Time's Arrow in the

Trees of Life and Minerals

Peter J. Heaney^{1,*}

¹Dept. of Geosciences, Penn State University, University Park, PA 16802

*To whom correspondence should be addressed: pjheaney@psu.edu

1	Abstract
2	Charles Darwin analogized the diversification of species to a Tree of Life.
3	This metaphor aligns precisely with the taxonomic system that Linnaeus developed
4	a century earlier to classify living species, because an underlying mechanism –
5	natural selection – has driven the evolution of new organisms over vast timescales.
6	On the other hand, the efforts of Linnaeus to extend his "universal" organizing
7	system to minerals has been regarded as an epistemological misfire that was
8	properly abandoned by the late nineteenth century.
9	The mineral taxonomies proposed in the wake of Linnaeus can be
10	distinguished by their focus on external character (Werner), crystallography (Haüy),
11	or chemistry (Berzelius). This article appraises the competition among these
12	systems and posits that the chemistry-based Berzelian taxonomy, as embedded
13	within the widely adopted system of James Dwight Dana, ultimately triumphed
14	because it reflects Earth's episodic but persistent progression with respect to
15	chemical differentiation. In this context, Hazen et al.'s (2008) pioneering work in
16	mineral evolution reveals that even the temporal character of the phylogenetic Tree
17	of Life is rooted within a Danan framework for ordering minerals.
18	
19	

Page 1

20	INTRODUCTION
21	In an essay dedicated to the evolutionary biologist Ernst Mayr, Stephen Jay
22	Gould (2000) expresses his indignation at the sheer luckiness of Carolus Linnaeus
23	(1707-1778; Fig. 1). We recognize Linnaeus (1735) as the first to propose a
24	classification system for living species that offers both philosophical coherence and
25	observational harmony with the natural world. The irony of Linnaeus's triumph,
26	Gould argues, is that the Swedish naturalist accepted the Old Testament as literal
27	truth, and by modern standards, he would be deemed a strict Biblical Creationist.
28	Linnaean taxonomy, on the other hand, succeeds only through the actuality of
29	organic evolution operating over millions of years – a concept that Linnaeus would
30	have considered heretical.
31	A Linnaean classification of species is structured upon a tree of logic, and
32	serial divergence is its driving methodological tenet. At every juncture in the
33	taxonomic tree, we ask a question, and the answer to that question sorts a species
34	among two or more categories. Does the animal have a spinal cord (phylum
35	<i>Chordata</i>) or not (phylum <i>Achordata</i>)? Does the mammal give birth to living young
36	(subclass Holotheria), or does it lay eggs (subclass Prototheria, as represented by
37	the platypus)? The lineage of modern humans follows a long series of such
38	taxonomic forks. The trunk of the human tree is a domain that consists of the
39	eukaryotes. Branching off of this trunk are four kingdoms – protists, fungi, plants,
40	and animals. Humans follow the Animalia stem, which is further subdivided to
41	encompass our phylum (<i>Chordata</i>), our class (<i>Mammalia</i>), our order (<i>Primata</i>), our
42	family (Hominidae), our genus (Homo), and, finally, our species (Homo sapiens).

Page 2

43	Linnaeus believed that he had cracked the Divine code, and in
44	autobiographical musings, he proclaimed, "No one has been a greater Botanist or
45	Zoologist[No one] has more completely changed a whole science and initiated a
46	new epoch (Blunt 2001)". In his zeal, he did not stop with living entities. Linnaeus
47	applied his "universal" organizing system not only to the kingdoms of animals and
48	plants but to stones as well his <i>Regnum Lapideum</i> . In doing so, Gould (2000)
49	argues, Linnaeus "clearly over-reached," because "the logic that correctly followed
50	the causes of order in the organic world could not be extended to cover inorganic
51	objects not built and interrelated by ties of genealogical continuity and evolutionary
52	transformation."
53	Though brilliantly insightful in many respects, Gould's essay perpetuates two
54	common misunderstandings of the mineral world, and it thereby wrongly
55	diminishes the interconnected and dynamic character of our Earth's mineralogy.
56	The first is a misconception that modern mineral classification eschews a Linnaean
57	structure, when for a century and a half mineralogists actually have employed a
58	Linnaean tree to organize the mineral kingdom. The second is the implication that a
59	Tree of Minerals is atemporal – without an intrinsic chronology. Although the Trees
60	of Life and of Minerals exhibit important distinctions, Hazen's pioneering insights on
61	mineral evolution (Hazen et al. 2008, Hazen 2010) reveal some significant
62	similarities. Namely, the taxonomic tree for minerals embodies time through the
63	temporal intensification of chemical diversity.
64	

65

66	THE TREE OF LIFE
67	In Hindu and Buddhist philosophies, the Tree of Life symbolizes many things
68	– the bond between Earth (represented by the tree root) and Heaven (the tree's
69	canopy); the immortality that arises from repetitive cycles of death (the loss of
70	leaves) and rebirth (the emergence of buds); and the interconnectedness of all parts
71	of our world system. The symbol appears especially prominently in Indian art and
72	jewelry from the Mughal (or Mogul) period from AD 1526 to 1857, and it is still
73	invested in Eastern tapestries today (James 1966; Alin 2013; Hann 2013).
74	In July 1837, ten months after he returned to England from his exploration of
75	South America aboard the HMS Beagle, Charles Darwin added a new layer of
76	meaning to the Buddhist symbol. As Darwin mulled over his nascent ideas of
77	natural selection, he sketched a branching tree in a notebook to represent organic
78	evolution. This Tree of Life was the only drawing to illustrate the first edition of his
79	seminal work, On the Origin of Species (Fig. 2; 1859). In the sixth edition (1872, pp.
80	104) Darwin expressed the analogy in the following way:
81	The affinities of all the beings of the same class have sometimes been
82	represented by a great tree. I believe this simile largely speaks the truth.
83	The green and budding twigs may represent existing species; and those
84	produced during former years may represent the long succession of extinct
85	species. At each period of growth all the growing twigs have tried to branch
86	out on all sides, and to overtop and kill the surrounding twigs and branches,
87	in the same manner as species and groups of species have at all times
88	overmastered other species in the great battle for life.

