Trace Element Thermometry of Garnet-Clinopyroxene Pairs Revision 1

3 4

1 2

5

Jonathan R Pickles^{1,2}, Jonathan D Blundy² and Richard A Brooker²

- ¹Camborne School of Mines, University of Exeter, Penryn Campus, Penryn, TR10 9FE. 6
- 7 UK
- ²School of Earth Sciences, University of Bristol, Wills Memorial Building, Bristol 8 BS8 1RJ, UK
- 9
- 10

11

Abstract

12 We present major and trace element data on coexisting garnet and clinopyroxene for 13 experiments carried out between 1.3 and 10 GPa and 970 and 1400 °C. We demonstrate that the 14 lattice strain model, which was developed for applications to mineral-melt partitioning data, 15 can be adapted to garnet-clinopyroxene partitioning. Using new and published experimental 16 data we develop a geothermometer for coexisting garnet and clinopyroxene using the 17 concentration of rare earth elements (REE). The thermometer, which is based on an 18 extension of the lattice strain model, exploits the tendency of minerals at elevated 19 temperatures to be less discriminating against cations that are too large or too small for 20 lattice sites. The extent of discrimination against misfit cations is also related to the apparent 21 elasticity of the lattice site on which substitution occurs, in this case the greater stiffness of the 22 dodecahedral X-site in garnet compared with the 8-fold M2-site in clinopyroxene. We 23 demonstrate that the ratio of REE in clinopyroxene to that in coexisting garnet is 24 particularly sensitive to temperature. We present a method by which knowledge of the major 25 and REE chemistry of garnet and clinopyroxene can be used to solve for the equilibrium 26 This method is applicable to any scenario in which the two minerals are in temperature. 27 equilibrium, both above and below the solidus, and where the mole fraction of grossular in garnet

28	is less than 0.4. Our method, which can be widely applied to both peridotitic and eclogitic
29	paragenesis with particular potential for diamond exploration studies, has the advantage over
30	commonly used Fe-Mg exchange thermometers in having a higher closure temperature
31	because of slow interdiffusion of REE. The uncertainty in the calculated temperatures, based
32	on the experimental data set, is less than ± 80 °C.
33	Keywords: Lattice Strain Model, geothermometer, garnet, clinopyroxene, eclogite,
34	experimental petrology, REE
35	
36 37	
38	
•	
39	
39 40 41 42	Introduction Deciphering the pressure (<i>P</i>) and temperature (<i>T</i>) conditions of deep earth
 39 40 41 42 43 	Introduction Deciphering the pressure (<i>P</i>) and temperature (<i>T</i>) conditions of deep earth processes using samples that are now exhumed to the surface requires a detailed
 39 40 41 42 43 44 	Introduction Deciphering the pressure (<i>P</i>) and temperature (<i>T</i>) conditions of deep earth processes using samples that are now exhumed to the surface requires a detailed understanding of the high-pressure phases and their chemistry over a range of
 39 40 41 42 43 44 45 	Introduction Deciphering the pressure (<i>P</i>) and temperature (<i>T</i>) conditions of deep earth processes using samples that are now exhumed to the surface requires a detailed understanding of the high-pressure phases and their chemistry over a range of relevant conditions. Such information has played an important role in the unraveling of
 39 40 41 42 43 43 44 45 46 	Introduction Deciphering the pressure (P) and temperature (T) conditions of deep earth processes using samples that are now exhumed to the surface requires a detailed understanding of the high-pressure phases and their chemistry over a range of relevant conditions. Such information has played an important role in the unraveling of $P - T$ conditions during metamorphism and tectonic events. One industrial application
 39 40 41 42 43 44 45 46 47 	Introduction Deciphering the pressure (P) and temperature (T) conditions of deep earth processes using samples that are now exhumed to the surface requires a detailed understanding of the high-pressure phases and their chemistry over a range of relevant conditions. Such information has played an important role in the unraveling of P - T conditions during metamorphism and tectonic events. One industrial application involves diamond exploration where a particular challenge is establishing whether
 39 40 41 42 43 44 45 46 47 48 	Introduction Deciphering the pressure (P) and temperature (T) conditions of deep earth processes using samples that are now exhumed to the surface requires a detailed understanding of the high-pressure phases and their chemistry over a range of relevant conditions. Such information has played an important role in the unraveling of $P - T$ conditions during metamorphism and tectonic events. One industrial application involves diamond exploration where a particular challenge is establishing whether mantle-derived samples formed at P and T conditions conducive to diamond stability.
 39 40 41 42 43 43 44 45 46 47 48 49 	Introduction Deciphering the pressure (P) and temperature (T) conditions of deep earth processes using samples that are now exhumed to the surface requires a detailed understanding of the high-pressure phases and their chemistry over a range of relevant conditions. Such information has played an important role in the unraveling of $P - T$ conditions during metamorphism and tectonic events. One industrial application involves diamond exploration where a particular challenge is establishing whether mantle-derived samples formed at P and T conditions conducive to diamond stability. In this context, the paragenesis of garnet (grt) + clinopyroxene (cpx) in rocks of
 39 40 41 42 43 44 45 46 47 48 49 50 	Introduction Deciphering the pressure (P) and temperature (T) conditions of deep earth processes using samples that are now exhumed to the surface requires a detailed understanding of the high-pressure phases and their chemistry over a range of relevant conditions. Such information has played an important role in the unraveling of $P \cdot T$ conditions during metamorphism and tectonic events. One industrial application involves diamond exploration where a particular challenge is establishing whether mantle-derived samples formed at P and T conditions conducive to diamond stability. In this context, the paragenesis of garnet (grt) + clinopyroxene (cpx) in rocks of mafic or ultramafic composition has focused attention on this mineral pair as potential

52 temperatures of coexisting garnet and clinopyroxene (Raheim and Green 1974; Ellis and 53 Green 1979; Powell 1985; Ai 1994; Nakamura 2009; Sun and Liang 2015). The majority of these 54 thermometers rely on the Fe-Mg exchange between the garnet and clinopyroxene. For example, the geothermometer of Ellis and Green (1979) utilizes the Fe-Mg exchange K_D 55 $(K_D = \frac{(Fe^{2+}/Mg)^{gnt}}{(Fe^{2+}/Mg)^{cpx}})$ between garnet and clinopyroxene. This method is widely used but 56 is susceptible to stoichiometrically-derived estimates of Fe^{3+} in the minerals that can 57 58 arise from cumulative errors in electron microprobe analyses (EMPA). This has been 59 clearly demonstrated by Li et al. (2005) who measured the Fe²⁺:Fe³⁺ ratio with Mössbauer 60 and compared this to the ratio calculated by stoichiometry using EMPA. Li et al. (2005) 61 found that in every instance the ratios were different. However it should be noted that 62 advances are being made to EMPA methodology (Matjuschkin et al. 2014) and increasingly 63 XANES is being used to estimate garnet Fe^{2+} : Fe^{3+} ratios (Berry et al. 2010; Hanger et 64 al. 2015). Although there are alternative permutations to the thermometer of Ellis and 65 Green (1979) most methods rely on the Fe-Mg K_D . A further limitation with this type of thermometer can arise through the relative ease of resetting of this exchange 66 67 during cooling. For these reasons exchange of slow-diffusing trace elements 68 between garnet and clinopyroxene has potential as a more reliable alternative 69 geothermometer, e.g. (Sun and Liang 2012, 2013, 2015). The trace element 70 concentrations of garnet and clinopyroxene from eclogite and garnet peridotite are 71 routinely measured (for example Harte and Kirkley (1997); Appleyard et al. (2007); Gréau 72 (2011)), often as an aspect of diamond exploration strategies. However, et al. 73 interpreting the trace element data is less routine (Griffin and Ryan 1995). Here we further

explore the use of trace element contents of coexisting garnet and clinopyroxene as ageothermometer.

76 Early work by Goldschmidt (1937) demonstrated that trace elements enter 77 specific mineral sites and he proposed that ionic charge and radius strongly influence 78 trace element uptake, as measured, for example, by the partition coefficient for a trace 79 element between coexisting phases. Based on the thermodynamic work of Nagasawa 80 (1966) and Brice (1975), Blundy and Wood (1994) and Wood and Blundy (1997) 81 developed the lattice strain model which allows for the prediction of trace element 82 partitioning between a mineral and melt as a function of temperature, pressure and mineral composition (X). The model describes how readily an element, i, with a 83 84 known ionic radius, r_i, will be incorporated into a crystal lattice. Blundy and Wood (1994) and Wood and Blundy (1997) describe the incorporation of trace ions into 85 crystal lattices via the lattice strain model: 86

87

Equation 1

90

89

91 Where D_i is the partition coefficient of element *i* between crystal and melt, D_o is 92 the theoretical strain-free partition coefficient, *E* is the apparent Young's modulus of 93 the lattice site, N_A is Avogadro's Number and r_o is the ideal cation size for the lattice 94 site of interest. Based on this model Wood and Blundy (1997) give equations to predict each term for clinopyroxene-melt partitioning of rare earth elements (REE),
and van Westrenen et al. (1997) and van Westrenen and Draper (1999) give
equivalent terms for garnet-melt partitioning of REE.

98 Figure 1, a schematic representation of the lattice strain model, shows that 99 as the cation radius, r_i , deviates from r_o so the partition coefficient decreases. A 100 large Young's Modulus, *E*, will narrow the parabola making it harder for the lattice to 101 accommodate a misfit ion. Wood and Blundy (1997) showed that the parabola is 102 lattice site- and cation charge-dependent. The latter dependency arises because 103 heterovalent substitutions in minerals (e.g. Nd³⁺ for Ca²⁺) require charge-balancing 104 coupled substitutions even when the mismatch between host and substituent ionic 105 radii is very small (Wood and Blundy 2001). In most rock-forming minerals a wide range of charge-coupled substitutions is possible (e.g. $Nd^{3+} + Al^{3+} = Ca^{2+} + Si^{4+}$ 106 107 or $Nd^{3+} + Na^{+} = 2Ca^{2+}$ in clinopyroxene; Wood and Blundy (1997)). The challenge is 108 to find the substitution mechanism that is most energetically favorable and best 109 suited to the bulk chemistry of the system.

110 Temperature and pressure also play a role in influencing the partition 111 coefficient. An increase in *T* and a decrease in *P* allow the crystal lattice sites to be 112 more flexible, i.e. reduce their effective *E*, which in turn allows them to accommodate 113 misfit cations more easily. Note also that *T* appears in the denominator to Equation 1 114 so that at very high temperatures all mineral-melt partition coefficients approach 115 unity.

116 The success of the lattice strain model for mineral-melt pairs, lies primarily 117 in the fact that the shear moduli of silicate melts are zero, hence $E^{melt}=0$. 118 Consequently from a purely lattice strain point of view there is no mechanical 119 energy associated with replacing one ion with another in a silicate melt. In reality 120 this is unlikely to be true, especially as other factors influence trace element 121 incorporation into melts, such as co-ordination environment, complexation, 122 configurational entropy etc. Experimental studies of melt-melt partitioning (e.g. 123 Watson (1976), Ryerson and Hess (1978), Schmidt et al. (2006)) reveal that elements 124 in general partition unequally between melts of different composition reflecting the 125 energetic preferences of ions with different charges and/or radii for melts with 126 different compositions/structures. However, the magnitude of melt-melt partition 127 coefficients is always smaller, by several orders of magnitude, than that of mineral-128 melt partition coefficients for the same range of ionic radii and charge, demonstrating 129 that it is the energetics of trace ion incorporation into minerals that dominates the 130 energetics of mineral-melt exchange equilibria. Moreover, atomistic simulations in 131 which ions are substituted onto lattice sites and the resultant relaxation (strain) 132 energies calculated (e.g. Allan et al. (2003)) corroborate the findings of mineral-133 melt partitioning studies.

