1	Crystal accumulation in a tilted arc batholith
2	
3	Calvin G. Barnes ¹ *, Nolwenn Coint ² , Aaron Yoshinobu ¹
4	
5	¹ Department of Geosciences, Texas Tech University, Lubbock, TX 07409-1053, U.S.A.
6	² Geological Survey of Norway, PO Box 6315 Sluppen, 7491 Trondheim, Norway
7	
8	*E-mail: cal.barnes@ttu.edu
0	Devision 1
9	
10	ABSTRACT
11	The Wooley Creek batholith is a Late Jurassic, arc-related, calc-alkaline plutonic complex in
12	the Klamath Mountain province of California. Post-emplacement tilting and erosion have
13	exposed ~12 km of structural relief. The complex consists of an older (~159.1 Ma) lower zone
14	(pyroxenite to tonalite) assembled by piecemeal emplacement of many magma batches, a
15	younger (~158.2 Ma) upper zone (quartz diorite to granite), and a transitional central zone. In the
16	lower zone, pyroxenes are too Fe-rich to be in equilibrium with a melt whose composition was
17	that of the host rock. Mass balance calculations and simulations using rhyolite-MELTS indicate
18	that these rocks are cumulates of pyroxenes and plagioclase \pm olivine and accessory apatite and
19	oxides. Percentages of interstitial melt varied from ~7.5-83%. The plagioclase/pyroxene ratios of
20	cumulates vary considerably among the most mafic rocks, but are relatively uniform among
21	quartz diorite to tonalite. This near-constant ratio results in compositional trends that mimic a
22	liquid line of descent. In the upper zone, bulk-rock compositional trends are consistent with
23	differentiation of andesitic parental magmas. Upward gradation from quartz dioritic to granitic

24	compositions, modeled via mass balance calculations and rhyolite-MELTS simulations, indicate
25	that structurally lower parts of the upper zone are cumulates of hornblende and plagioclase \pm
26	biotite and accessory minerals, with 37-80% trapped melt. In contrast, the structurally higher
27	part of the upper zone represents differentiated magma that escaped the subjacent cumulates,
28	representing differentiated melt fractions remaining from 92-54%. The ratio of cumulate
29	plagioclase/(plagioclase + mafic minerals) is ~0.48 among upper zone cumulates, mimicking a
30	liquid line of descent.
31	The results suggest that compositional variation in many calc-alkaline plutons may be at
32	least as representative of crystal accumulation as of fractional crystallization. If so, then the
33	assumption that arc plutons geochemically resemble frozen liquids is dubious and should be
34	tested on a case-by-case basis. Moreover, comparisons of plutonic rock compositions with those
35	of potentially comagmatic volcanic rocks will commonly yield spurious results unless
36	accumulation in the plutons is accounted for.
37	Keywords: calc-alkaline plutons, crystal accumulation, fractional crystallization, mass
38	balance.
39	
40	INTRODUCTION
41	
42	The relationships between volcanic and plutonic rocks, and their original magmas, have
43	been debated from early days of petrologic study (Daly, 1933; Wager et al., 1960; Gilluly, 1948)
44	and are still a source of debate (e.g., Miller and Miller, 2002 Bachmann and Bergantz, 2004;
45	Bachmann et al., 2007; Reubi and Blundy, 2009; Mills and Coleman, 2013; Lipman and
46	Bachmann, 2015). Although bulk-rock compositional trends for volcanic rock suites are in many

cases comparable to those of plutonic suites (Coleman et al., 2012), it is clear from studies of 47 layered mafic intrusions that bulk-rock compositions may reflect significant amounts of crystal 48 49 accumulation (e.g., Wager and Brown, 1968; Naslund and McBirney, 1996). The importance of accumulation is even expressed in textural terminology used for mafic and ultramafic plutonic 50 rocks (Wager et al., 1960; Hunter, 1996). In this paper, the term 'cumulate' is used to indicate a 51 52 rock in which the abundance of one or more minerals is in excess of that which would occur 53 during crystallization of a crystal-free parental melt. We use 'accumulation' to indicate the generic processes in which cumulate rocks form. Such processes include, but are not limited to, 54 55 flow segregation (e.g., Komar, 1972; Paterson, 2009), gravitational settling or flotation (Darwin, 56 1844, Bowen, 1928), hindered settling and compaction (McKenzie, 1984, 1987; Lee et al., 57 2015), and filter pressing (Bowen, 1928). Many calc-alkaline plutonic suites (that range from gabbro to granite) lack compositional 58 layering and commonly have hypidiomorphic granular textures, a term that implies sequential 59 60 growth of crystals, with no implications for crystal accumulation. Nevertheless, bulk-rock 61 compositional features such as high concentrations of MgO, Al₂O₃, and Cr in calc-alkaline plutonic suites have been interpreted to indicate accumulation of ferromagnesian silicates, 62 63 plagioclase, and augite or chromite, respectively (e.g., Beard, 1986; Barnes et al., 1995; Keller et al., 2015). A more significant question involves granitic (s.l.; we use the term granitic to refer to 64 65 quartz-bearing intermediate to felsic rocks) suites whose bulk-rock compositions lie within welldefined compositional arrays. Traditionally, such compositional arrays have been interpreted to 66