Page 4

89	In Darwin's hands, the Tree of Life serves as a metaphor for the proliferation of new
90	and more complex life forms from a few ancient and simpler organisms.
91	As with Linnaean taxonomy, divergence is the expansive principle that
92	underlies this concept: life forms diversify over time by splitting along multiple
93	branches from a common forebear. Whether the identity of our progenitor is Homo
94	heidelbergensis, Homo erectus, Homo antecessor, or another species (De Castro et al.
95	1997; Asfaw et al. 2002; Stringer 2012), the emergence of the intellectually more
96	agile Homo sapiens forced our predecessors to extinction. Darwin realized that
97	when a parent produces a new variant with which it cannot compete in the game of
98	life, it is sowing the seeds for its own destruction, but it also is ensuring the
99	proliferation of its line. Although the Tree of Life has suffered the loss of entire
100	boughs during major extinctions, over time it has grown bushier as multiple new life
101	forms have branched from parental stems.
102	In parallel with Darwin's phylogenetic Tree of Life, the branches of the
103	Linnaean classification system for plants and animals increase in exponential
104	profusion. Thus, unbeknownst to Linnaeus, what connects the trunk of his
105	taxonomic tree to its outermost leaves is <i>time</i> . Because of the guiding principle of
106	evolution, those organisms that congregated at the base of his system were simpler,
107	and a traverse from the roots to the canopy of the Tree of Life is a journey forward
108	in history and complexity.
109	
110	

111	EARLY EFFORTS AT MINERAL CLASSIFICATION
112	In the 1758 version of Linnaeus's Systema, which introduced the binomial
113	nomenclature that labeled us as Homo sapiens and dogs as Canis familiaris, Linnaeus
114	partitioned the class of Minerals into three orders: Salia, Sulphura, and Mercuralia.
115	These terms may seem to translate into salts, sulfides, and mercury-containing
116	compounds, but chemistry was not the over-arching organizing principle for
117	Linnaeus. Most members of Mercuralia did not contain mercury, and many of
118	today's well-known gems (Table 1) are grouped together in the same family of
119	"colored, quartz-like soda minerals" (Nitrum quartzosum coloratum). Linnaeus did
120	not know the chemical formulas for all of these minerals, and, as the reader may
121	surmise, the Latin translations of Linnaeus's modifiers are colors: purple, red, blue,
122	green, and yellow.
123	The emphasis on color was characteristic of the school of thought handed
124	down to Linnaeus over many centuries (Laudan 1987). The Persian scholar Ibn Sīnā
125	(Latinized to Avicenna, who lived circa AD 980-1037) proposed a mineral
126	classification that distinguished minerals primarily on their external characteristics.
127	Separating minerals on the basis of observable physical qualities such as color,
128	shape, hardness, or density is the root of what came to be known as the <i>natural</i>
129	classification system, and it prevailed through the next eight centuries (Eddy 2008).
130	For example, Abraham Gottlob Werner (1749-1817), professor at the mining
131	academy in Freiberg, proposed a widely used system that included seventy-seven
132	varieties of color, with red alone apportioned into fifteen types: blood-red; flesh-
133	red; scarlet-red; cherry-red; morning-red; and so forth. In his Treatise on the

134	External Characteristics of Fossils, Werner (1774) argued that "External Characters
135	are thoroughly complete, certainly discriminative, most generally known, easily
136	defined, and conveniently discovered, and hence principally and peculiarly related
137	to oryctognosy (<i>ibid.</i> pp. 8)" – the last an archaic term that Werner coined for the
138	science of mineral identification that is probably best left to history.
139	The weakness of external characteristics as a basis for mineral classification
140	becomes evident when one considers the plight of natural historians far removed
141	from the intellectual centers of the world. In the early 1800s, a naturalist in the
142	United States charged with the arrangement of a mineral cabinet was forced to rely
143	on gifts of specimens from foreign mineral collectors or on written mineral
144	descriptions from European treatises (Greene and Burke 1978). The natural
145	classification system of Werner challenged these early American scholars with
146	imponderable questions: Is an unknown specimen straw-yellow or wine-yellow?
147	Are the crystal shapes tubuliform or fistuliform? Is the external surface scaly or
148	rough? A proper system for describing any kind of object relies on universal
149	constants as the touchstones for classification.
150	
151	Alternatives to the natural system: Chemistry and crystallography. The
152	historiography of chemistry has been biased by a focus on the "gas revolutions"
153	associated with Joseph Priestley and Antoine Lavoisier (Donovan 1996; Johnson

- 154 2008), but the importance of mineralogy in precipitating advances in chemistry has
- been clearly documented (Burke 1969; Laudan 1987; Anderson 2000; Eddy 2005,
- 156 2008). In the latter half of the eighteenth century, chemical mineralogy grew in

157	importance due to the exploitation of minerals for economic and medicinal
158	purposes, and the professionalization of the field can be traced to the emergence of
159	mining schools, such as the Freiberg Mining Academy (established in Saxony in
160	1765), and to medical schools in which "chymie" required studies of local minerals,
161	as at the University of Edinburgh.
162	Researchers in Sweden and in Scotland approached the problem of mineral
163	classification from a distinctly different vantage than did Werner. Rather than
164	describing the external attributes of a mineral with great exactitude, Johan
165	Gottschalk Wallerius (1709-1785), Axel Fredrik Cronstedt (1722–1765), and John
166	Walker (1731-1803) argued that the essence of a mineral is determined by
167	deconstructing it into its most fundamental components (Eddy 2008). Admittedly,
168	these investigators were hamstrung by a combination of challenges: their arsenal of
169	chemical techniques for mineral decomposition was limited to heat and to
170	dissolution in water, acids, and alkalis; and they worked within a metaphysical brew
171	of Aristotelian and Paracelsian principles that classified all materials into such
172	primary categories as Water, Earths, Salts, Inflammables, and Metals.
173	Although natural historians of the period tended to treat the natural and
174	chemical approaches to mineral classification as immiscible philosophies, even the
175	most ardent believers borrowed liberally from the other camp. Werner (1774, pp.
176	3), for example, acknowledged that "the composition is the most essential feature of
177	minerals," and his focus on external features was grounded explicitly in pragmatism
178	rather than principle. Likewise, John Walker, the Regius Professor of Natural
179	History at the University of Edinburgh from 1779 to 1803, asserted that "the most