Having established that it is the energetics of trace ion incorporation into crystals that dominates mineral-melt partitioning equilibria it is a simple matter to show that an understanding of mineral-melt partitioning for Mineral 1 and for Mineral 2 constitutes an approach to understanding trace element partitioning between Mineral 1 and Mineral 2. The object of this paper is to explore the possibility of extending the lattice strain models for clinopyroxene-melt and garnet-melt towards a better understanding of garnet-clinopyroxene partitioning. Through experiments we investigate the mineral-mineral partitioning of elements, rather than mineral-melt. Lee et al. (2007) used this approach to develop a version of the lattice strain model that describes trace element partitioning between olivine and cpx, which we have modified here for the case of partitioning between garnet and cpx. As our reference element we have chosen Y instead of Lu, which was used by Lee et al. (2007), due to the greater availability of reliable Y data (Y has a natural abundance approximately 60 times greater the Lu).

148

149
$$D_i^{grt/cpx} = D_Y^{grt/cpx} \cdot \exp\left(\frac{-4\pi N_A}{RT} \left[\frac{1}{2}(r_Y^2 - r_i^2)(E_{grt}r_o^{grt} - E_{cpx}r_o^{cpx}) + \frac{1}{3}(r_i^3 - r_Y^3)(E_{grt} - E_{cpx})\right]\right)$$

150

By referencing the model to an element it obviates the need to explicitly evaluate the ratio of D_0 parameters for garnet and cpx that appear in the mineral-melt formulations of the lattice strain model (Equation 1). Moreover, as all of the parameters in the exponential on the right hand side of Equation 2 can be calculated for the P-T-X of interest using existing models for cpx-melt and garnet-melt partitioning, so D_Y is a fit parameter for the experimental data. To add to this current methods of calculating D_0 require knowledge of the melt composition and as D_0 is not a true equilibrium constant we feel that this is a robust approach.

Equation 2

To test our model we performed a series of experiments aimed at investigating the partitioning of trace elements, particularly the rare earth elements (REE) and Y, between garnet and clinopyroxene, using a flux, e.g. a silicate melt, to promote crystal growth. The new experimental dataset is augmented by published experimental data on garnet-clinopyroxene pairs. Conditions of the new experiments 163 were designed so as to increase the coverage of P - T - X space. We will use our 164 experimental dataset to (a) investigate extension of the Lee et al. (2007) approach 165 to garnet and clinopyroxene (b) critically appraise the recent mineral-mineral 166 partitioning work by Sun and Liang (2015, 2013, 2012) and (c) develop a REE 167 geothermometer for coexisting garnet and cpx. We use experimental garnet and cpx 168 from both eclogitic and peridotitic bulk compositions to increase the applicability of the 169 models. In all cases the Nernst partition coefficient, D_{i} , is defined as the weight 170 concentration of the element *i* in garnet divided by the concentration of *i* in cpx. Thus 171 D_i is shorthand for $D^{grt/cpx}$.

172

174

Methods

173 Experimental Methods

175 Experimental starting materials (supplementary data table S1) consisted of 176 either a mechanical mixture of synthetic oxides (SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO) and carbonates (CaCO₃, Na₂CO₃, K₂CO₃) or a natural basanitic glass. Starting 177 178 materials were doped with trace elements chosen to represent the different 179 geochemical groups (HFSE, REE, LILE etc.) but also in a way that minimizes 180 analytical interferences during analysis. Analytical grade oxides of SiO₂, MgO and Al₂O₃ were dried at 1000 °C for 2 hours. Other oxides and carbonates were oven dried 181 182 at 200 °C for 24 hours. All oxides and carbonates were then stored either in a desiccator or an oven at 110 °C prior to mixing. Reagents were mixed in appropriate 183 184 proportions and ground under acetone to homogenize and reduce the grain size. 185 The mixture was decarbonated at 600 to 1000 °C over a minimum of 12 hours.

186 Starting material IP 1 (Table S1) is based on analyses of an eclogite xenolith 187 from the Roberts Victor mine. A synthetic hydrous "rhyolite" flux, based on a partial 188 melt in equilibrium with an eclogitic residue at subduction zone conditions (Klimm et 189 al. 2008), was mixed with the synthetic garnet powder and synthetic cpx powder to 190 enhance the equilibration rates on the timescales of experiments. The use of a 191 fluxing agent has previously proven to be successful in the case of zircon-garnet 192 partitioning by Rubatto and Hermann (2007). The rhyolite flux was formulated 193 using dried oxides and carbonates, as above, but alkalis were added as natural albite 194 and K-feldspar. For experimental run temperatures below 1300 °C 10 wt.% deionized 195 water was added with a micro-syringe. Finally, the flux, the synthetic garnet and cpx 196 powders were mixed in the desired proportions and ground under acetone to further homogenize. The weight proportions used for JP1 were 20:40:40, 197 198 flux:garnet:cpx. Of the other starting materials, ZrTi is a 25:25:50 mixture of 199 synthetic oxide mixes of grossular, pyrope and diopside, with extra Zr and Ti to 200 saturate with zircon and rutile, BAS is a natural basanitic glass used in experiments 201 by Green et al. (2000), AOB is a synthetic alkali olivine basalt based on previous 202 work by Withers (1997) and NSR-16 is a synthetic basaltic glass, similar in 203 composition to a 12.8 Ma transitional low-K basalt, from the Little North Santiam 204 River area of Oregon in the Western Cascades volcanic arc (R.M. Conrey, written 205 comm). Crystal seeds were not used in any experiments. These different starting 206 materials were chosen to generate garnet and cpx across a wide variation in bulk 207 composition.

208

Trace elements were added to all starting materials as ICP-standard nitrate

209 solutions using a micropipette and dried under a heat lamp. The doped mixtures were re-homogenized in an agate mortar and denitrified at 300 °C. As the BAS glass 210 211 is natural and already contains a wide range of trace elements only 200 ppm of Li 212 were added. JP 1, ZrTi, AOB and NSR-16 had a complete suite of trace elements added. 213 The trace element contents of all starting materials are given in Table S2. Following 214 doping and denitrification starting materials JP 1, ZrTi and AOB were melted and 215 quenched in a controlled atmosphere, vertical quench furnace at an fO_2 equivalent to the nickel-bunsenite (NNO) buffer, between 1000 and 1520 °C. This fixes the 216 217 $Fe^{2+}:Fe^{3+}$ ratio in the starting material to match the intrinsic fO_2 of the experimental 218 apparatus and thereby minimizes redox reactions, mediated by H₂ diffusion, taking 219 place during the experiments. The exact 'intrinsic' fO₂ of the various apparatus is 220 unknown but anecdotal evidence suggests it is above NNO. NSR-16 was prepared as 221 a hydrous glass, using Al(OH)3 as a source of H_2O . This trace element-doped powder 222 was loaded into an Au80:Pd20 capsule and held at 0.22 GPa and 1000 °C for 2 hrs in a 223 rapid-quench TZM cold-seal apparatus at NNO+1. To minimize Fe loss during 224 experiments the capsule material was a gold palladium alloy (Au80:Pd20). All 225 capsules were annealed and acid-cleaned before loading and welding. The outside 226 diameter of the capsules was 2 mm and they ranged in length from 0.5 to 2 mm. Some 227 experiments were run with two capsules each containing different starting 228 materials in end-to-end configuration.

Experiments from 3.0 to 3.4 GPa pressure were carried out using 1/2" endloaded piston cylinder apparatus at the University of Bristol. The pressure media 231 were NaCl, Pyrex and crushable alumina with a graphite furnace. The experiments 232 were pressurized and heated simultaneously with the pressure always being the 233 final variable to be increased, i.e. hot piston-in technique. During the experiment the 234 pressure was manually maintained at the desired value and the temperature was 235 measured using an axial $W_{95}Re_5-W_{75}Re_{25}$ thermocouple (not corrected for 236 pressure) and regulated by a Eurotherm controller. The pressure correction of 237 McDade et al. (2002b) was applied and verified by bracketing the quartz-coesite 238 boundary. RB627 (1.3 GPa) was performed in a 3/4" talc/Pyrex assembly with a 239 tapered graphite furnace and pressure-calibrated using the melting point of CsCI 240 (see McDade et al. (2002a)).

241 Experiments at pressures greater than 3.4 GPa were carried out using a Walker-242 type multi-anvil apparatus at Bayerisches Geoinstitut (B.G.I.), University College 243 London (U.C.L.) and the University of Bristol. In each case the pressure medium 244 was precast MgO octahedra with truncations of varying length depending on the 245 pressure required. Either an MgO or alumina spacer surrounded the capsule with a 246 ZrO_2 insulator around the furnace. Experiments at B.G.I. used the 10/4 assembly with 247 a LaCrO₃ furnace, at U.C.L. a 14/8 assembly with a graphite furnace and at Bristol an 248 18/11 assembly with graphite furnace. The temperature was measured with a 249 W₉₇Re₃-W₇₅Re₂₅ thermocouple, inserted radially in U.C.L. experiments and axially 250 at B.G.I. and Bristol. The experiments were pressurized over 3 hours and heated for 251 between 6 and 8 hours. The pressure calibrations used the following phase changes: 252 quartz-coesite, coesite-stishovite, Bi I-II, Bi III-V and CaGeO₄ (garnet to pervoskite). 253 All experiments were ended by turning the power off to give quench times of less

than 10 seconds to reach 300 $^{\circ}$ C.

255 Analytical Methods

256 Major element data were collected using the Cameca SX100 electron 257 microprobe at the University of Bristol. For both garnet and cpx the beam 258 conditions were 20 kV, 20 nA beam and 1 μm spot size. Peak count times ranged 259 from 10 to 30 s depending on the concentration of the element of interest.

260 The Cameca IMS-4f ion-microprobe at the University of Edinburgh was used to 261 measure trace elements in garnet and cpx of the experimental run products by 262 secondary ion mass spectrometry (SIMS). All samples had a 20 nm gold coat applied 263 under vacuum. A primary beam of ${}^{16}O^{-}$ with a net impact of energy of 15 keV was 264 used. Positive secondary ions were accelerated to 4500 V with an energy offset of 75 265 eV and a window of 40 eV to minimize transmission of molecular ions. The beam 266 current was varied as necessary to permit analysis of the smaller grains because, in 267 general, beam diameter is a strong function of beam current, i.e. 30 μm beam 268 diameter at 5 nA, 15 μm at 1.5 nA. All SIMS pits were examined subsequently by 269 SEM to check that there was no visible overlap onto adjacent phases. Secondary ion 270 yields were calibrated using standard glass NIST SRM 610 (Hinton 1990) and 271 checked using secondary standards of garnets DD1 (Irving and Frey 1978), AP, SG 272 and cpx SC8804 (van Westrenen 2000). The following positive secondary ion masses 273 were analyzed and ratioed to ³⁰Si (as determined by electron microprobe): ⁷Li, ¹¹B, ³⁰Si, ⁴²Ca, ⁴⁴Ca, ⁴⁵Sc, ⁴⁷Ti, ⁵¹V, ⁵⁹Co, ⁶⁹Ga, ⁸⁸Sr, ⁸⁹Y, ⁹⁰Zr, ⁹³Nb, ¹³⁸Ba, ¹³⁹La, ¹⁴⁰Ce, ¹⁴³Nd, 274 ¹⁴⁹Sm, ¹⁵¹Eu, ¹⁵⁷Gd, ¹⁵⁹Tb, ²⁶⁷Er, ¹⁷¹Yb ¹⁷⁵Lu, ¹⁷⁸Hf, ¹⁸¹Ta, ²⁰⁸Pb, ²³²Th, ²³⁸U. (Note that 275

⁷¹Ga was used for the NIST610 glass due to overlap on ⁶⁹Ga of ¹³⁸Ba, a species with 276 277 negligible concentration in garnet and clinopyroxene.) The count times per cycle were 5 s for all isotopes, except: 2 s for Si and ⁴²Ca, 3 s for ¹⁴⁰Ce, ⁴⁷Ti and ⁸⁸Sr, 7 s for 278 ¹⁴³Nd and ¹⁴⁹Sm and 10 s for ¹⁷⁸Hf. The number of cycles was between 8 and 15 to 279 produce statistically significant data, with low counting error. 280 Isobaric oxide 281 interferences were greatly minimized by the careful choice of elements, doping levels 282 and energy filtering of secondary ions. The remaining molecular interferences, such 283 as ²⁹Si¹⁶O on ⁴⁵Sc, were removed by conventional peak- stripping. Overlap of LREE 284 oxides on HREE was corrected using in-house REEO/REE values for cpx and values of 285 van Westrenen (2000) for garnet. Analysis of secondary standards demonstrated that 286 there was no significant secondary ion-yield differences between garnet and cpx thus 287 D_i is taken to be the Si-normalized concentration of an element in garnet divided by 288 that in cpx.