result from one or more differentiation processes, either at the level of emplacement or deeper

68 (Hildreth and Moorbath, 1988; Sawka et al., 1990; Srogi and Lutz, 1997; Hildreth, 2004; Annen

et al., 2006; Bédard et al., 2009; duBray et al., 2011). If crystal–liquid separation occurred at the

level of emplacement, then some plutonic rocks should be partial cumulates (e.g., Lee & Morton, 70 2015). However, if accumulation occurred in cotectic proportions, identification of cumulates on 71 72 the basis of major element variation diagrams may be difficult because cumulate rock 73 compositions will lie on a back-projection of the liquid line of descent (Deering and Bachmann, 2010). Alternatively, some authors have suggested that bulk compositions of upper crustal 74 75 granitic rocks are commonly those of the magmas at the time of emplacement, with minor, local, post-emplacement differentiation (e.g., Coleman et al., 2012) or no differentiation at all (Mills, et 76 al., 2012). The debate concerning relationships between volcanic and plutonic rocks, and in 77 78 particular the importance of accumulation in plutons, is nicely summarized in two recent papers, 79 both of which utilize global geochemical data sets. One group of authors (Glazner et al., 2015) concluded that plutonic rocks are "texturally modified samples of the same magmas that erupt", 80 whereas the other group (Keller et al., 2015) concluded "...that fractional crystallization, rather 81 than crustal melting, is predominantly responsible for the production of intermediate and felsic 82 83 magmas, emphasizing the role of mafic cumulates as a residue of crustal differentiation". In addition, Keller et al. (2015) concluded accumulation of crystals from dacitic magmas is likely to 84 85 vield mafic assemblages.

The distinction between these two concepts of pluton growth and development is significant for a number of reasons. For example, if granitic rocks are 'magmas frozen on emplacement', then compositional variation within a pluton or batholith must be related to magmatic processes in the deep crust and/or upper mantle (Annen et al., 2006; Clemens et al., 2010; Coleman et al., 2012) or to differentiation during transport. In these cases, a relationship between granitic plutons and volcanic rocks, the latter of which commonly show strong evidence for mixing, assimilation, and fractionation in middle- to upper-crustal reservoirs (e.g., Grunder et

al., 2006; Reubi & Blundy, 2009; Ruprecht et al., 2012; Singer et al., 2014, and many more), is 93 probably tenuous. On the other hand, if some of the compositional variation within granitic suites 94 95 is caused by in-situ crystal-liquid separation (e.g., Lee et al., 2015), it should be axiomatic that 96 the plutons in question preserve evidence for differentiation processes that can be related to the 97 compositions of volcanic rocks. Moreover, it should be possible on the basis of textural and/or 98 compositional data to identify granitic rocks that are at least partial cumulates. The paucity of widespread compositional layering in most granitic suites means that even 99 if accumulation occurred during solidification of the magma, its physical effects (outcrop 100 101 features and textures) may not be evident. Examples of cumulates in granitic plutons include one 102 cited by Flood and Shaw (1979), who described K-rich cumulates at the base of a tilted 103 granodiorite. More recently, a number of studies have identified granitic cumulate zones in 104 stratified intrusions (e.g., Wiebe and Collins, 1998; Miller and Miller, 2002; Harper et al., 2004; Lux et al., 2007; Beane and Wiebe, 2012) and schlieren and related structures are commonly 105 106 thought to be cumulate in origin (Vernon and Paterson, 2008). These observations lead to the 107 question: are cumulates in granitic plutons restricted to special cases such as those cited here, or are they significantly more common? The answer to this question is important, because 108 109 petrogenetic interpretations of plutonic rock suites depend on how petrologists interpret rock compositions: do they represent melts, combinations of melt plus accumulated crystals, or pure 110 cumulates? Moreover, considering the conflicting conclusions reached on the basis of studying 111 112 compositional trends based on global data sets, it may be more instructive to investigate the importance of crystal accumulation in individual plutonic suites (e.g., Lee and Morton, 2015). 113 Deering & Bachmann (2010) discussed problems involved in distinguishing cumulate 114 granitic rocks from ones that represent crystallized melt. They used trace element trends to 115