180	useful System of Fossils [i.e., minerals], must therefore be a mixed method, founded
181	on their Natural & Chemical Qualities combined," and Walker adopted the classes,
182	orders, genera, and species of the Linnaean system in his chemistry-based
183	classification framework (Eddy 2008, pp. 125-131).
184	In an effort to contravene this muddle, the French cleric René-Just Haüy
185	(1743-1822) claimed to have discovered the key that would neatly unite both
186	factions. Following his famous accident with a shattered calcite crystal, Haüy
187	introduced geometry as a means of separating mineral species, and his ideas
188	honored the spirit of both the natural and the artificial schools. In agreement with
189	the latter, Haüy believed that interior elements defined a mineral species, but rather
190	than deconstructing a mineral chemically, Haüy (1801) argued that the physical
191	fracture of a mineral into its component parts – what he termed the molécules
192	intégrantes – was the proper means of assaying the essential constituents of a
193	mineral. At the same time, the precise measurement of edges and interfacial angles
194	of cleavage fragments particularly satisfied those who were suspicious of chemically
195	based forays into a mineral's interior. Unlike the murky world of chemistry,
196	geometry was governed not by hypotheses but by laws that dated to Euclid.
197	In his proposed classification system, Haüy (1801, 1822) adopted chemistry
198	as the criterion for the division of minerals into genera, orders, and classes along a
199	Linnaean framework, but crystallography (as represented by the measured
200	dimensions of cleavage fragments) served as the fundamental criterion that
201	identified species (Burke 1968; André 2013). The British Critical Review lauded
202	Haüy's accomplishment (Critical Review 1802, pp. 482,486):

203	"It has been observedthat the two contending classes of mineralogists –
204	those who depend chiefly on external characters as the means of
205	distinguishing minerals, and those who think that the distinctions must be
206	drawn from chemical analysis – should naturally yield to each other, and
207	unite their powers By founding crystallography on calculation, M. Haüy has
208	created a science which no fashion can destroy: it rests on a foundation as
209	certain as the Newtonian system of the world; and has contributed to fill
210	many vacuities in the series [of minerals], which were apparently wanting in
211	former systems. The reader will find that the author's theory is simple in its
212	method, certain in its principles – resting on facts afforded by undoubted
213	observation and unequivocal evidence.
214	This appraisal was re-asserted over a century later in the publication of eight
215	hagiographic articles on Haüy in the third volume of The American Mineralogist.
216	Whitlock (1918), for example, described Haüy "as one of the most profound

- 217 analytical thinkers of two centuries," comparable to Newton, Lavoisier, and
- Linnaeus as fathering a science.

The enthusiasm of MSA's founders for the work of Haüy is a benign case of historical revisionism, undoubtedly tied to heady discoveries in the new field of Xray diffraction (Wherry 1918). The realization that minerals consist of regularly ordered atoms led many diffractionists to equate Haüy's *molécules intégrantes* with the Braggs' conception of the unit cell, an error that is perpetuated in many mineralogy textbooks today. Although the kernel of Haüy's idea surely is echoed in the Braggs' model of crystallinity, Haüy's integrant molecules depart in many ways

226	from a modern understanding of unit cells. For instance, Haüy identified the
227	fundamental building blocks of crystals not only as parallelepipeds but also as
228	octahedra, tetrahedra, hexagonal prisms, rhombic dodecahedra, and hexagonal
229	bipyramids. More significantly, he conflated the primary "chemical molecule" of a
230	mineral with its physical integrant molecule. Consequently, he insisted to his dying
231	day (Haüy 1822) that the interfacial angles and the ratios of the edges of cleavage
232	fragments uniquely identify a mineral species, even in light of discoveries by Eilhard
233	Mitscherlich (1794–1863) that minerals with different compositions may exhibit
234	the same primitive form (isomorphism) and that minerals with different forms may
235	exhibit the same composition (polymorphism).
236	The profusion of different systems of mineral classification raised a profound
237	question: Was any particular approach <i>correct</i> or <i>true</i> , as the Linnaean taxonomy of
238	organisms seemed the one ineluctable system for the grouping of organic species?
239	Edinburgh professor John Walker thought not, and he apparently was untroubled by
240	the absence of a single solution. In a letter to a friend, Walker asserted, "I was
241	taught from the Professor's Chair when I was fourteen, that there was an
242	organisation in the fossil [i.e. mineral] kingdom; but I have long learned that there is
243	not. It is now universally admitted, that there is no seminal principle in fossilsno
244	organization, no species, but possible combinations, innumerable as the sands of the
245	sea. (Eddy 2008, pp. 203)"
246	

A surprising taxonomic insight: Elements are charged. In 1814, the Swedish
chemist Jöns Jacob Berzelius (1779-1848) provided the crucial insight that

249	ultimately would lead to a universal system for mineral taxonomy. Berzelius (Fig. 3)
250	is a name that should resonate equally with Dana and Bragg among mineralogists,
251	but to most of us he is as obscure as are the two minerals that memorialize him –
252	berzelianite ($Cu_{2-x}Se$) and berzeliite ($NaCa_2(Mg,Mn)_2(AsO_4)_3$). It was Berzelius who
253	invented the system by which elements are designated by symbols: H for hydrogen,
254	Si for silicon, and Au for gold. He also took the next step and created the molecular
255	formula: H_2O , SiO ₂ , and CaCO ₃ , for example, though he used superscripts (H ² O)
256	rather than subscripts. While these contributions may appear merely as helpmates
257	in note-keeping, they in fact signaled Berzelius's pioneering role in the development
258	of the atomic theory, as promoted by the English chemist John Dalton (1766-1844)
259	at the turn of the eighteenth century. Berzelius developed new analytical
260	techniques in chemistry and measured the weights of thousands of compounds to
261	support Dalton's ideas. In the process he discovered the elements silicon (Si),
262	selenium (Se), thorium (Th), and cerium (Ce), and students in his laboratory added
263	lithium (Li) and vanadium (V) to the list (Melhado 1981; Melhado and Frdngsmyr
264	2003).
265	Berzelius was interested in more than the ultimate constituents of matter.
266	He wanted to understand what holds the atoms in matter together. To get at the
267	answer to this conundrum, he exploited a precursor to the electric battery called a
268	Voltaic pile, invented by the Italian physicist Alessandro Volta (1745-1827). The
269	essence of the Voltaic pile, as with modern batteries, is the electric potential

270 between the negative and positive electrodes.

271	Berzelius was fascinated by the tendency of many minerals to self-destruct
272	when placed in the brine of a discharging Voltaic pile, a process we now know as
273	electrolysis. Berzelius noticed that certain elements, particularly oxygen, migrated
274	towards the electropositive terminal, whereas most metals migrated towards the
275	negative electrode. Consequently, Berzelius inferred from the attraction of oxygen
276	to the positive electrode that oxygen is negatively charged, and thus most metals are
277	positively charged. He thereby developed a new terminology still in use today:
278	oxygen is <i>electronegative</i> and metals are <i>electropositive</i> . Most substances, he
279	inferred, consist of negatively charged entities and positive counterparts, and
280	mineral compounds represent a bonding of these polar opposites. Berzelius thereby
281	laid the foundations for electrochemical dualism, a cornerstone of modern chemical
282	theory (Levere 2001).
283	Significantly, Berzelius recognized that the carriers of negative charge are
284	not always single elements like oxygen, and he devised the term "radicals" (still in
285	use, along with his coinages "catalysis" and "polymer") to describe these charged
286	groups. Thus he explained that chalcocyanite (CuSO ₄) consists of the electropositive
287	copper bonded to the electronegative sulfate radical (Berzelius 1814). He
288	furthermore was the first to realize that silicon typically functions not as an
289	electropositive metal but as a component in negatively charged oxide radicals;
290	thereby he laid the basis for our understanding that silicate complexes, such as
291	SiO $_3^{2-}$, SiO $_4^{4-}$, and Si $_2O_5^{2-}$, serve as the backbones of the silicate minerals that make
292	up the Earth's crust.