289 290

Results and Discussion

291 Experimental run conditions and major element mineral data measured by EMPA are 292 presented in Table 1 and Table 2. Experimental runs times were between 4 and 123 293 hours, see Table 1. We note that for the basanite runs these run durations are identical to 294 those of Green et al (2000) for the same starting materials and run conditions. Attainment 295 of equilibrium in the new experiments is demonstrated through the homogeneity of the 296 SEM images (Figure 2) combined with the small standard deviation in the major element 297 data, Table 1 and Table 2, along with the shape of the parabolae of the REE data. 298 The presented EMPA data for each experiment is a mixture of core and rim measurements, 299 therefore any variability within a crystal, i.e. zoning, would result in a large standard 300 deviation in the major element data. A total of 12 experiments contained garnet and cpx 301 crystals between 20 and 100 μm that could be analysed by ion-microprobe. 302 Occasionally garnets contained cpx inclusions, which were avoided during analysis. 303 Areas of melt or quench crystals occurred in some experiments. The garnet and cpx 304 end members were calculated using the methods of Deer et al. (1992) and Morimoto et 305 al. (1988) respectively. SIMS trace element data for cpx are presented in Table 3 and 306 for garnet in Table 4. Care was taken during data processing to check that there was no 307 contamination by other phases during analysis. One clear indication of glass 308 contamination is elevated concentrations of highly incompatible elements, such as U or 309 Th. In some cases contamination only involved a few analytical cycles and these were 310 eliminated during processing. In cases where there was persistent contamination 311 throughout the analysis the trace element data were discarded.

312 The major element composition of garnet varies very little between each bulk 313 composition. All garnets are pyrope-rich (0.65-0.41 mol fraction) with lesser amounts 314 of grossular (0.26-0.14 mol fraction) and almandine (0.32-0.07 mol fraction), where 315 almandine was calculated from stoichiometric Fe²⁺. The only experiment with a 316 greater almandine than grossular content is RB627. The majority of the experimental cpx are Na-rich (omphacite following the classification of Morimoto et al. (1988)) with 317 318 three being relatively Mg-rich and falling within the Ca-Fe-Mg quadrilateral. Aliv ranges between 0.175-0.003 cations per formula unit (c.p.f.u.), Na 0.507-0.108 c.p.f.u., 319 320 Ca 0.757-0.475 c.p.f.u., Mg 1.049-0.539 c.p.f.u. and Fe 0.375-0.069 c.p.f.u. The 321 concentration of Ca in both garnet and cpx increases with an increase in pressure, 322 however the rate of change per GPa is greatest in garnet, which may have potential 323 as a barometer, although this is not explored here.

The high Fe³⁺ content of the garnets and most cpx (Table 1 and Table 2) is consistent with the assumption of a run fO_2 above NNO. For instance, the average calculated garnet Fe³⁺/Fe^{tot} is 26% (range 8-41%; See Table 2) which is closer to the ReReO₂ buffered runs (~NNO+2) of Matjuschkin et al. (2014) than the 5% Fe³⁺/Fe^{tot} in garnets of the NNO runs of Rubatto & Hermann (2007). Note that at these high fO_2 values it is anticipated that >90% of the Eu can be considered as trivalent (see Burnham et al. (2015)).

331 Garnet-cpx trace element partition coefficient data, Figure 3, show that the 332 differing bulk compositions produce similar trends. In all experiments Sr has the 333 smallest garnet-cpx partition coefficient. The absolute concentration of Sr increases 334 greatly in both garnet and cpx with an increase in pressure, however the change in 335 concentration is similar in both minerals resulting in a modest increase in D_{Sr} with 336 *P*. A comparable effect is seen in Li with *P* except that the concentration in garnet 337 increases more quickly than cpx resulting in a potential barometer. This effect has 338 been previously identified by Hanrahan et al. (2009, 2009b). Lutetium has the 339 highest partition coefficient in all experiments.

340

341 Lattice Strain Model Applied to Garnet-Cpx Pairs

Our new data on REE partitioning between the dodecahedral X-site in garnet and the 8-fold M2 site in cpx are in agreement with previous studies. Figure 4 and Figure 5 show the partition coefficient plotted against the ionic radius of the cation in 8fold coordination, using ionic radii values from Shannon (1976). There is an 346 increase in concentration from La to Lu in both minerals, however the LREE have a 347 greater affinity for cpx than garnet, whereas HREE more readily enter garnet. The 348 change in the REE concentration in garnet, from LREE to HREE, is far greater than 349 that of cpx. The concentration of Sm is approximately equal in garnet and cpx, 350 resulting in a partition coefficient of around 1. Garnet-melt and cpx-melt data have 351 been shown to form parabolae by van Westrenen (2000) and Wood and Blundy 352 (1997) respectively. By combining the two mineral-melt parabolae, as we 353 effectively do here, we see an almost linear trend. This is in part because Sc is not 354 considered here as it enters the cpx M1 site rather than the M2 site which 355 accommodates the REE (Allan et al. 2003). Consequently, we only observe one limb 356 of what is still a parabola. One of the objectives of this paper is to investigate the 357 ability of the lattice strain model to describe partitioning between garnet and cpx. 358 To this end we have used the equations of Wood and Blundy (1997) and van 359 Westrenen and Draper (2007) to derive the lattice strain parameters r_0^{cpx} , E^{cpx} , r_0^{grt} , 360 E^{grt} . We find that these parameters describe the data well. Figure 4 and Figure 5 361 show the curve of weighted best fit for the lattice strain model for the new 362 experimental data (Equation 2) having adopted the Wood and Blundy (1997) and 363 van Westrenen and Draper (2007) r_o and E terms for cpx and garnet respectively. 364 As all variables are known, i.e. T, P and composition, this demonstrates the 365 agreement between theory and the experimental data and confers a self-consistency 366 between the published mineral-melt and the new mineral-mineral models.

367 To further investigate the lattice strain approach, garnet-cpx partitioning data368 from other experimental studies were also considered (Table S3). These

369 experiments cover a wide range of P – T conditions (1000 to 1750 °C and 1.5 to 7.0 370 GPa). As with our experiments, the weighted curve of best fit to the garnet-cpx REE 371 partition coefficients is calculated using Equation 2 with r_0 and E for cpx and garnet 372 calculated from Wood and Blundy (1997) and van Westrenen and Draper (2007) 373 respectively. Most data are well described by the lattice strain model and the 374 imposed lattice strain parameters (see Figure S1, Figure S2 and Figure S3). Poor 375 agreement between the model and the data can often be attributed to the quality of 376 the analyses. The experiments by Hauri et al. (1994) and Klein et al. (2000), for 377 example, show many inconsistencies with the other datasets, possibly due to 378 contamination by glass or cpx in the garnet analyses. For this reason these data 379 were not included in further analysis. The experiments by Kuzyura et al. (2010), 380 however, have small analytical uncertainties and no obviously anomalous results, 381 yet the model provides a poor fit to the data (Figure S2). The primary difference 382 between these experiments and all the others is that Kuzvura et al. (2010) used a 383 carbonate-silicate mix, as opposed to silicate only. This results in garnets with a 384 much greater Ca content (around 0.5 mole fraction grossular end-member as 385 opposed to between 0.1 and 0.2 in the other experiments). The effect of Ca on REE 386 partitioning was investigated by van Westrenen et al. (1999) who found that as the 387 grossular component in garnet increases E^{grt} decreases. van Westrenen and Draper 388 (2007) provide a correction for Ca in the r_0^{grt} term which is then used to calculate 389 E^{grt} . In many instances this is acceptable however in very Ca-rich garnets this 390 approach breaks down, as shown by the Kuzyura et al. (2010) experiments. As the 391 experiments by Kuzyura et al. (2010) are extreme in their Ca content they are not included in the temperature comparisons in this study. We do suggest that further
work is required to fully quantify the effect of high-Ca on E^{grt}.

394 Sun and Liang (2012, 2013) present a model for garnet-cpx partitioning of 395 REE in which they define new terms for predicting E and r for both minerals. A 396 comparison of the r_0^{cpx} and E^{cpx} values obtained by Sun and Liang (2012) to those 397 of Wood and Blundy (1997) shows very good agreement. However, for r_0^{grt} the term 398 of Sun and Liang (2013) is calculated using only the Ca content of garnet and E^{grt} 399 is only dependent on r_0^{grt} . The result is that both parameters in garnet are defined 400 solely by the Ca content. Previous work by van Westrenen et al. (1999); van 401 Westrenen (2000); van Westrenen and Draper (2007) demonstrated that E^{grt} is 402 heavily dependent on a number of other garnet compositional terms, in addition to 403 T and P. Comparing the E^{grt} values calculated through the method of Sun and Liang 404 (2013) with those calculated with the method of van Westrenen and Draper (2007) 405 demonstrates little correlation between the values (Figure 6). The method of Sun 406 and Liang (2013) underestimates the majority of the E^{grt} by several hundred GPa 407 compared to the method of van Westrenen and Draper (2007). E^{grt} values from the 408 two experiments by Kuzyura et al. (2010) are overestimated by around 250 GPa.

409 Calculating E^{cpx} , r_0^{cpx} , E^{grt} and r_0^{grt} using the method of Sun and Liang (2013, 410 2015) and comparing the fit to the experimental data, analogous to figures Figure 4 411 and Figure 5, demonstrates little correlation between the fit and the data. The 412 mismatch can be attributed entirely to the value of E^{grt} . Figure 6 indicates that using 413 only Ca in garnet to calculate both E^{grt} and r_0^{grt} is not robust. Whilst the method 414 given by Sun and Liang (2013) aids in predicting temperature and pressure their 415 E^{grt} values are inconsistent with garnet-melt experimental data.

