, south Greenland (Proterozoic) (Windley 1965). ² Terra Nova Intrusive Complex, Antarctica (Paleozoic) (Perugini et al. 2005).
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149	Table 1. List of plutons with evidence for emplacement of mafic magma into afloored, more silicic magma chamber - with references.Arc settings.Halfmoon Pluton, Stewart Island, New Zealand (Mesozoic) (Cook 1988, Wiebe and Collins 1998, Turnbull et al. 2010).Tuross Head pluton, Australia (Silurian) (Wiebe and Collins 1998).Composite diorite intrusions of the Julianehab District, south Greenland (Proterozoic) (Windley 1965). ² Terra Nova Intrusive Complex, Antarctica (Paleozoic) (Perugini et al. 2003).Tanoura Igneous Complex, SW Japan (Cretaceous) (Ishihara et al. 2003).
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150	Table 1. List of plutons with evidence for emplacement of mafic magma into afloored, more silicic magma chamber - with references.Arc settings.Halfmoon Pluton, Stewart Island, New Zealand (Mesozoic) (Cook 1988, Wiebe and Collins 1998, Turnbull et al. 2010).Tuross Head pluton, Australia (Silurian) (Wiebe and Collins 1998).Composite diorite intrusions of the Julianehab District, south Greenland (Proterozoic) (Windley 1965). ² Terra Nova Intrusive Complex, Antarctica (Paleozoic) (Perugini et al. 2003).Tanoura Igneous Complex, SW Japan (Cretaceous) (Ishihara et al. 2003).Tottabetsu Plutonic Complex, Hokkaido, Japan (Tertiary) (Kamiyama et al. 2007).

9/2

- 1152 Negash Pluton, northern Ethiopia (late Proterozoic) (Asrat et al. 2004).
- 1153 Tichka plutonic complex, Morocco (Paleozoic) (Fernandez and Gasquet 1994).
- 1154 Cordillera del Paine pluton, southern Chile (Tertiary) (Michael 1991, (Leuthold et al.
- 1155 2014).²
- 1156 Gabbro-granite complex of Porto, western Corsica (Paleozoic) (Renna et al. 2006).
- 1157 Piolard Diorite and Saint-Julien-la Vetre Monzogranite, France (Paleozoic) (Barbarin1158 1988).
- 1159 Gil-Marquez Complex, south-west Spain (Paleozoic) (Castro et al. 1995).¹
- 1160 Layered amphibolite sequence, NE Sardinia, Italy (Paleozoic) (Franceschelli et al. 2005).
- 1161 The Val Freda Complex, Adamello Massif, Italy (Tertiary) (Blundy and Sparks 1992).²
- 1162 Sazava intrusion, Czech Republic (Paleozoic) (Janousek et al. 2004).
- 1163 Gesiniec intrusion, Poland (Paleozoic) (Pietranik and Koepke 2009).
- 1164 Northern Igneous Complex of Guernsey, Channel Islands (Cadomian) (Topley et al.
 1165 1990).¹
- The Elizabeth Castle Igneous Complex, Jersey, Channel Island (Cadomian) (Shortland et
 al. 1996).¹
- 1168 Ingonish pluton, Cape Breton Island, Nova Scotia, Canada (Cadomian) (Wiebe 1974a, b).
- 1169 Burnett Inlet Plutonic Complex, Alaska (Tertiary) (Lindline et al. 2004).
- 1170 Rattlesnake Mountain Pluton, southern California (Mesozoic) (MacColl 1964).¹
- 1171 Diorite of the Rockslides in El Capitan granite, Sierra Nevada, California (Ratajeski et al.
- 1172 2001).¹
- 1173 Aberdeen complex in granite of Goodale Mtn. (Mesozoic) Sierra Nevada, California
- 1174 (Mesozoic) (Coleman et al. 1995).²