293	An avid mineral collector, Berzelius was eager to apply his theories towards a
294	new approach to mineral classification. Never one to shy from confrontation, he
295	criticized the traditional natural classification system for its lack of rigor: "A
296	mineralogical arrangement founded on the external and easily perceived characters
297	of fossils [i.e., minerals] is extremely convenientBut this arrangement is not a
298	scientific system (Berzelius 1814 pp. 10, italics added)." In contrast, Berzelius
299	believed that when a chemical approach is adopted and the natural system excluded,
300	"order becomes at once visible in this apparent chaos, and mineralogy assumes the
301	character of a science (<i>ibid.</i> pp. 14)." These words were aimed directly at the
302	disciples of Werner, who had argued the opposite point in his Treatise on the
303	External Characters of Fossils (1774) – namely, that internal characters (i.e.,
304	chemical compositions of minerals) "cannot be so accurately known and defined as
305	[external characters] – a perfect knowledge of chemistry being requisite – a science
306	which itself is not complete (<i>ibid.</i> pp. 5)."
307	
308	THE TAXONOMIC CRISIS
309	The weaknesses of the Wernerian and Haüyan approaches were becoming
310	evident even to some of their adherents. Werner (1774) classified gypsum and
311	selenite as separate mineral species because they adopt different crystal shapes
312	even though they possess the same chemical formula (CaSO $_4 \bullet 2H_2O$) and their other
313	physical attributes are identical. Likewise, Werner placed sapphire (Al_2O_3) in the
314	<i>siliceous</i> genus and opal (SiO ₂ • n H ₂ O) in the <i>aluminous</i> genus based on his

315 perceptions of their external characters. Moreover, the emphasis that Haüy placed

316	on crystallography was equally problematic, as it became clear that many minerals
317	with cubic symmetry, for example, exhibit identically shaped integrant molecules
318	but are compositionally distinct.
319	The moment was ripe for Berzelius to set the situation straight. But like an
320	ill-fated boxer, Berzelius feinted left when he should have feinted right. The
321	electrochemical dualism championed by Berzelius posed a quandary: Should the
322	electropositive or the electronegative component serve as the primary dividing wall
323	in his classification system? The biological analog for this first taxonomic cut might
324	be the absence or presence of nuclei in an organism's cells – the factor that sieves
325	the prokaryotes (e.g., bacteria) from the eukaryotes (e.g., plants and animals). When
326	faced with the question of grouping minerals based on either their metallic or their
327	electronegative constituents, Berzelius opted to go positive.
328	The outcry from the Wernerians was immediate and intense. Thomas
329	Thomson (1773-1852), a Scottish chemist who founded the Wernerian Natural
330	History Society of Edinburgh in 1808, fired off a critical review in 1815, the year

after Berzelius's treatise appeared:

"The object of Berzelius in the present little work is to show that all mineral
species are really chemical compounds, composed of ingredients combined
in definite proportions, and capable of being classified into orders, genera,
and species, according to their composition, just as may be done with the
salts. Though numerous analyses of minerals exist, yet it must be confessed
that these definite proportions, this chemical composition according to the
atomic theory, can be perceived only in a small number of individuals; while

the great body of the mineral kingdom seems to bid defiance to the
application of the laws of chemistry (Thomson, 1815, pp 304)."
Thomson pointed out, with some justification, that impurities in natural minerals
and the absence of standardized methods in chemical analyses yielded a high level
of variation in the formulas derived for a given species. Thus, chemistry at the time
was arguably less "scientific" than an acute visual characterization of the observable
external parameters of a mineral specimen.

346 Even more problematically for Berzelius, it was patently evident to most 347 chemists that minerals containing the same metal – iron, for example – could exhibit 348 completely different physical properties and should not be classified within the 349 same family. Pyrite (FeS₂) is reflective, brassy yellow in color, and commonly 350 shaped as cubes, whereas hematite (Fe_2O_3) is dull gray to black with reddish 351 overtones, and crystals tend to be shaped as hexagonal plates. Clearly, a logical 352 mineral taxonomy would stipulate that pyrite is less closely related to hematite than 353 to chalcopyrite ($CuFeS_2$), arsenopyrite (FeAsS), or even galena (PbS). At the other 354 end of the spectrum, Wernerian and Haüyan mineralogists recognized that 355 carbonate minerals with different metals – calcite ($CaCO_3$), magnesite (MgCO₃), and 356 siderite (FeCO₃) – share many similarities with respect to their crystal shapes, their 357 tendencies to fracture as rhombs, and their hardness. Berzelius's system illogically 358 placed these apparently fraternal species in separate families. Lastly, many 359 minerals contain a variety of metallic elements. What does one do with almandine 360 garnet (Fe₃Al₂Si₃O₁₂)? Berzelius simply classified such minerals within multiple

Page 16

361 metal families, so that in his framework complex metallic oxides were not uniquely362 pigeonholed.

363	Berzelius soon acknowledged the error of his ways, and in the 1820s he
364	proposed a solution: Classify minerals not according to their metallic elements but
365	according to their electronegative constituents (Berzelius 1824; 1826). In this
366	revised taxonomy, minerals were grouped primarily as oxides, sulfides, silicates,
367	carbonates, and so forth (Fig. 4). Here was the beginning of the classification system
368	that we use today, but, as happens in the modern political arena, Berzelius's
369	detractors cited the ease with which he flip-flopped on the issue as a weakness of
370	his entire approach. For the next twenty-five years, mineral classification persisted
371	in its state of disorder, as dozens of schemes that attempted in various ways to
372	combine chemistry, crystallography, and external characters were proposed
373	(reviewed in Nicol 1849, pp. 99-107 and Dana 1854, pp. 5-8). Mitscherlich
374	despaired in 1824 that "everyone is developing a system of mineralogy of his own,
375	according to his own method; I do not expect much good will result from this.
376	(Burke 1968)"
377	Perhaps not surprisingly, in light of the nationalistic factors that played into
378	this battle among German, Scottish, Swedish and French protagonists, the system
379	that came to be most universally adopted arose not on the European stage but from
380	the American hinterland.
381	
382	