416	Lattice Strain Model and Temperature
417	The partitioning of trace elements between garnet and cpx given by Equation 2 has an
419	inherent T term. Based solely on Equation 2, a change in the partitioning with T is
420	predicted, both through its occurrence in the denominator of the exponential terms
421	and in its tendency to reduce E and increase r_0 . In contrast, although pressure will
422	also affect E and r_0 the magnitude of this effect is relatively small, compared to that of
423	temperature. The influence of temperature was confirmed by the work of Wood and
424	Blundy (1997) and van Westrenen and Draper (2007) who found that E in both cpx
425	and garnet has a quantifiable temperature dependence. Dohmen and Blundy (2014)
426	came to a similar conclusion from a study of plagioclase-melt trace element partitioning.
427	Figure 7 confirms the importance of T by displaying the change in the shape of the
428	parabola when all the terms are kept constant and only T is altered. Equation 2 can be
429	re-arranged to make T the dependent variable and therefore give a geothermometer
430	that can be applied to REE partitioning between coexisting garnet and cpx.
431	

432
$$D_{i}^{grt/cpx} = D_{j}^{grt/cpx} \cdot \exp\left(\frac{-4\pi N_{A}}{RT} \left[\frac{1}{2}(r_{j}^{2} - r_{i}^{2})(E_{grt}r_{o}^{grt} - E_{cpx}r_{o}^{cpx}) + \frac{1}{3}(r_{i}^{3} - r_{j}^{3})(E_{grt} - E_{cpx})\right]\right)$$

Equation 3

$$T(K) = \frac{\frac{-4\pi N_A}{R} \left[\frac{1}{2} (r_j^2 - r_i^2) (E_{grt} r_o^{grt} - E_{cpx} r_o^{cpx}) + \frac{1}{3} (r_i^3 - r_j^3) (E_{grt} - E_{cpx}) \right]}{\ln \left(\frac{D_i}{D_j} \right)}$$

435

436

437 Where *j* is any REE other than *i*. As three of the parameters in the lattice 438 strain model (E^{cpx}, E^{grt} and r_o^{grt}) require temperature to be known an iterative 439 approach was adopted to solve for the temperature. This negates the need for 440 developing new, temperature-independent methods for calculating each of these 441 variables and consequently compliments the mineral-melt partitioning work of 442 previous studies. We consider it essential that any garnet-cpx partitioning model is 443 consistent with garnet- and cpx-melt partitioning, rather than invoking a set of 444 new, best-fit lattice strain parameters for one or both minerals.

To calculate temperature we use the partition coefficients of two rare earth elements (replacing *i* and *j* in Equation 3), Equation 3 and the lattice strain parameters as defined by Wood and Blundy (1997) and van Westrenen and Draper (2007). For clarity, the lattice strain terms given by Wood and Blundy (1997) and van Westrenen and Draper (2007), where *P* is in GPa and *T* is absolute temperature in Kelvin, are:

$$E^{cpx} = 318.6 + 6.9P - 0.036T$$

$$r_o^{cpx} = 0.974 + 0.067X_{Ca}^{M2} - 0.051X_{Al}^{M1}$$

$$r_o^{grt} = 0.9302X_{Py} + 0.993X_{Gr} + 0.916X_{Alm} + 0.946X_{spes} + 1.05(X_{And} + X_{Uv})$$

$$-0.0044(P-3) + 0.000058(T-1818)$$

$$E^{grt} = 2826(1.38 + r_o^{grt})^{-3} + 12.4P - 0.072T + 237(Al + Cr)$$

451

452 Any two REE can be chosen to replace *i* and *j* in Equation 3 but it is preferable 453 to choose two elements that have a large relative difference in ionic radius and exist 454 in concentrations high enough to return accurate measurements. An important 455 consideration is the precision of the REE analysis. LREE are invariably in very low 456 concentration in natural garnet and subject to considerable analytical uncertainty. To 457 minimize the error in our temperature prediction we calculated the temperature 458 using multiple REE pairs and compared the weighted mean to the experimental 459 temperature. We assumed that calculating the temperature with multiple pairs 460 avoids too much weight being placed on one erroneous datum. The elements not used 461 in the temperature calculations are La and Ce as they are in very low concentration in 462 garnet and Tb, Dy and Ho as they are often not included in experimental charges. 463 For each temperature calculation the terms in the lattice strain model were 464 calculated with an initial best-guess temperature in order to derive the temperature-dependent terms on the right hand side of Equation 3. 465 The 466 temperature was then adjusted iteratively until the input and the calculated 467 temperature were the same to within 1 degree. The temperature for each element 468 pair, along with the error from the ion probe data, is used to calculate a weighted 469 mean for each experiment. This approach takes into account the uncertainty in the 470 trace element data. Calculated temperatures less than 600 or greater than 2000 °C 471 were assumed to be erroneous and removed from consideration. An excel 472 spreadsheet to perform these calculations is available from the first author.

473	Comparing the temperature calculated through our new method, which uses
474	the lattice strain parameters of Wood and Blundy (1997) and van Westrenen and
475	Draper (2007), with the experimental temperature shows very good agreement (Table
476	5 and Figure 8a). The mean absolute deviation between the temperatures, when the
477	high-Ca experiments by Kuzyura et al. (2010) are disregarded, is only 76 $^\circ$ C.
478	The broad range of bulk compositions for our validation experimental dataset
479	demonstrate that our approach can be applied to any coexisting garnet-cpx pairs.
480	
481	
101	
482	Applications
483	Although the majority of the garnet-cpx geothermometers in common usage
484	utilize the major elements we believe that our rare earth element approach has a
485	number of advantages.
486	1) The use of rare earth elements as a geothermometer has an advantage
487	over the Fe-Mg exchange models as the slow diffusion of 3+ cations (van Orman et al.
488	2002) leads to a correspondingly higher closure temperature (Frost and Chacko
489	1989). Work by Pattison (1994) and others shows that the Fe-Mg exchange can
490	return differing temperatures that depend on the grain size of the minerals analyzed.
491	Pattison (1994) suggested that the Fe-Mg in granulites may record the temperature
492	at which inter granular exchange ceased in the rock. By using REE, which diffuse
493	much more slowly, the peak metamorphic temperature should be recovered. See Yao
494	and Liang(2015) and Sun and Liang (2015) for detailed discussion of closure
495	temperatures in bi-mineralic systems.

496 2) The REE geothermometer presented here is developed independently of 497 any other geothermometer. Other models, such as Witt-Eickschen and O'Neill 498 (2005), use natural xenoliths along with extant major element thermometers to 499 develop trace element geothermometers. Such models will therefore inherit any 500 inaccuracies from their "parent" model against which they are calibrated. This will 501 not be the case with our model as it has been developed independently of any pre-502 existing geothermometer.

3) The thermometer developed here is entirely consistent with a substantial body of garnet-melt and cpx-melt partitioning studies that have gone some way to refining the key lattice strain parameters. We have not had to invoke new lattice strain parameters for the specific purpose of recovering temperature from garnet-cpx pairs.

4) Finally, the availability of a large number of REE data gives our approach considerable flexibility in that different pairs of REE can be used, according to data availability and precision. Through combining the temperature predictions of multiple REE pairs the most accurate temperature can be estimated.

An enduring shortcoming of this and other thermometers is the need to know the equilibrium pressure. Throughout this study where a pressure estimate is required, such as in predicting E^{grt}, the experimental *P* has been used. Currently the barometers of Simakov (2008) and Sun and Liang (2015) are available for garnet-cpx pairs. Alternatively, many studies use an assumed pressure of 5 GPa to compare data. To avoid including uncertainties inherent in the barometers and to clearly display the error associated with our model we have only used experimental 519 pressures. An increase of 1 GPa in assumed pressure increases the temperature 520 estimate by, on average, 50 °C in our model irrespective of the REE pair chosen.

521 Our experiments show that the effect of pressure on rare earth element 522 partitioning in isothermal, isochemical experiments is not consistent enough to be used 523 as barometer. Comparing the isothermal experiments, Figure 9, for experiments 524 carried out at 1200 and 1400 °C shows that there is not a consistent effect of 525 pressure that can be used to solve for the pressure. The experiments carried out at 526 1200 °C, but variable pressure, are all within error of each other. The experiments 527 at 1400 °C appear to show a pressure effect, however, on closer inspection the effect 528 is not consistent.

- 529
- 530

Comparison to existing thermometers

531 The Fe-Mg exchange geothermometer of Ellis and Green (1979) is the most 532 widely used method of estimating temperature for garnet-clinopyroxene pairs. То 533 evaluate our new geothermometer we have calculated the temperature using the 534 method of Ellis and Green (1979), both with and without the calculation of Fe^{2+} by 535 stoichiometry. We have also calculated temperature for the same 536 experiments with the REE method of Sun and Liang (2015) and compared all T estimates to the experimental temperature (Table 5). Points of note are that 537 538 temperature estimates for some of the experiments carried out during this study are 539 significantly over-estimated using the method of Ellis and Green (1979). Even when 540 the error associated with the Fe²⁺ calculation is removed ($T_{(EG^*)}$ in Table 5) the 541 temperature estimates are still several hundred degrees too high. This results in 542 a mean absolute deviation of 240 °C between the temperature calculated using the 543 method of Ellis and Green (1979) and the experimental temperature. The mean 544 absolute deviation between the experimental temperature and that calculated T using 545 the method of Sun and Liang (2014) is 174 °C. This value is compared with our 546 lattice strain approach which has an absolute mean deviation of only 76 °C when the 547 temperature is calculated using the mean of all REE pairs. (The highly discrepant 548 values for Kuzyura et al. (2010) data are not included in either of the REE models.) 549 This clearly demonstrates that not only can the lattice strain model be used to 550 estimate temperature but also the *T* is more accurate than the most commonly used 551 eclogitic geothermometer. It should be reemphasized that our formulation is not 552 calibrated on the experimental data presented in Table 5. We have simply 553 transferred the lattice strain parameters from garnet-melt and cpx-melt models and 554 applied them. Thus this is a fair test of all thermometers.

- 555
- 556

Implications

557 In this paper we explore the potential of the lattice strain model, as derived from studies 558 of mineral-melt partitioning, to be used as a geothermometer. By testing our approach 559 to estimating temperature with both eclogitic and peridotitic minerals we have 560 demonstrated the versatility of the lattice strain model as a thermometer for mantle 561 minerals. Through focusing on garnet and cpx, which are stable over a very wide range 562 of temperature and pressure conditions, we have developed a model that has very wide-563 reaching applications, both in metamorphic geology, tectonic reconstructions and 564 diamond exploration. Whilst the focus of this paper is on the partitioning of garnet

565	and cpx the approach taken here can be applied to any coexisting mineral pair, as
566	long as a method exists to calculated E and r for the minerals of interest. In light of
567	recent predictive models for plagioclase-melt partitioning of trace elements
568	(Dohmen and Blundy 2014) the potential of cpx-plagioclase pairs as trace element
569	geothermometers would benefit from further evaluation. It also stands to reason
570	that this approach could be used to estimate T from mineral-melt partitioning data,
571	which can be applied to volcanic systems.
572	
573	
574	
575	Acknowledgements
576	JP is grateful to Rio Tinto for a PhD studentship at the University of Bristol, B.G.I. and
577	Dave Dobson for access to their multi-anvil apparatus and Richard Hinton for
578	assistance with the ion-microprobe analyses. JB acknowledges funding from ERC
579	Advanced Grant CRITMAG and a Royal Society Wolfson Research Merit Award. This
580	work has benefitted from discussion with Chris Smith, Russell Sweeney, John
581	Schumacher, Susanne Skora and Wim van Westrenen. We thank Yan Liang and an
582	anonymous reviewer for thoughtful reviews of our manuscript.