116	identify probable liquid lines of descent caused by fractional crystallization, and placed
117	particular emphasis on changes in slope which signify addition of a new phase in the
118	fractionating assemblage (Bowen, 1928). They pointed out that the use of trace element trends is
119	appropriate because in many intermediate to felsic systems, multiple saturation of feldspars +
120	mafic silicates \pm quartz results in melt compositions that follow a nearly linear cotectic path,
121	leading to linear compositional arrays in binary diagrams. These relationships were expanded
122	upon by Gelman et al. (2014), who developed algorithms for numerical modeling of trace
123	element variation in melts and accumulated crystals. Moreover, in a regional study of the
124	Peninsular Ranges batholith, Lee and Morton (2015) concluded that many granitic rocks may
125	superficially resemble frozen liquids, even though many of the rocks in fact contain large
126	percentages of cumulate minerals.
127	The approach used by Deering and Bachmann (2010) is conceptually straightforward;
128	however, situations may exist in which a change of slope in plots of bulk-rock compositions does
129	not exist, either for major or trace elements. In such cases, other means of assessing the existence
130	and proportions of cumulate minerals must be found (e.g., Srogi and Lutz, 1996, 1997).
131	This contribution is a study of crystal accumulation in tilted plutonic system, the Wooley
132	Creek batholith (WCb) in which approximately 12 km of structural relief is exposed. The WCb is
133	an excellent place to assess accumulation because it encompasses a wide range of bulk
134	compositions (pyroxenite to granite) and is crudely zoned from lowermost gabbro, diorite, and
135	tonalite to uppermost granite, with dikes in the structurally high 'roof zone' representing leaks
136	from the underlying magmas. Our results indicate that the great majority of rocks in the batholith
137	are partial cumulates. These results call for caution when interpreting bulk-rock compositional
138	trends of plutonic suites as representative of differentiation trends.

139	
140	GEOLOGIC SETTING
141	
142	The Wooley Creek batholith (Fig. 1) is a Late Jurassic plutonic complex in the Klamath
143	Mountain province of northern California. The province is an accretionary orogen (Irwin, 1960,
144	1972; Snoke and Barnes, 2006) in which tectonostratigraphic terranes were amalgamated from at
145	least Cambrian through Late Jurassic time. The terranes are interpreted to be separated by
146	regional faults/shear zones, generally with low-angle reverse displacement.
147	The WCb intruded three terranes of the western Paleozoic and Triassic belt (Irwin, 1972);
148	from structurally lowest to highest, they are Rattlesnake Creek terrane, western Hayfork terrane,
149	and eastern Hayfork terrane. Descriptions of these host terranes may be found in Irwin (1972),
150	Wright (1982), Wright and Fahan (1988), Wright and Wyld (1994), and Donato et al. (1996).
151	During the Nevadan orogeny, the WCb and its host terranes were thrust over rocks of the
152	western Jurassic belt (Jachens et al., 1986; Snoke and Barnes, 2006). Regional doming centered
153	to the northeast of the batholith (Barnes, 1983; Mortimer and Coleman, 1985; Barnes et al.,
154	1986b, their Fig. 1) resulted in tilting of the overlying terranes (and plutons). In the case of the
155	WCb, tilting and subsequent erosion exposed ~ 12 km of structural relief in the pluton, with the
156	deepest levels (paleodepth \sim 22 km) in the northeast and the shallowest (paleodepth \sim 10 km) in
157	the south and southwest (Fig.1; Barnes et al., 1986b).
158	Wooley Creek batholith
159	The batholith can be divided into lower and upper zones, which are locally separated by a
160	transitional 'central zone' (Fig. 1; Coint et al., 2013b). Chemical abrasion-ID-TIMS U-Pb dating

161 on zircon (Coint et al., 2013b) indicated that the lower and upper zones are temporally distinct,