383

384	DANA'S REVELATION
385	James Dwight Dana (1813-1895; Fig. 5) matriculated at Yale College in 1830
386	to study with Benjamin Silliman, the young country's best-known scientist. Silliman
387	single-handedly established and edited The American Journal of Science, which for
388	several decades was the only national science publication in the United States
389	(Brown 1989). Silliman organized the Yale mineral collection along Wernerian lines,
390	and Dana hewed closely to his mentor, marrying his daughter and succeeding him as
391	the Silliman Professor of Natural History and Geology at Yale from 1850 to 1892
392	(Gilman 1899).
393	In 1837, at age 24 and while working as Silliman's laboratory assistant, Dana
394	published the first edition of his System of Mineralogy (Dana 1837). This earliest
395	version of what would become his magnum opus was widely praised in America and
396	in Europe – but it did <i>not</i> revolutionize the science. Dana invoked physical
397	characteristics of minerals – crystal shape, hardness, and the quality by which
398	minerals break, called tenacity – as his organizing parameters. Moreover, in
399	Linnaean fashion, he divided minerals into nested hierarchies: kingdoms, phyla,
400	orders, on down to mineral species, to which he applied a Latinate binomial
401	nomenclature.
402	By mid-century, however, analytical chemical techniques in the United States
403	had matured to the point that the superiority of the Berzelian electrochemical
404	framework became inescapable. Dana distanced himself from the Wernerian
405	approach in his third edition of the <i>System</i> in 1850. By the fourth edition of 1854,

Page 18

406	the separation was complete. The pain of the divorce is apparent in his preface to
407	the third edition (Dana 1850, pp. 5):

408	To change is always seeming fickleness. But not to change with the advance
409	of science is worse; it is persistence in error; and, therefore, notwithstanding
410	the former adoption of what has been called the natural-history system, and
411	the pledge to its support given by the author, in supplying it with a Latin
412	nomenclature, the whole system – its classes, orders, genera, and Latin
413	names – has been rejected [T]here are errors in its very foundation which
414	make it false to nature in its most essential points: and in view of the
415	character of these errors, we are willing it should be considered a relic of the
416	past.
417	In its place, Dana provided a taxonomy "in which the Berzelian method was coupled
418	with crystallography, in a manner calculated to display the relations of species in
419	composition as well as form." (Dana 1854 pp. 5).
420	Whereas John Walker in the 1790s considered multiple classification
421	approaches as equally valid, Dana came to recognize a "correctness" in the
422	compositionally based approach. Tellingly, in the transitional third edition, Dana
423	(1850 pp. 5) treated the Berzelian system as a purely heuristic device, one that
424	operated "simply as a convenient arrangement, and not an exhibition of the true
425	affinities of species in the highest sense of the term (pp. 5)." But by the fourth
426	edition of 1854, Dana had fully conceded. "The progress of Science has afforded the
427	means of giving greater precision and simplicity to this arrangement, until now it
428	seems entitled to become the authorized method of a System of Mineralogy.

429	Whether regarded from a physical or chemical point of view, the groupings appear
430	in general to be a faithful exhibition of the true affinities of the species (pp. 5)".
431	Dana continued to update his System of Mineralogy through the sixth edition
432	in 1892, and as Schuh (2007 pp. 201) observes, he followed "an essentially chemical
433	system" from the 1850 edition onward (Fig. 6). In short time, Dana's treatise gained
434	in comprehensiveness and stature, with the German mineralogists Karl Friedrich
435	Naumann (1797-1873) and Paul Heinrich von Groth (1843-1927) adopting it in
436	modified form. The Berzelian kernel has persisted to its most recent incarnation –
437	the eighth edition published under the title Dana's New Mineralogy (Gaines et al.
438	1997).
439	Dana's legacy was and is widely acknowledged. The University of Munich
440	awarded Dana an honorary doctorate in 1870, an impressive tribute from the nation
441	at the forefront of chemistry in the latter half of the nineteenth century. Today,
442	internationally curated mineral databases, such as MinDat.org and WebMineral.com,
443	serve as searchable mineral encyclopedias for professional and amateur researchers,
444	and they organize entries by Dana classification schemes (as well as a few rival but
445	philosophically equivalent methods). Moreover, major mineral museums around
446	the world organize their specimens by the Dana System. For example, the U.S.
447	Museum of Natural History arranges its vast mineral research collection, with over
448	350,000 specimens, "according to Dana." Although subsequent mineralogists have
449	proposed minor variations to the Dana System, most consider Dana the godfather of
450	modern mineral classification.

451

452	A TREE OF MINERALS?
453	In his Structure of Scientific Revolutions, the philosopher of science Thomas
454	Kuhn (1996) argues that the transition from one paradigm to another is marked by
455	a "gestalt" switch, in which the acceptance of a new theoretical framework requires
456	an utter rejection of the old, to the extent that even the language used to describe
457	the old paradigm is incompatible with the new. Though little celebrated, the shift
458	from a Linnaean to a Berzelian taxonomy has all the markings of a Kuhnian
459	revolution, as it forced scientists to redefine the essence of a solid from its
460	macroscopic exterior to an unseeable – and still at the time unknowable – internal
461	character.
462	As evidenced by his decision to abjure a Latinate binomial nomenclature for
463	minerals, Dana's efforts to shed all vestiges of a Linnaean epistemology created an
464	impression that minerals are so different from life forms that Linnaean guidelines
465	do not apply. Stephen Jay Gould (2000) voices exactly this misapprehension in his
466	<i>Natural History</i> article. It should be evident from the preceding discussion, however,
467	that a Linnaean logic <i>is</i> applied to minerals. The criteria for sifting one mineral from
468	another, however, simply are not the physical characters that Linnaeus, Werner,
469	Haüy, and their disciples selected.
470	As Berzelius realized, chemistry and not external appearance or symmetry
471	constructs the sturdiest scaffold for mineral taxonomy. The electronegative
472	components of minerals create a hierarchical tree of branching categories into
473	which each mineral species can logically be located. This criterion turns out to be
474	the fundamental key because the electronegative components are what matter most