583 584	References
585	Adam, J., and Green, T. (2006) Trace element partitioning between mica- and
586	amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1.
587	Experimental results and the investigation of controls on partitioning
588	behaviour. Contributions to Mineralogy and Petrology, 152, 1–17.
589	Ai, Y. (1994) A revision of the garnet-clinopyroxene Fe2+-Mg exchange
590	geothermometer. Contributions to Mineralogy and Petrology, 115, 467–
591	473.
592	Allan, N.L., Du, Z., Lavrentiev, M.Y., Blundy, J.D., Purton, J.A., and Westrenen, W.
593	van (2003) Atomistic simulation of mineral–melt trace-element
594	partitioning. Physics of the Earth and Planetary Interiors, 139, 93 – 111.
595	Appleyard, C.M., Bell, D.R., and le Roex, A.P. (2007) Petrology and geochemistry
596	of eclogite xenoliths from the Rietfontein kimberlite, Northern Cape.
597	Contributions to Mineralogy and Petrology, 154, 309–333.
598 599 600	Bennett, S., Blundy, J., and Elliott, T. (2004) The effect of sodium and titanium on crystal-melt partitioning of trace elements. Geochimica et Cosmochimica Acta, 68, 2335–2347.
601 602 603	Berry, A.J., Yaxley, G.M., Woodland, A.B., and Foran, G.J. (2010) A XANES calibration for determining the oxidation state of iron in mantle garnet. Chemical Geology, 278, 31–37.
604 605	Blundy, J., and Wood, B. (1994) Prediction of crystal-melt partition coefficients from elastic-moduli. Nature, 372, 452–454.
606	Brice, J. (1975) Some thermodynamic aspects of growth of strained crystals.
607	Journal of Crystal Growth, 28, 249–253.
608	Deer, W.A., Howie, R.A., and Zussman, J. (1992) An introduction to the Rock
609	Forming Minerals Vol. 2. Prentice Hall.
610	Dohmen, R., and Blundy, J.D. (2014) A predictive thermodynamic model for
611	element partitioning between plagio- clase and melt as a function of
612	pressure, temperature and composition. American Journal Of Science,
613	314, 1310–1372.
614	Ellis, D., and Green, D. (1979) An experimental study of the effect of Ca upon
615	garnet-clinopyroxene Fe-Mg exchange equilibria. Contributions to
616	Mineralogy and Petrology, 71, 13–22.
617	Frost, B.R., and Chacko, T. (1989) The granulite uncertainty principle -
618	Limitations on thermobarometry in granulites. Journal of Geology, 97,
619	435–450.

620	Goldschmidt, V. (1937) The principles of distribution of chemical elements in
621	minerals and rocks. The seventh Hugo Muller Lecture, delivered before
622	the Chemical Society on March 17th, 1937. Journal Of The Chemical
623	Society, 655–673.
624	Gréau, Y., Huang, JX., Griffin, W.L., Renac, C., Alard, O., and O'Reilly, S.Y. (2011)
625	Type I eclogites from Roberts Victor kimberlites: Products of extensive
626	mantle metasomatism. Geochimica et Cosmochimica Acta, 75, 6927–6954.
627	Green, T., Blundy, J., Adam, J., and Yaxley, G. (2000) SIMS determination of trace
628	element partition coefficients between garnet, clinopyroxene and hydrous
629	basaltic liquids at 2-7.5 GPa and 1080-1200 oC. Lithos, 53, 165–187.
630 631 632	Griffin, W.L., and Ryan, C.G. (1995) Trace elements in indicator minerals: area selection and target evaluation in diamond exploration. Journal of Geochemical Exploration, 53, 311.
633	Hanger, B.J., Yaxley, G.M., Berry, A.J., and Kamenetsky, V.S. (2015) Relationships
634	between oxygen fugacity and metasomatism in the Kaapvaal subcratonic
635	mantle, represented by garnet peridotite xenoliths in the Wesselton
636	kimberlite, South Africa. Lithos, 212, 443–452.
637	Hanrahan, M., Brey, G., Woodland, A., Altherr, R., and Seitz, H. (2009) Towards a
638	Li barometer for bimineralic eclogites: experiments in CMAS.
639	Contributions to Mineralogy and Petrology, Online.
640	Harte, B., and Kirkley, M.B. (1997) Partitioning of trace elements between
641	clinopyroxene and garnet: Data from mantle eclogites. Chemical Geology,
642	136, 1–24.
643 644 645	Hauri, E., Wagner, T., and Grove, T. (1994) Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chemical Geology, 117, 149–166.
646	Hinton, R. (1990) Ion microprobe trace-element analysis of silicates-
647	Measurement of multi-element glasses. Chemical Geology, 83, 11–25.
648 649 650	Irving, A.J., and Frey, F.A. (1978) Distribution of trace-elements between garnet megacrysts and host volcanic liquids of kimberllitic to rhyolitic composition. Geochimica et Cosmochimica Acta, 42, 771–787.
651	Klein, M., Stosch, H., Seck, H., and Shimizu, N. (2000) Experimental Partitioning of
652	High Field Strength and Rare Earth Elements Between Clinopyroxene and
653	Garnet in Andesitic to Tonalitic Systems. Geochimica et Cosmochimica
654	Acta, 64, 99–115.
655	Klemme, S., Blundy, J., and Wood, B. (2002) Experimental constraints on major
656	and trace element partitioning during partial melting of eclogite.
657	Geochimica et Cosmochimica Acta, 66, 3109–3123.

658 659 660 661	Klimm, K., Blundy, J.D., and Green, T.H. (2008) Trace element partitioning and accessory phase saturation during H2O-saturated melting of basalt with implications for subduction zone chemical fluxes. Journal of Petrology, 49, 523–553.
662	Kuzyura, A.V., Wall, F., Jeffries, T., and Litvin, Y.A. (2010) Partitioning of trace
663	elements between garnet, clinopyroxene and diamond-forming
664	carbonate-silicate melt at 7 GPa. Mineralogical Magazine, 74, 227–239.
665	Lee, CT.A., Harbert, A., and Leeman, W.P. (2007) Extension of lattice strain
666	theory to mineral/mineral rare-earth element partitioning: An approach
667	for assessing disequilibrium and developing internally consistent
668	partition coefficients between olivine, orthopyroxene, clinopyroxene and
669	basaltic melt. Geochimica et Cosmochimica Acta, 71, 481–496.
670 671 672	Li, Y., Zheng, Y., and Fu, B. (2005) Mossbauer spectroscopy of omphacite and garnet pairs from elogites: Application to geothermobarometry. American Mineralogist, 90, 90–100.
673	Matjuschkin, V., Brey, G.P., Hoefer, H.E., and Woodland, A.B. (2014) The influence
674	of Fe3+ on garnet-orthopyroxene and garnet-olivine geothermometers.
675	Contributions to Mineralogy and Petrology, 167.
676 677 678	McDade, P., Wood, B., and Blundy, J. (2002a) Experimental determination of near-solidus peridotite trace partition coefficients. Geochimica et Cosmochimica Acta, 66, A499.
679	McDade, P., Wood, B., Van Westrenen, W., Brooker, R., Gudmundsson, G., Soulard,
680	H., Najorka, J., and Blundy, J. (2002b) Pressure corrections for a selection
681	of piston-cylinder cell assemblies. Mineralogical Magazine, 66, 1021–
682	1028.
683	Morimoto, N., Fabries, J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifert, F.A., and
684	Zussman, J. (1988) Nomenclature of pyroxenes. American Mineralogist,
685	73, 1123–1133.
686	Nagasawa, H. (1966) Trace Element Partition Coefficient In Ionic Crystals.
687	Science, 152, 767–&.
688	Nakamura, D. (2009) A new formulation of garnet-clinopyroxene
689	geothermometer based on accumulation and statistical analysis of a large
690	experimental data set. Journal of Metamorphic Geology, 27, 495–508.
691	Pattison, D.R.M. (1994) Are Reversed Fe-Mg Exchange And Solid-Solution
692	Experiments Really Reversed. American Mineralogist, 79, 938–950.
693 694 695	Powell, R. (1985) Regression diagnostics and robust regression in geothermometer geobarometer calibration - The garnet clinopyroxene geothermometer revisited. Journal of Metamorphic Geology, 3, 231–243.

696	Raheim, A., and Green, D. (1974) Experimental determination of temperature
697	and pressure-dependence of Fe-Mg partition coefficient for coexisting
698	garnet and clinopyroxene. Contributions to Mineralogy and Petrology, 48,
699	179–203.
700 701 702	Rubatto, D., and Hermann, J. (2007) Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chemical Geology, 241, 38–61.
703	Ryerson, F.J., and Hess, P.C. (1978) Implications of liquid-liquid distribution
704	coefficients to mineral-liquid partitioning. Experimental trace element
705	geochemistry, 42, 921–932.
706	Salters, V.J.M., and Longhi, J. (1999) Trace Element Partitioning During the Initial
707	Stages of Melting Beneath Mid-Ocean Ridges. Earth and Planetary Science
708	Letters, 166, 15–30.
709	Salters, V.J.M., Longhi, J., and Bizimis, M. (2002) Near Mantle Solidus Trace
710	Element Partitioning at Pressures up to 3.4 GPa. Geochemistry Geophysics
711	Geosystems, 3.
712	Schmidt, M., Connolly, J., Gunther, D., and Bogaerts, M. (2006) Element
713	partitioning: The role of melt structure and composition. Science, 312,
714	1646–1650.
715	Schumacher, J.C. (1991) Empirical ferric iron corrections - Necessity,
716	assumptions and effects on selected geothermobarometers. Mineralogical
717	Magazine, 55, 3–18.
718	Shannon, R. (1976) Revised Effective Ionic-Radii And Systematic Studies Of
719	Interatomic Distances In Halides And Chalcogenides. Acta
720	Crystallographica Section A, 32, 751–767.
721	Simakov, S.K. (2008) Garnet-clinopyroxene and clinopyroxene
722	geothermobarometry of deep mantle and crust eclogites and peridotites.
723	Lithos, 106, 125–136.
724	Sun, C., and Liang, Y. (2012) Distribution of REE between clinopyroxene and
725	basaltic melt along a mantle adiabat: effects of major element
726	composition, water, and temperature. Contributions to Mineralogy and
727	Petrology, 163, 807–823.
728	——— (2013) The importance of crystal chemistry on REE partitioning between
729	mantle minerals (garnet, clinopyroxene, orthopyroxene, and olivine) and
730	basaltic melts. Chemical Geology, 358, 23 – 36.
731 732	——— (2015) A REE-in garnet-clinopyroxene thermobarometer for eclogites, granulites and garnet peridotites. Chemical Geology, 393-394, 79–92.

733	Tuff, J., and Gibson, S.A. (2007) Trace-element partitioning between garnet,
734	clinopyroxene and Fe-rich picritic melts at 3 to 7 GPa. Contributions to
735	Mineralogy and Petrology, 153, 369–387.
736	Van Orman, J.A., Grove, T.L., Shimizu, N., and Layne, G.D. (2002) Rare earth
737	element diffusion in a natural pyrope single crystal at 2.8 GPa.
738	Contributions to Mineralogy and Petrology, 142, 146.
739	Van Westrenen, W. (2000) Thermodynamics of garnet-melt partitioning.
740	University of Bristol.
741	Van Westrenen, W., and Draper, D.S. (2007) Quantifying garnet-melt trace
742	element partitioning using lattice-strain theory: new crystal-chemical and
743	thermodynamic constraints. Contributions to Mineralogy and Petrology,
744	154, 717–730.
745	Van Westrenen, W., Blundy, J., and Wood, B. (1999) Crystal-chemical controls on
746	trace element partitioning between garnet and anhydrous silicate melt.
747	American Mineralogist, 84, 838–847.
748	Van Westrenen, W., Blundy, J., and Wood, B. (2000) Effect of Fe2+ on garnet-melt
749	trace element partitioning: experiments in FCMAS and quantification of
750	crystal-chemical controls in natural systems. Lithos, 53, 189–201.
751 752 753	Watson, E.B. (1976) Two-Liquid Partition Coefficients: Experimental Data and Geochemical Implications. Contributions to Mineralogy and Petrology, 56, 119–134.
754	Withers, A (1997) Water in the Mantle. University of Bristol.
755 756 757 758	Witt-Eickschen, G., and O'Neill, H. (2005) The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chemical Geology, 221, 65–101.
759	Wood, B.J., and Blundy, J.D. (1997) A predictive model for rare earth element
760	partitioning between clinopyroxene and anhydrous silicate melt.
761	Contributions to Mineralogy and Petrology, 129, 166–181.
762	——— (2001) The effect of cation charge on crystal-melt paritioning of trace
763	elements. Earth and Planetary Science Letters, 188.
764	Yao, L., and Liang, Y. (2015) Closure temperature in cooling bi-mineralic systems:
765	I. Definition and with application to REE-in-two-pyroxene thermometer.
766	Geochimica et Cosmochimica Acta, 162, 137–150.
767 768 769	Figures

770

Figure 1. Schematic representation of the terms in the lattice strain
model taken from Wood and Blundy (1997). The Nernst partition
coefficient describes the partitioning of an element between a mineral
and melt. The parameters are defined in the text.