- 1175 Hornblende gabbro sill complex at Onion Valley, Sierra Nevada, California (Mesozoic)
- 1176 (Sisson et al. 1996).²
- 1177 Guadalupe Igneous Complex, Sierra Nevada, California (Mesozoic) (Putirka et al. 2014).
- 1178 Pyramid Peak pluton, Sierra Nevada, California (Jurassic) (Wiebe et al. 2002).
- 1179 Diamond Creek pluton, Grand Canyon, Arizona (1736 Ma) (David Hawkins personal
- 1180 communication 2015).
- 1181 Ruby pluton, Grand Canyon, Arizona (1716 Ma) (David Hawkins personal
- communication 2015).
- 1183
- 1184 Extensional environments.
- 1185 Austurhorn, SE Iceland (Tertiary) (Blake 1966, Mattson et al. 1986, Furman et al.
- 1186 1992a,b, Weidendorfer et al. 2014).¹
- 1187 Kialineq centre, East Greenland (Tertiary) (Brown and Becker 1986, Lesher personal
- communication 2015).
- 1189 Lamboo Complex, east Kimberley, Western Australia (~ 1800 Ma) (Blake and Hoatson
 1190 1993).
- 1191 Mafic-felsic rocks of Mount Hay, central Australia (~ 1800 Ma) (Bonney et al. 2000).¹
- 1192 Vradal pluton, central Telemark, southern Norway (late Proterozoic) (Sylvester 1998).
- 1193 Saint Jean du Doigt bimodal intrusion, France (late Paleozoic) (Barboni et al. 2008,
- 1194 Caroff et al. 2011).¹
- 1195 Barth Island intrusion, Nain, Labrador (~ 1300 Ma) (deWaard 1976).¹
- 1196 Newark Island Layered Intrusion, Nain, Labrador (~ 1300 Ma) (Wiebe 1988).
- 1197 Tigalak layered intrusion, Nain, Labrador (~ 1300 Ma) (Wiebe and Wild 1983).

- 1198 Fogo Island intrusion, Newfoundland, Canada (422 Ma) (Currie 2003, Andrew Kerr -
- 1199 personal communication 2009).
- 1200 Virginia Dale intrusion, Colorado and Wyoming (Proterozoic) (Vasek and Kolker 1999).¹
- 1201 The Maloin Ranch pluton, Laramie, Wyoming (Proterozoic) (Kolker and Lindsley
- 1202 1989).¹
- 1203 Isle au Haut Igneous Complex, Maine (Silurian) (Chapman and Rhodes 1992).
- 1204 Pleasant Bay intrusion, coastal Maine (~420 Ma) (Wiebe 1993).
- 1205 Cadillac Mountain intrusive complex, coastal Maine (~420 Ma) (Wiebe 1994).
- 1206 The Spruce Head composite pluton, Maine (Silurian) (Ayuso and Arth 1997).¹
- 1207 Moosehorn plutonic suite, Maine and New Brunswick (Silurian) (Hill and Abbott 1989).¹
- 1208 Vinalhaven intrusive complex, coastal Maine (420 Ma) (Wiebe and Hawkins 2015).
- 1209 Florida Mountains granite, southwest New Mexico (510 Ma) (McMillan and McLemore
- 1210 2004, D.P. Hawkins personal communication 2015).
- 1211 Little Hatchet pluton, southwest New Mexico (1077 Ma) (McMillan and McLemore
- 1212 2004, D.P. Hawkins personal communication 2015).
- 1213 Aztec Wash Pluton, Northern Colorado extensional zone, Nevada (Tertiary) (Patrick and
- 1214 Miller 1997, Harper et al. 2004).¹
- 1215 Searchlight Pluton, Northern Colorado extensional zone, Nevada (Tertiary) (Bachl et al.
- 1216 2001).¹
- ¹217 ¹ Intrusions included based in part on the author's visit to the occurrence.
- 1218 ² Intrusions included based on field relations described in the reference, even if the
- reference cited does not interpret the pluton in this way.
- 1220

Figure 5