Page 21

475	in determining the physical and chemical behavior of a mineral. Dana came to
476	accept this relationship without understanding the basis for it. Thanks to the advent
477	of X-ray crystallography, today we do. As with biological classification, a few
478	mineral species do face some ambiguity in their placement – for example, do we
479	rank tourmaline as a borate (since it has BO_3^{3-} radicals) or as a silicate (since it also
480	has $Si_6O_{18}^{12}$ radicals)? Notwithstanding these minor issues, the Dana system has
481	served us well for 150 years.
482	A corollary is that mineralogists could, if we desired, employ a Latinate
483	binomial nomenclature like that used for life: Oxide hematitus for hematite, perhaps,
484	or Pyroxene diopsidus for diopside. Instead, we have chosen not to emulate our
485	biological colleagues, and we tag each mineral with a single name by Dana's
486	convention, ending in the suffix $-ite$. Negative reactions to recent efforts that
487	complicate our simple monomial system – the induction of magnesiotaaffeite-2N'2S
488	as an IMA-approved name comes to mind – seem to have strengthened the
489	community's desire for simplicity.
490	Of course, the \sim 4800 minerals that currently are classified as separate
491	species in a Danan system pale in comparison with the variability of the biological
492	world, which may include \sim 8.7 million species of eukaryotes, of which 1.2 million
493	have been identified thus far (Mora et al. 2011). The lack of mineral diversity
494	becomes even more breathtaking in light of the broad agreement among
495	paleontologists that living species represent only 1% of all of that have ever existed
496	(Stearns and Stearns 2000). The Tree of Life is thus about 200,000 times bushier

497 than is the Tree of Minerals. Moreover, the Tree of Minerals exhibits comparable

498	levels of diversity among the major stems, whereas the distribution of species
499	within the Tree of Life is notably uneven. For example, the order of beetles is easily
500	the largest within the animal kingdom with nearly 400,000 species. In contrast,
501	among crustal minerals, silicates (numbering 908 in the WebMineral database) only
502	slightly edge out phosphates (829) with respect to diversity, with native elements
503	(132) and organic minerals (45) bringing up the rear.
504	
505	THE TEMPORAL CONNECTION
506	Since minerals can be classified by a Linnaean taxonomy, to what extent may
507	we compare a Tree of Life to a Tree of Minerals? The differences between a
508	Darwinian Tree and a mineral Tree are structurally important, but those disparities
509	need not blind us to some profound likenesses. The key distinction between the two
510	classification schemes is the role of causality, which is integral to biological
511	evolution but less apparent in mineral development. Organic species that walk the
512	Earth today owe their existence to a sequence of progenitors that are no longer
513	extant. Humans would not be but for the emergence of a primate species about 50
514	million years ago within the class of mammals, and mammals would not exist
515	without the emergence of an organism with a spinal cord in the kingdom of animals
516	about 550 million years ago. As the Darwinian Tree of Life matures, seasonal
517	blooming cycles displace earlier generations of leaves, and thus one can trace time's
518	arrow through taxonomic branches and forks that embody multiple episodes of
519	extinction and emergence.

520	The Tree of Minerals is not a deciduous tree, as is the Tree of Life; it is more
521	akin to an evergreen, in that mineral extinction is not an integral part of the
522	mechanism by which the tree branches multiply. Moreover, unlike living systems,
523	minerals do not share a genetic code that is continually directing the development of
524	new body parts and the repurposing of old ones in response to changing
525	environments. The emergence of new mineral species thus would <i>not</i> seem
526	contingent on the appearance of phylogenetically related predecessors.
527	But is that completely true? As is evident even within Dana's first mineral
528	classification system, a quality of timeliness is intrinsic to mineral taxonomy based
529	on Berzelian principles. As one traces Dana's mineral tree from the roots through to
530	its outer branches (Fig. 7), shades of a temporal progression are apparent, as Hazen
531	and his collaborators have outlined in their seminal papers on mineral evolution
532	(Hazen et al. 2008, 2012; Hazen and Ferry, 2010; Grew and Hazen 2014). Hazen's
533	thesis is that the creation of new environments during Earth's evolution has
534	generated new geologic "ecosystems", and as a consequence, a mineralogical version
535	of "the survival of the fittest" instigates the appearance of novel minerals in the
536	aftermath of global changes. Thus, were one to map all of the known minerals
537	within a Dana tree and then color the branches by the date of their first appearance
538	on Earth, the picture would materialize less like the work of Jackson Pollock and
539	more like that of Georges Seurat.
540	As Darwin (1845) intuited from the multiplicity of finches in the Galápagos
541	Islands, increasing specificity in adaptation to a local environment amplifies

542 diversity. Analogously, mineral evolution has been characterized by episodic

543	increases in chemical singularities. Just as Linnaeus did not know why his system		
544	succeeded – his "luckiness" in Gould's (2000) view – Berzelius and Dana were		
545	unaware of the geological forces that have promoted increases in chemical		
546	specificity. They had little inkling of the iron catastrophe, plate tectonics or the		
547	other forces by which elements have been distilled through endless cycles of		
548	melting and recrystallization. Nor did they know that the emergence of		
549	photosynthetic cyanobacteria 3.5 Ga ago generated a global oxygenation of the		
550	atmosphere a billion years later that likely doubled the number of crustal minerals.		
551	The products of this last efflorescence are represented in the bushiest regions of the		
552	Dana tree by the some of the most baroque mineral hydrates and complex oxides,		
553	such as the hydrous phosphate hazenite [KNaMg $_2(PO_4)_2 \cdot 14H_2O$], whose relatives		
554	seem unlikely to have predated the origin of life (Fig. 7).		
555	Gould (2000) closes his tribute to Ernst Mayr with a footnote to the		
556	important lesson that he learned from him – "that taxonomies are active theories		
557	about the causes of natural order, not stamp albums for housing nature's obvious		
558	facts." That principle holds because even in the absence of a clear mechanism for		
559	order, a proper taxonomy is imbued with a discernible pattern that arises from an		
560	underlying dynamic process. The Linnaean system succeeded because it contains a		
561	genetic code. Without the Linnaean taxonomy to guide Darwin's conception of		
562	speciation, no theory of evolution by the mechanism of natural selection could have		
563	ensued.		
564	Analogously, a Berzelian/Danan system of mineral classification set the stage		

565 for our present understanding of Earth's successive cycles of chemical segregation.

566	A chemically based taxonomy bested the competition because it embodies	
567	something true about developmental mechanisms in Earth's mineralogy. Unlike the	
568	Tree of Life, however, whose driving mechanism for divergence has remained the	
569	same since the Cambrian explosion, the Tree of Minerals is complicated by a	
570	progressive variation in the styles of chemical segregation responsible for mineral	
571	evolution. In this respect, time's arrow is more subtly enshrouded within the Tree	
572	of Minerals than of Life, but as our understanding of Earth's history deepens, the	
573	outlines of the arrow grow more apparent.	
574		
575	ACKNOWLEDGMENTS	
576	The author acknowledges support from NSF EAR11-47728, and he thanks	
577	Bob Hazen, Keith Putirka, and an anonymous reviewer for their helpful and	
578	stimulating criticisms of the original manuscript. In addition, he acknowledges	
579	David Veblen and Jeff Post for many provocative discussions about the history of	
580	mineralogy.	