775

- 776
- Figure 2. SEM images of typical experimental run products demonstrating
 homogenous grains, indicative of equilibrium. a is a piston cylinder experiment,
 RD25, at 1200 °C and 3.4 GPa. b is a multi-anvil experiment, V545, at 1400 °C
 and 10 GPa. The scale bar is 100 μm in both cases.
- 781
- 782
- Figure 3. Spider diagram of partition coefficients between garnet and cpx for
 trace element data generated in this research. a is JP1 starting composition, b is
 BAS and c is the AOB, ZrTi and NSR-16 starting mixes.

786

- Figure 4. Experimental REE partitioning between garnet and cpx as a function
 of ionic radius of the element. The red line shows the weighted fit calculated
 using Equation 2 with values of *D* and *r* calculated by the method of Wood and
 Blundy (1997) and van Westrenen and Draper (2007). Error bars show 1
- s.d. of the mean.

792

- Figure 5. Experimental REE partitioning between garnet and cpx as a function of
 ionic radius of the element. The red line shows the weighted fit calculated using
 Equation 2 with values of *D* and *r* calculated by the method of Wood and Blundy
 (1997) and van Westrenen and Draper (2007). Error bars show 1 s.d. of the
- 797 mean.

798

Figure 6. Comparison of values of E^{grt} calculated through the model of Sun and Liang (2013) ($E_{(S\&L)}$) with those found with the model van Westrenen and Draper (2007) ($E_{(vW\&D)}$) using the experimental the garnet-cpx data set.

802

- Figure 7. The effect of change in *T* on the partitioning of REE. The black lines
 use the same experimental data values for E and r and change only *T* from 800 to
 1400 °C in 200 °C intervals.
- 806

- Figure 8. a. Comparison of experimental temperature with *T* found through a
 weighted mean of REE pairs, from Nd to Lu, and the lattice strain model, Equation
- 810 3. Error bars are shown where larger than symbol. The red circles are
- 811 experiments from this study and the black diamonds are those from the
- 812 literature, see **Table 5**. The mean absolute deviation is only 75 °C for all the data.
- b. Comparison of calculated *T* using the weighted mean temperature using all

- 814 REE pairs lattice strain model $(T_{(JP)})$ with the *T* found using Ellis and Green
- 815 (1979) $(T_{(EG)})$ and Sun and Liang (2015) $(T_{(SL)})$, which have a mean absolute
- 816 deviation of 240 and 278 °C respectively. In both figures the black line shows the
- 817 1:1 relationship.

818

- **Figure 9:** Comparison of isothermal, isochemical experiments to show the effect
- 820 of pressure. The temperature is the experimental *T*.
- 821
- 822 **Figure S1:** Graphs showing published data with red fit line calculated using the
- methods of Wood and Blundy (1997) and van Westrenen and Draper (2007).
- 824 The superscript 1 denotes data are normalized to Yb, superscript 2 are
- 825 normalized to Eu and superscript 3 denotes Er, as opposed to Y, as no Y
- 826 partitioning data are available.

- 828 **Figure S2:** See **Figure S1** for explanation.
- 829
- 830
- 831 **Figure S3:** See **Figure S1** for explanation.

Table 1: Cpx wt% EMPA data

Experiment	BL58		RD25		G21		V547		V546		V545		BL88		RD56		G25		RD56 AOB		UCL3		RB627	
Starting Comp.	JP 1		JP 1		JP 1		JP 1		JP 1		JP 1		BAS		BAS		BAS		AOB		ZrTi		NSR- 16	
Т	1200		1200		1200		1400		1400		1400		1100		1200		1200		1200		1120		970	
Р	3.0		3.4		6.0		6.0		8.0		10.0		3.0		3.0		5.0		3.0		5.0		1.3	
t	6		4		7		6		6		6		48		48		7		48		10		123	
n	20		11		6		20		29		14		21		3		3		17		8		6	
SiO ₂	53.07	(32)	54.75	(24)	56.00	(76)	54.21	(78)	56.17	(37)	56.55	(30)	51.12	(66)	50.27	(56)	52.65	(42)	51.01	(38)	53.80	(36)	48.4	(41)
TiO ₂	0.07	(2)	0.05	(1)	0.39	(57)	0.06	(2)	0.17	(1)	0.14	(1)	0.88	(22)	0.70	(4)	0.35	(3)	0.44	(2)	0.46	(10)	1.21	(15)
Al ₂ O ₃	4.29	(40)	3.49	(40)	9.44	(107)	9.18	(85)	9.39	(78)	8.84	(51)	6.78	(67)	7.65	(34)	6.07	(62)	5.61	(24)	5.23	(31)	8.14	(47)
Cr_2O_3	1.11	(40)	0.94	(41)	0.44	(28)	0.02	(2)	0.68	(15)	0.68	(8)	0.07	(4)	0.08	(2)	0.08	(2)	0.50	(14)	0.03	(1)		
FeO	3.77	(15)	4.06	(27)	3.17	(110)	4.07	(27)	4.60	(29)	4.77	(19)	6.06	(32)	6.66	(27)	4.81	(15)	6.97	(30)	5.45	(50)	11.88	(155)
MnO	0.10	(1)	0.12	(1)	0.05	(3)	0.06	(2)	0.04	(1)	0.04	(1)	0.11	(2)	0.09	(1)	0.07	(1)	0.11	(1)	0.13	(1)	0.29	(6)
MgO	17.79	(42)	19.77	(76)	11.17	(132)	12.60	(45)	10.69	(46)	10.24	(27)	12.87	(59)	12.54	(20)	13.66	(50)	14.01	(30)	15.03	(27)	10.91	(89)
CaO	17.87	(49)	15.54	(136)	14.39	(134)	13.91	(50)	13.00	(67)	12.54	(42)	19.28	(24)	18.48	(26)	18.32	(22)	18.83	(33)	16.97	(35)	16.64	(110)
Na ₂ O	1.54	(11)	1.62	(12)	5.67	(47)	4.70	(36)	5.52	(34)	6.43	(25)	2.19	(19)	2.64	(10)	3.25	(31)	1.95	(14)	2.04	(10)	1.5	(41)
K20	b.d.		b.d.		b.d.		0.66	(11)	0.23	(2)	0.35	(2)	b.d.		0.01	(4)	b.d.		b.d.		b.d.		0.01	(1)
ZrO_2																					0.02	(2)		
Total	99.62		100.33		100.71		99.49		100.49		100.58		99.36		99.13		99.27		99.44		99.13		98.98	
c.p.f.u.																								
Si	1.91		1.95		1.97		1.93		1.99		2.00		1.87		1.84		1.91		1.87		1.96		1.82	
	0.09		0.05		0.03		0.07		0.01		0.00		0.13		0.16		0.09		0.13		0.04		0.18	
	0.10		0.09		0.37		0.32		0.39		0.37		0.17		0.17		0.16		0.11		0.19		0.19	
Ti	0.00		0.00		0.01		0.00		0.00		0.00		0.02		0.02		0.01		0.01		0.01		0.03	
Cr	0.03		0.03		0.01		0.00		0.02		0.02		0.00		0.00		0.00		0.01		0.00		0.00	
Fe ³⁺	0.06		0.04		0.02		0.10		0.00		0.07		0.06		0.13		0.14		0.12		0.00		0.03	
Fe ²⁺	0.05		0.08		0.08		0.02		0.14		0.07		0.12		0.07		0.01		0.10		0.17		0.34	
Mn	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.01	
Mg	0.96		1.05		0.59		0.67		0.57		0.54		0.70		0.69		0.74		0.77		0.82		0.61	
Ca	0.69		0.59		0.54		0.53		0.49		0.47		0.76		0.73		0.71		0.74		0.66		0.67	
Na	0.11		0.11		0.39		0.32		0.38		0.44		0.16		0.19		0.23		0.14		0.14		0.11	
ĸ	0.00		0.00		0.00		0.03		0.01		0.02		0.00		0.00		0.00		0.00		0.00		0.00	
Zr																					0.00			-

833	Starting com	p. refer	s to tab	le S1, T is	in ∘C, P is	s in GPa, t	is in hou	ırs, <i>n</i> is the	number	of analys	ses, b.d.	is below d	etection	and the j	parenth	eses show	one star	ndard dev	viation,	e.g. 53.07	(11) shc	uld read			
834	53.07 ±0.11,	c.p.f.u. s	stands f	for cation	s per forn	nula unit a	und are c	alculated b	ased on	4 cations	. The Fe	e ³⁺ is calcu	lated us	ing the m	ethod o	f Schumac	her (199	91).							
835																									
836									Та	ble 2: Ga	arnet w	rt% EMPA	A data												
Exper	iment BL	58		RD25		G21		V547		V546		V545		BL88		RD56		G25		RD56 AOB		UCL3		RB627	
Startii Comp	ng JP	1		JP 1		JP 1		JP 1		JP 1		JP 1		BAS		BAS		BAS		AOB		ZrTi		NSR- 16	
Т	12	00		1200		1200		1400		1400		1400		1100		1200		1200		1200		1120		970	
Р	3.	.0		3.4		6.0		6.0		8.0		10.0		3.0		3.0		5.0		3.0		5.0		1.3	
n	3	0		4		12		25		13		13		12		20		12		20		21		4	
SiO ₂	41.	.82	(28)	41.48	(38)	42.60	(50)	42.39	(46)	42.74	(29)	43.45	(33)	39.56	(51)	40.58	(38)	39.56	(51)	40.24	(38)	41.04	(45)	38.61	(34)
TiO ₂	0.3	16	(12)	0.27	(2)	0.24	(21)	0.11	(2)	0.36	(4)	0.44	(4)	0.78	(18)	0.61	(12)	0.78	(18)	0.51	(5)	1.46	(54)	0.94	(37)
Al_2O_3	21.	.38	(53)	20.71	(96)	22.60	(58)	21.91	(47)	21.30	(28)	20.23	(36)	21.98	(40)	21.86	(39)	21.98	(40)	21.11	(28)	21.03	(65)	21.29	(20)
Cr_2O_3	2.2	24	(83)	4.35	(105)	1.21	(77)	1.23	(41)	1.02	(27)	0.89	(15)	0.19	(4)	0.26	(11)	0.19	(4)	0.92	(20)	0.91	(71)		
FeO	6.5	56	(79)	7.81	(15)	8.03	(35)	6.63	(29)	7.71	(28)	7.45	(12)	12.26	(32)	12.65	(14)	12.26	(32)	13.15	(15)	7.97	(159)	19.4	(66)
MnO	0.2	26	(2)	0.25	(2)	0.24	(3)	0.22	(1)	0.22	(1)	0.23	(4)	0.34	(2)	0.40	(2)	0.34	(2)	0.40	(2)	0.29	(3)	1.07	(14)
MgO	21.	.05	(75)	19.28	(31)	18.79	(48)	20.10	(40)	18.52	(51)	17.76	(36)	13.69	(58)	14.94	(20)	13.69	(58)	15.49	(24)	20.00	(189)	11.77	(31)
CaO	6.5	51	(54)	6.96	(50)	7.31	(57)	7.43	(18)	8.67	(72)	9.86	(44)	10.91	(64)	9.05	(34)	10.91	(64)	8.16	(28)	6.34	(132)	6.45	(60)
Na ₂ O	0.0	03	(2)	0.03	(1)	0.14	(9)	0.18	(14)	0.30	(3)	0.56	(4)	0.15	(2)	0.11	(2)	0.15	(2)	0.04	(5)	0.12	(3)	0.06	(7)
K20	b.	d.		b.d.		b.d.		0.01	(1)	0.01	(1)	0.01	(1)	0.01	(3)	b.d.		0.01	(3)	b.d.		b.d.		b.d.	
ZrO_2																						0.17	(6)		
Total	100	0.01		101.14		101.16		100.21		100.86		100.88		99.88		100.45		99.88		100.02		99.33		99.59	
c.p.f.u	ı.																								
Si	2.9	96		2.95		3.00		2.99		3.02		3.08		2.90		2.95		2.90		2.94		2.95		2.91	
Al	1.2	78		1.74		1.88		1.82		1.78		1.69		1.90		1.87		1.90		1.82		1.78		1.89	
Ti	0.0	01		0.01		0.01		0.01		0.02		0.02		0.04		0.03		0.04		0.03		0.08		0.05	
Cr	0.1	13		0.24		0.07		0.07		0.06		0.05		0.01		0.01		0.01		0.05		0.05		0.00	
Fe ³⁺	0.2	16		0.10		0.04		0.13		0.12		0.14		0.23		0.17		0.23		0.2		0.13		0.19	
Fe ²⁺	0.2	23		0.37		0.44		0.26		0.34		0.31		0.53		0.60		0.53		0.61		0.35		1.03	
Mn	0.0	02		0.02		0.01		0.01		0.01		0.01		0.02		0.02		0.02		0.02		0.02		0.07	
Mg	2.2	22		2.04		1.98		2.12		1.95		1.88		1.50		1.62		1.50		1.69		2.14		1.32	
Са	0.4	49		0.53		0.55		0.56		0.66		0.75		0.86		0.70		0.86		0.64		0.49		0.52	
Na	0.0	00		0.00		0.02		0.03		0.04		0.08		0.02		0.02		0.02		0.01		0.02		0.01	
К	0.0	00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00	