581	References
582	Alin, M. (2013) Biomorphic patterns in Islamic art: Tracing the origin.
583	http://islamic-arts.org/2013/biomorphic-patterns-in-islamic-art-tracing-
584	the-origin/
585	Anderson, R.G.W. (2000) Chymie to chemistry at Edinburgh. Royal Society of
586	Chemistry Historical Group Occasional Papers, 2, 1-28.
587	André, A. (2013) Early Days of X-ray Crystallography. Oxford Univ. Press, Oxford,
588	England.
589	Asfaw, B., Gilbert, W. H., Beyene, Y., Hart, W. K., Renne, P. R., WoldeGabriel, G., Vrba,
590	E.S., and White, T. D. (2002). Remains of Homo erectus from Bouri, Middle
591	Awash, Ethiopia. Nature, 416, 317-320.
592	Berzelius, J.J. (1814) Attempt to Establish a Pure Scientific System of Mineralogy by
593	the Application of the Electro-Chemical Theory and the Chemical Proportions
594	Translated by John Black. C. Baldwin, London.
595	Berzelius, J.J. (1824) Om de förändringar i det chemiska Mineralsystemet, som blifva
596	en nödvändig följd af isomorpha kroppars egenskap att ersätta hvarandra i
597	obestämda förhållanden. Konglig Vetenskaps-Academiens Handlingar, 112-
598	142
599	Berzelius, J.J. (1826) Des changemens dans le système de Minéralogie chimique.
600	Annales de chimie et de physique, 31, 5-36.
601	Blunt, W. (2001) Linnaeus: The Compleat Naturalist. Princeton University Press,
602	Princeton, NJ.

603 Brown, C.M. (1989) Benjamin Silliman: A Life in the Young Republic. Princeton Univ. 604 Press, Princeton. 605 Burke, J.G. (1969) Mineral classification in the early nineteenth century. In Scheer, 606 C.J. Ed., Toward a History of Geology. MIT Press, Cambridge, MA, pp. 62-77. 607 Critical Review (1802) Treatise on mineralogy by M. Haüy. 34, 481-489. 608 Dana, J.D. (1837) A System of Mineralogy. Durrie & Peck and Herrick & Noyes, New 609 Haven. 610 Dana, J.D. (1850) A System of Mineralogy, 3rd Ed. George P. Putnam, New York. 611 Dana, J.D. (1854) A System of Mineralogy, 4th Ed. George. P. Putnman, New York. 612 Darwin, C. (1845), Journal of researches into the natural history and geology of the 613 countries visited during the voyage of H.M.S. Beagle round the world, under 614 the Command of Capt. Fitz Roy, R.N (2nd. ed.). John Murray, London. 615 Darwin, C. (1859). On the origin of species by means of natural selection. J. Murray, 616 London. 617 Darwin, C. (1872). On the origin of species by means of natural selection, 6th Ed. J. 618 Murray, London. 619 De Castro, J. B., Arsuaga, J. L., Carbonell, E., Rosas, A., Martinez, I., and Mosquera, M. 620 (1997). A hominid from the Lower Pleistocene of Atapuerca, Spain: possible 621 ancestor to Neandertals and modern humans. Science, 276, 1392-1395. 622 Donovan, A.L. (1996) Antoine Lavoisier: Science, Administration and Revolution. 623 Cambridge Univ. Press, Cambridge. 624 Eddy, M.D. (2005) Set in stone: Medicine and the vocabulary of mineralogy in 625 eighteenth-century Scotland. In Knight, D.M. and Eddy, M.D., Eds. Science and

- 626 Beliefs: From natural philosophy to natural science, 1700-1900. Ashgate Pub.,
- 627 Surrey, England, pp. 77-94.
- 628 Eddy, M.D. (2008) The Language of Mineralogy: John Walker, Chemistry, and the
- 629 Edinburgh Medical School, 1750-1800. Ashgate, Surrey, England.
- Gaines, R.V., Skinner, H.C.W., Foord, E.E., Mason, B. and Rosenzweig, A. (1997)
- 631 Dana's New Mineralogy: The System of Mineralogy of James Dwight Dana
- 632 and Edward Salisbury Dana, 8th Ed. Wiley, New York.
- 633 Gilman, Daniel Coit (1899) The Life of James Dwight Dana. Harper & Brothers, New
- 634 York.
- 635 Gould, S.J. (2000) Linnaeus's luck? Natural History, 109, 18-76.
- Greene, J.C. and Burke, J. G. (1978) The science of minerals in the Age of Jefferson.
- 637 Transactions of the American Philosophical Society. 68, 1-113.
- 638 Grew, E.S. and Hazen, R.M. (2014). Beryllium mineral evolution. American
- 639 Mineralogist, 99, 999-1021.
- Hann, M. (2013) Symbol, Pattern, and Symmetry: The Cultural Significance of
- 641 Structure. Bloomsbury, London.
- Haüy, R.J. (1801) Traité de Minéralogie. Council of Mines, Paris.
- Haüy, R.J. (1822) Traité de Minéralogie, 2nd Ed. Bachelier, Paris.
- Hazen, R. M. (2010) Evolution of minerals. Scientific American, 302, 58-65.
- Hazen, R.M. and Eldredge, N. (2010). Themes and variations in complex systems.
- 646 Elements, 6, 43-46.
- Hazen, R. M. and Ferry, J. M. (2010). Mineral evolution: Mineralogy in the fourth
- 648 dimension. Elements, 6, 9-12.

649	Hazen, R.M., Golden, J., Downs, R.T., Hystad, G., Grew, E.S., Azzolini, D., and
650	Sverjensky, D.A. (2012). Mercury (Hg) mineral evolution: A mineralogical
651	record of supercontinent assembly, changing ocean geochemistry, and the
652	emerging terrestrial biosphere. American Mineralogist, 97, 1013-1042.
653	Hazen, R. M., Papineau, D., Bleeker, W., Downs, R. T., Ferry, J. M., McCoy, T. J., Downs,
654	R.T., Ferry, J.M., McCoy, T.J., Sverjensky, D.A., and Yang, H. (2008). Mineral
655	evolution. American Mineralogist, 93, 1693-1720.
656	James, E.O. (1966). The tree of life: an archaeological study (Vol. 11). Brill Publishers,
657	Leiden.
658	Johnson, S. (2008) The Invention of Air. Riverhead Books, New York.
659	Kuhn, T. (1996) The Structure of Scientific Revolutions. University of Chicago Press,
660	Chicago.
661	Laudan, R. (1987) From Mineralogy to Geology. University of Chicago Press, Chicago.
662	Levere, T.H. (2001) Transforming matter: a history of chemistry from alchemy to
663	the buckyball. Johns Hopkins University Press, Baltimore.
664	Linnaeus, C. (1735) Systema Naturae. John William de Groot, Leiden.
665	Linnaeus, C. (1758) Systema Naturae, 10 th ed. L. Salvius, Stockholm.
666	Melhado, E.M. (1981) Jacob Berzelius: The Emergence of his Chemical System.
667	University of Wisconsin Press, Madison. Cambridge University Press,
668	Cambridge.
669	Melhado, E.M and Frdngsmyr T. (Eds.) Enlightenment Science in the Romantic Era:
670	The Chemistry of Berzelius and its Cultural Setting.