	Ζ
837	

7 Abbreviations are the same as table 1 and calculations are based on 8 cations.

838

839

Table 3: Cpx trace element data measured by SIMS

0.01

																			RD56					
Sample	BL58		RD25		G21		V547		V546		V545		BL88		RD56		G25		AOB		UCL3		RB627	
п	4		4		2		4		4		2		4		3		1		3		5		1	
Li	10.8	(6)	24	(4)	30.2	(1)	17.8	(4)	33	(2)	35	(3)	28	(2)	25	(1)	15	(3)	44	(1)	417	(20)	24	(5)
В	0.99	(7)	1.3	(2)	3.2	(6)	1.1	(2)	9	(1)	15.6	(6)	1.8	(4)	0.1	(1)	1.8	(4)	1.7	(5)	28	(3)	5.4	(11)
Sc	14.2	(7)	16	(1)	6.7	(7)	6.8	(9)	6.3	(2)	5.0	(5)	21	(2)	21.54	(8)	12	(4)	74	(7)	131	(6)	232	(46)
Ti	336	(10)	380	(173)	382	(33)	267	(13)	835	(19)	790	(98)	5667	(801)	3582	(125)	1832	(366)	2881	(773)	2053	(291)	5422	(1084)
V	20.4	(5)	64	(14)	40.1	(5)	23	(1)	33	(2)	34.9	(1)	309	(17)	135	(10)	243	(49)	67	(4)	72	(7)	534	(107)
Со	54	(2)	54	(6)	27.6	(1)	39	(1)	37	(2)	33	(2)	49	(3)	49	(3)	31	(6)	231	(7)	5.1	(6)	na	
Ga	50	(9)	na		na		68	(2)	77	(12)	93	(12)	na		na		na		na		na		na	
Sr	9	(1)	7	(1)	19.0	(5)	15.7	(8)	77	(1)	96	(22)	169	(7)	163	(2)	142	(28)	70	(6)	76	(8)	14.3	(29)
Y	2.2	(9)	1.5	(2)	0.8	(1)	1.03	(7)	1.11	(8)	0.9	(2)	4.8	(9)	4.41	(1)	2.3	(5)	9	(3)	10	(3)	111	(22)
Zr	0.7	(1)	1.0	(5)	17	(22)	0.5	(1)	1.5	(2)	4.6	(17)	48	(7)	27	(1)	22	(4)	5	(2)	134	(30)	91	(18)
Nb	0.16	(6)	0.4	(2)	0.7	(5)	0.18	(6)	1.2	(5)	4	(5)	0.5	(2)	0.26	(4)	0.25	(5)	14	(15)	0.11	(3)	5.2	(10)
Ba	0.14	(7)	0.06	(6)	3.4	(1)	0.5	(4)	2.1	(14)	0.44	(6)	0.7	(3)	0.4	(3)	2	(4)	2	(1)	0.04	(4)	12.4	(25)
La	2.1	(4)	1.0	(3)	1.0	(3)	0.15	(5)	0.4	(2)	0.8	(8)	4.2	(5)	3.4	(1)	1.8	(4)	11	(3)	5	(1)	47.1	(94)
Ce	1.4	(1)	0.8	(2)	2.7	(9)	0.9	(2)	2.7	(2)	3.4	(8)	14	(1)	10.1	(4)	6	(1)	30	(6)	17	(6)	22.9	(46)
Pr	na		na		na		na		na		na		2.5	(3)	1.79	(8)	1.1	(2)	0.04	(4)	na		na	
Nd	1.9	(3)	1.1	(3)	3.15	(2)	1.0	(3)	2.6	(4)	3	(1)	15	(2)	10.6	(6)	6	(1)	39	(3)	27	(9)	53	(11)
Sm	2.2	(9)	0.03	(2)	1.2	(5)	1.1	(3)	3.1	(5)	2.1	(4)	4.0	(5)	2.8	(4)	1.5	(3)	12.7	(8)	11	(3)	79	(16)
Eu	6.7	(6)	3.7	(6)	2.9	(1)	2.7	(4)	5.9	(4)	4.2	(6)	1.3	(1)	0.78	(2)	0.7	(1)	27	(2)	26	(8)	90	(18)
Gd	7.7	(10)	3.6	(9)	2.4	(4)	3.1	(4)	3.9	(3)	4	(1)	3.9	(6)	1.9	(6)	2.0	(4)	29	(3)	27	(8)	115	(23)
Tb	b.d.		b.d.		b.d.		b.d.		b.d.		b.d.		0.48	(8)	0.33	(3)	0.23	(5)	b.d.		b.d.		na	
Dy	na		na		na		na		na		na		2.8	(3)	1.7	(3)	1.3	(3)	2.6	(4)	na		na	
Ho	na		na		na		na		na		na		0.28	(3)	0.21	(1)	0.17	(3)	0.08	(5)	na		na	
Er	4.2	(5)	2.9	(6)	2.3	(5)	2.1	(6)	1.8	(3)	0.77	(3)	b.d.		0.5	(2)	0.36	(7)	22	(7)	20	(5)	74	(15)
Yb	4.6	(4)	3.3	(8)	1.3	(1)	2.1	(6)	1.9	(6)	1.6	(3)	0.4	(2)	0.4	(2)	0.5	(1)	28	(15)	19	(4)	na	
Lu	67	(7)	5.6	(3)	1.8	(3)	3.3	(6)	3.1	(6)	3.1	(4)	0.12	(3)	0.03	(2)	0.02	(3)	43	(16)	24	(5)	23.4	(47)
Hf	0.9	(4)	1.0	(5)	1.5	(3)	0.6	(2)	1.7	(2)	1.6	(6)	2.1	(3)	0.8	(4)	0.9	(2)	6	(1)	0.5	(2)	45	(9)
Та	0.14	(7)	0.7	(3)	1.0	(9)	0.2	(7)	0.7	(7)	2	(3)	0.35	(4)	b.d.		0.21	(4)	7.3	(7)	0.12	(4)	1.8	(4)
Pb	5	(1)	na		na		0.07	(4)	42	(16)	29.1	(6)	na		na		na		na		na		na	

Th	0.13	(3)	0.1	(1)	1	(1)	0.09	(4)	2.2	(16)	11	(1)	0.23	(3)	0.3	(3)	0.17	(3)	8	(5)	0.4	(2)	na	
U	0.09	(5)	0.1	(1)	0.2	(3)	0.07	(4)	0.4	(3)	0.4	(3)	0.21	(5)	b.d.		0.15	(3)	5	(4)	0.15	(7)	na	
010	A 11 1	-1	<i>c</i> ·		.1 1	C	1 1 1 1	.1	1	c ·	1	1.	.1 .1 0	D · 00	0/ 0/1	1	1							

All values are the mean of *n* in ppm, *n* is the number of analyses. Where the number of grains analyzed is one then the S.D. is 20% of the measured value. 840