- Mora, C., Tittensor, D.P., Adl, S., Simpson, A.G.B., and Worm B. (2011) How many
- 672 species are there on Earth and in the ocean? PLOS Biology, 9(8): e1001127.
- 673 doi:10.1371/journal.pbio.1001127.
- Nicol, J. (1849) Manual of Mineralogy. Adam and Charles Black, Edinburgh.
- 675 Schuh, C.P. (2007) Mineralogy & Crystallography: On the history of these sciences
- 676 from the beginnings through 1919. Unpublished monograph.
- 677 Stearns, B. P. and Stearns, S.C. (2000). Watching, from the Edge of Extinction. Yale
- 678 University Press, New Haven.
- 679 Stringer, C. (2012). The status of *Homo heidelbergensis* (Schoetensack 1908).
- 680 Evolutionary Anthropology: Issues, News, and Reviews. 21 101-107.
- 681 Thomson, T. (1815) Analyses of Books: An attempt to establish a pure scientific
- 682 system of mineralogy by the Application of the electro-chemical theory, and
- 683 the chemical proportions. By J. J. Berzelius, Translated from the Swedish
- 684 Original by John Black. 1814. Annals of Philosophy, 5
- 685 Werner, A.G. (1774) A treatise on the external characters of fossils. Translation
- 686 (1805) by Thomas Weaver. M.N.Mahon, Dublin.
- 687 Wherry, E.T. (1918) Modern extensions of Haüy's laws of crystallography. American
- 688 Mineralogist, 3, 134-136.
- 689 Whitlock, H.P. (1918) René-Just Haüy and his influence. American Mineralogist, 3,
- 690 92-98.

691 Tables 692 693 694 Table 1. Selected Gem Minerals from the family Nitrum quartzosum coloratum (Linnaeus 1758) 695 696 697 Linnaean Name Modern Gem Name Formula 698 699 N.Q. purpureum Amethyst SiO₂ 700 N.Q. rubrum Ruby Al_2O_3 701 N.Q. cæruleum Sapphire Al_2O_3 702 N.Q. viride Emerald $Be_3Al_2Si_6O_{18}$ 703 N.Q. flavum Topaz $Al_2SiO_4(F,OH)_2$ 704

Linné. Figure 1 – Oil portrait of Carl von Linné by Alexander Roslin from the portrait collection at Gripsholm Castle, Mariefred, Södermanland, Sweden. (Public Domain)

10/7

727 F 14 214 910 614 011 m14 11 24 114 11/14 ¥10 210 a14 014 D14 XIV XIII 728 XII 729 XI E 10 F 10 17210 W 10 z 10 х w 25 730 IX u^s VIII 731 117 VII и VI 732 v IV 733 ш 11 734 1 735 в c D Е F G н K L A T 736 737 738 Figure 2 – The Tree of Life -- the only diagram in the 1859 edition of Darwin's On the Origin of Species. (Public Domain) 739 740

741

Revision 2 of Ms. 5419

Revision 2 of Ms. 5419

763	•	125
764		4
765	Arsenio-sulfureta.	
766	Misspickel FeS ⁺ +FeAs ²	•
767	Koboltgians CoS ⁴ +CoAs [*]	•
768	Nickelgians Nio ⁺ +NiAs ²	
769	17. F. Syre.	· .
770	Syrgas. U.	• • •
771	Oxiaer. a. el. positiva eller basiska	oxider
772	Manganoxid? Mn.Mn	
773	Mangansuperoxid Mn	`
774	Zinkoxid Žn. <i>Zn</i>	
775	Jernoxid Fe F	
776	Jernoxid-oxidul Fe Fe ² . fF ³	,
777	7	h ² · · ·
778	Franklinit , In Fe ² +Mn Fe ² .	F^3
779	Iordkobalt Cal Mar 1 34 a	
780	Konnormidul Ó	•
781		
782	Kopparoxid Cu	
783	Blyoxid Pb	*
784	Blysuperoxid (Mönja) Pb	
785	'Wismutochra Bi	•
786	Uranoxidul(Pechblende)Ű.	
787	Tennoxid (Tennmalm) Su	-
788	b. electronegation orider	
789	Vatten UH Ac	
790	Hudnatan Brusit/Talking Jahard Marka	
791	Marater. Druch (Talkjoroshyarat) Mg Aq	• MAq
792	Manganoxidhydrat Mn Aq. Mn ³	Aq
793	Jernoxidhydrat Fe ² Aq ³ . F ²	Aq.
794	Uranoxidhydrat. Ü Aq [±]	
795	Lerjord (Corundum,	•
796	Telesie) Äl. A	•
797	Aluminater. Spinell MA6	
798	Pleonast M 16	,
799		
800		
801		
802	Figure 4 – The first classification of minerals based on the elect	ronegative
803	component from Berzelius (1824, p. 125). This excerpt include	s sulfides, oxides,
804	and hydrates.	
805		

- 826 Courtesy of the Yale Art Gallery, Yale University, New Haven, Conn. (Public domain)

829		Dana's (1854) Classification of Minerals
830 831	I.	Native elements
832	II.	Sulfides, Arsenides, Antimonides, Selenides, and Tellurides
833	III.	Chlorides, Bromides, and Iodides
834	IV.	Fluorides
835	V.	Oxides
836		A. Simple Oxides
837		B. Ternary Oxides
838		i. Silicates
839		ii. Tantalates and Columbates
840		iii. Phosphates, Arsenates, Vanadates
841		iv. Borates
842		v. Tungstates, Molybdates, Chromates
843		vi. Sulfates
844		vii. Carbonates
845	VI.	Hydrocarbons
846		

- Figure 6 Modern representation of the taxonomic tree from Dana's fourth (1854)
- 848 edition of his *System*.

849

Revision 2 of Ms. 5419