841								Tal	ole 4: Ga	ırnet tra	ice eleme	nt data	measure	ed by SIN	/IS									
Sample	BL58		RD25		G21		V547		V546		V545		BL88		RD56		G25		RD56 AOB		UCL3		RB627	
n	3		5		2		4		3		3		5		1		4		4		5		1	
Li	0.41	(9)	1.17	(4)	3.9	(5)	1.9	(1)	6.6	(1)	11.3	(6)	5	(1)	2.9	(6)	2.1	(3)	5	(1)	81	(11)	2.3	(5)
В	0.28	(4)	0.22	(3)	2	(3)	0.3	(2)	1.1	(2)	4	(2)	0.8	(6)	b.d.		0.4	(5)	0.4	(1)	6	(8)	0.42	(8)
Sc	72	(3) (15	112	(11)	44	(6) (10	48	(4)	47	(7)	40	(1) (13	84	(12)	71	(14)	51	(2)	268	(9)	604	(18) (152	702	(140)
Ti	578	4)	1621	(221)	746	5)	480	(25)	1752	(50)	2119	1)	3629	(615)	2951	(590)	2951	(278)	2990	(511)	6641	1)	3191	(638)
V	60	(2)	113	(3)	74	(5)	57	(1)	62	(2)	63	(1)	247	(9)	105	(221)	171	(20)	78	(4)	98	(10)	343	(69)
Со	97	(3)	101	(5)	88	(2)	95	(1)	128	(18)	104	(3)	75	(2)	97	(19)	76	(3)	408	(9)	10.8	(6)	na	
Ga	53	(5)	na		na		64	(4)	114	(6)	114	(2)	na		na		na		na		na		na	
Sr	0.4	(3)	0.32	(7)	1	(2)	0.39	(8)	2.0	(4)	3.5	(7)	1.5	(3)	1.1	(2)	2.0	(9)	3	(4)	1	(1)	0.31	(6)
Y	22	(1)	35	(3)	14	(3)	15.0	(6)	19.4	(3)	15.4	(4)	72	(10)	62	(12)	39	(1)	98	(7)	50	(8)	1078	(216)
Zr	5.2	(9)	10.4	(9)	5	(1)	3.1	(4)	11	(2)	13	(3)	92	(21)	90	(18)	61	(8)	14	(3)	1492	(410)	87	(17)
Nb	b.d.		1.0	(3)	b.d.		0.18	(5)	0.46	(3)	1.1	(9)	0.29	(9)	0.21	(4)	0.3	(2)	b.d.		0.46	(6)	1.1	(2)
Ва	b.d.		0.04	(2)	b.d.		0.1	(2)	1.1	(5)	0.6	(5)	0.5	(4)	0.06	(1)	0.7	(6)	0.3	(1)	0.1	(1)	0.83	(17)
La	0.2	(2)	0.09	(3)	1.6	(-)	0.020	(1)	0.10	(2)	0.3	(2)	0.19	(5)	0.15	(3)	0.2	(1)	0.3	(1)	0.3	(4)	1.0	(2)
Ce	0.04	(16)	0.19	(6)	2	(2)	0.11	(6)	0.9	(2)	2	(1)	1.0	(2)	0.8	(2)	0.7	(3)	1.69	(9)	1.1	(1)	0.6	(1)
Pr	na		na		na		na		na		na		0.4	(1)	0.3	(1)	0.29	(8)	0.02	(1)	na		na	
Nd	0.6	(3)	1.0 0.02	(3)	1.7 2.17	(3)	0.6	(1)	2.2	(3)	2.3	(2)	4.4	(6)	4	(1)	3.2	(7)	20	(10)	4	(1)	5.3	(11)
Sm	2.0	(17)	54	(2)	7	(1)	2.0	(4)	7.3	(2)	6	(1)	3.6	(4)	3.3	(7)	2.7	(5)	17	(4)	5	(1)	29	(6)
Eu	11	(3)	15	(3)	7	(1)	7.2	(4)	19.7	(6)	16	(2)	1.9	(4)	2.15	(4)	1.6	(1)	56	(11)	16	(4)	67	(13)
Gd	19	(5)	22	(3)	9.8	(9)	12.4	(7)	20	(7)	17	(4)	7	(1)	5	(1)	5.3	(4)	88	(12)	26	(6)	146	(29)
Tb	b.d.		0.02	(1)	b.d.		b.d.		b.d.		b.d.		1.8	(2)	1.6	(3)	1.0	(2)	b.d.		0.03	(2)	na	
Dy	na		na		na		na		na		na		13	(2)	10	(2)	8	(1)	1.3	(7)	na		na	
Но	na		na		na		na		na		na		3.0	(4)	2.6	(5)	1.72	(8)	0.2	(2)	na		na	
Er	57	(2)	90	(9)	30	(7)	25	(21)	45	(3)	22	(3)	b.d.		8	(2)	4.9	(6)	252	(20)	128	(17)	1131	(226)
Yb	103.3	(9)	176	(23)	49	(9)	64	(4)	75	(3)	47	(5)	10	(1)	b.d.		5	(1)	445	(30)	269	(29)	na	
Lu	228	(10)	379	(59)	103	(21)	136	(9)	149	(11)	113.0	(3)	12	(3)	8	(2)	1.0	(1)	767	(56)	491	(41)	1131	(211)
Hf	1.8	(9)	4.4	(6)	1.72	(8)	1.9	(3)	6	(1)	7	(2)	4	(1)	2.2	(4)	2.1	(4)	11	(3)	2.1	(6)	18.2	(36)
Та	0.6	(5)	3.7	(4)	4	(6)	0.11	(5)	0.3	(1)	0.9	(6)	2.6	(5)	0.6	(1)	0.5	(2)	0.5	(2)	0.3	(1)	0.7	(1)
Pb	5.08	(4)	na		na		5	(2)	18	(7)	5	(4)	na		na		na		na		na		na	

Th	0.2	(3)	0.07	(3)	4.16	(-)	0.05	(2)	1	(1)	6	(8)	0.9	(2)	b.d.		0.16	(7)	0.4	(1)	0.5	(8)	na
U	0.2	(2)	0.7	(3)	0.9	(10)	0.12	(7)	0.2	(1)	0.7	(3)	0.23	(5)	0.06	(1)	0.2	(1)	0.5	(2)	0.4	(4)	na
842	All values are	the mea	n of <i>n</i> in p	pm, <i>n</i> is tl	ne numbe	r of anal	yses. Wh	ere the r	umber o	of grains a	nalyzed i	s one th	en the S.D	. is 20%	of the mea	sured val	ue.						

843						Tal	ble 5: Ter	mperatur	e calcula	tions		
	Sample	$P_{(exp)}$	$T_{(exp)}$	$T_{(JP)}$	$\sigma T_{(JP)}$	$\Delta T_{(JP)}$	$T_{(EG)}$	$\Delta T_{(EG)}$	$T_{(EG^*)}$	$\Delta T_{(EG^*)}$	$T_{(SL)}$	$\Delta T_{(SL)}$
	BL58	3	1200	1188	31	12	1220	20	966	234	813	387
	RD25	3.4	1200	1141	30	59	1166	34	1051	149	1202	2
	G21	6	1200	1377	29	177	1487	287	1427	227	1502	302
	V547	6	1400	1362	38	38	1037	363	886	514	1381	19
	V546	8	1400	1456	28	56	2646	1246	2165	765	1505	105
	V545	10	1400	1538	47	138	2066	666	1716	316	1737	337
	BL88	3	1100	1038	23	62	1345	245	1149	49	1297	197
	RD56	3	1200	960	16	240	1005	195	914	286	1300	100
	G25	5	1200	1231	31	31						
	RD56 AOB	3	1200	1382	64	182	1076	124	958	242	1370	170
	UCL3	5	1120	1237	34	117	2144	1024	1758	638	1194	74
	RB627	1.3	970	971	16	1	1392	442	1275	325	946	24
	Adam and Green (2006)	3.5	1180	1253	39	73	1166	14	1112	68	1129	51
	Bennett et al. (2004)	3	1330	1413	73	83						
	Green et al. (2000)	4	1100	1178	20	78	1081	19	929	171	1276	176
	Green et al. (2000)	3	1160	1077	17	83	1047	113	905	255	1125	35
	Green et al. (2000)	4	1200	1121	9	79	1246	46	1160	40	1109	91
	Klemme et al. (2002)	3	1400	1334	49	66						
	Kuzyura et al. (2010)	7	1265	1579	52	314	1461	196	1470	205	-162	1427
	Kuzyura et al. (2010)	7	1265	1474	39	209	1633	368	1618	353	-255	1520
	McDade (unpublished)	3	1495	1537	29	42	1583	88	1395	100	1908	413
	Salters and Longhi (1999)	2.8	1537	1591	64	54	1563	1	1425	137	1927	390
	Salters and Longhi (1999)	2.8	1530	1493	49	37	1486	44	1367	163	1668	138
	Salters and Longhi (1999)	2.8	1525	1502	53	23	1613	63	1389	161	1713	188
	Salters et al. (2002)	2.8	1650	1581	125	69	1444	206	1015	635	1804	154
	Tuff and Gibson (2007)	3	1475	1405	24	70	1385	90	1414	61	1779	304
	Tuff and Gibson (2007)	3	1425	1487	27	62	1458	33	1373	52	1643	218
	Tuff and Gibson (2007)	7	1750	1780	34	30	1489	261	1611	139		

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Withers (1997)	3	1470	1410	16	60	1416	54	1375	95	1607	137
mean					88		240		245		278

 $T_{(exp)}$ is the experimental temperature, $T_{(IP)}$ is the weighted mean temperature found iteratively using Equation 3 with multiple REE pairs. The error, σT , is 844 845 propagated from the standard deviation of the ion probe data. In each case ΔT is the mean absolute difference between the experimental T and the calculated T. 846 $T_{\ell EG}$ is the temperature calculated with the method of Ellis and Green (1979), $T_{\ell EG^*}$ is the method of Ellis and Green (1979) where Fe valence is not considered and 847 T_(SL) is the temperature calculated with the method of Sun and Liang (2015). Gaps in the table are a result of the models being unable to calculate a temperature or 848 the necessary data not being available. The mean value shows the mean temperature deviation of all the experiments, including Kuzyura et al. (2010). 849 850

851

852

853

854

855

	JP1	BAS	AOB	ZrTi	NSR-16
SiO ₂	51.66	44.82	44.68	44.95	51.70
TiO ₂	0.34	2.5	2.48	11.20	1.30
Al_2O_3	13.85	14.73	14.46	12.22	19.52
FeO		11.03			9.46
Fe_2O_3	6.34		15.41	6.80	
MnO	0.15	0.19	0.18	0.16	0.26
MgO	13.74	9.69	10.21	13.07	5.40
CaO	9.94	10.05	9.00	7.43	8.61
Na ₂ O	2.69	4.01	2.58	0.83	3.35
K ₂ O	0.66	1.85	0.77	0.03	0.24
Cr_2O_3	0.62		0.25	0.59	
P_2O_5		0.94			0.17
ZrO_2				3.69	
Total	99.99	99.81	100.02	100.97	100.01

Table S1: Experimental starting compositions

JP1 is a synthetic oxide mix, BAS is a natural basanite glass, from Green et al. (2000), AOB is a synthetic alkali olivine basalt and NSR-16 a synthetic basaltic glass.

Table S2: Trace elements and amount added to starting compositions.

	JP1	BAS*	AOB	ZrTi	NSR-16
	ppm	ppm	ppm	ppm	ppm
Zn	250	-	250	250	-
Ni	250	-	250	250	-
Со	250	-	250	-	-
Cr	250	-	250	-	-
V	100	-	100	100	300
Sc	100	-	100	300	150
Ti	100	-	100	-	-
Y	50	33	50	50	300
La	50	54	150	150	200
Се	200	110	300	300	50
Nd	100	42	200	200	50
Sm	50	8.7	50	50	60
Eu	100	2.6	100	100	80
Gd	100	-	100	100	100
Er	100	-	100	100	250
Yb	150	2.2	150	150	-
Lu	250	0.3	250	250	200
Nb	200	-	200	200	-
Та	200	5	300	300	50
Zr	50	286	50	-	150
Hf	50	5.3	50	50	50
Th	200	-	300	300	-
U	200	-	200	200	-
Pb	200	-	200	200	-
Sr	400	1094	400	400	100
Ga	100	18	100	100	-
Li	100	200	300	500	10
Ba	-	-	-	-	400
В	-	-	-	-	10

* trace elements in BAS are those measured by Green et al. (2000) except Li which was added for this study.

Table S3: List of published experimental studies included in our thermometer

899 evaluation with *T*, *P* and starting composition of data

Author	T (°C)	P (GPa)	Bulk
Adam and Green (2006)	1180	3.5	lherzolite
Bennett et al. (2004)	1330	3	CMAS eclogite
Green et al. (2000)	1200	4	tholeiite
Green et al. (2000)	1100	3	basanite
Green et al. (2000)	1160	4	tholeiite
Hauri et al. (1994)	1430	2.5	high Al basalt
Klein et al. (2000)	1100	1.5	granulite xenolith
Klein et al. (2000)	1050	1.5	granulite xenolith
Klemme et al. (2002)	1400	3	eclogite
Kuzyura et al. (2010)	1265	7	silicocarbonatite
Kuzyura et al. (2010)	1265	7	silicocarbonatite
McDade (unpublished)	1495	3	Garnet-Peridotite
Salters and Longhi (1999)	1537	2.8	MORB
Salters and Longhi (1999)	1530	2.8	MORB
Salters and Longhi (1999)	1525	2.8	MORB
Salters et al. (2002)	1600	2.8	MORB
Tuff and Gibson (2007)	1475	3	ferropicrite
Tuff and Gibson (2007)	1425	3	ferropicrite
Tuff and Gibson (2007)	1750	7	ferropicrite
Withers (1997)	1470	3	basalt
Withers (1997)	1487	3	basalt

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