162 with lower zone ages of 158.99 ± 0.17 to 159.28 ± 0.17 Ma and upper zone ages of 158.21 ± 0.17 Ma and upper zone ages of 158.21 ± 0.17 Ma and upper zone ages of 158.21 ± 0.17 Ma and upper zone ages of 158.21 ± 0.17 Ma and upper zone ages of 158.21 ± 0.17 Ma and upper zone ages of 158.21 ± 0.17 Ma and upper zone ages of 158.21 ± 0.17 Ma and upper zone ages of 158.21 ± 0.17 Ma and upper zone ages of 158.21 ± 0.17 Ma and upper zone ages of 158.21 ± 0.17 Ma and upper zone ages of 158.21 ± 0.17 Ma and upper zone ages of 158.21 ± 0.17 Ma and upper zone ages of 158.21 ± 0.17 Ma and upper zone ages of 158.21 ± 0.17 Ma and upper zone ages of 158.21 ± 0.17 Ma and upper zone ages of 158.21 ± 0.17 Ma and upper zone ages of 158.21 ± 0.17 Ma and upper zone ages of 158.21 ± 0.17 Ma and 159.21 ± 0.17 Ma and 1590.17 to 158.25 ± 0.46 Ma (all uncertainties are 2σ). Two samples from the central zone gave CA-163 ID-TIMS ages of 158.95 ± 0.34 and 158.30 ± 0.16 Ma; the former age is identical to those of the 164 165 lower zone and the latter to those of the upper zone. Thus, the central zone was formed by 166 magmas from both adjacent zones of the batholith. Discontinuous selvages of diorite and quartz 167 diorite crop out along the western and southern contacts of the batholith (Fig. 1). These selvages are texturally and mineralogically similar to rocks of the lower zone and are considered to be 168 remnants of lower-zone type magmas into which the upper zone magmas were emplaced (Coint 169 170 et al., 2013a, b).

The western and southwestern contact of the batholith is termed the 'roof zone' (Barnes 171 172 et al., 1986). This contact zone is quite variable: in some locations granodiorite or granite of the 173 upper zone is in direct, sharp contact with the host rocks, whereas in other locations the mafic selvages cited above, some with abundant xenoliths, separate the host rocks from typical upper 174 zone rocks. Numerous fine- to medium-grained basaltic, andesitic, dacitic and rhyodacitic dikes 175 176 are present in the roof zone. Although mafic roof-zone dikes were not observed to cut the pluton, 177 two-pyroxene andesitic dikes both cut and are cut by upper-zone granodiorite. A second set of 178 andesitic dikes, with phenocrysts of hornblende, augite, and plagioclase, intrude the roof-zone 179 host rocks, but were not seen to cut the pluton. Similarly, medium-grained dacitic to rhyodacitic 180 roof-zone dikes do not cut the pluton. These dikes carry phenocrysts of plagioclase and 181 hornblende \pm biotite \pm quartz. On the basis of similar bulk-rock and phenocryst compositions, the 182 dacitic and rhyodacitic dikes were interpreted to represent magma leaked from an upper-zone 183 reservoir (Barnes et al., 1990; Coint et al., 2013a, b).

184	The lower zone is heterogeneous at the outcrop scale, consisting of gabbroic to tonalitic
185	rocks, with blocks and dike-like masses of pyroxenite and melagabbro, sparse mafic magmatic
186	enclaves (mme), and fine- to medium-grained synplutonic dikes. Unaltered lower zone gabbroic
187	to tonalitic rocks typically contain augite and orthopyroxene with late biotite \pm hornblende and
188	accessory K-feldspar, Fe-Ti oxides, apatite, and zircon. A few of the mafic samples contain relict
189	olivine (Barnes, 1983; 1987; Coint et al., 2013b). Pyroxenites and melagabbros consist of augite
190	and orthopyroxene \pm plagioclase \pm olivine (~Fo70) \pm hornblende \pm quartz \pm Fe-Ti oxides. In
191	general, plagioclase shows oscillatory-normal zoning, with cores as calcic as An79 and rims as
192	sodic as An ₃₂ (Fig. 2A; Barnes, 1987). The range of zoning varies from fewer than 10 mole $\%$
193	An to nearly 50 mole % An (Fig. 2A). Lower zone rocks are characterized by moderate to strong
194	magmatic foliation formed by aligned plagioclase and pyroxenes (Barnes, 1983; Coint et al.,
195	2013b). Deformation locally continued to near-solidus conditions, as indicated by bent
196	plagioclase and strained quartz.
197	Field relationships, bulk-rock compositions, and detailed study of augite compositions
198	indicate that the heterogeneity of the lower zone is due to emplacement of multiple magma
199	batches, with or without magma mixing (Coint et al., 2013a, b). It is clear that lower-zone rocks
200	were not derived from a single parental composition. Instead, they crystallized from many small-
201	to moderate-volume magma batches.
202	The upper zone grades from biotite hornblende quartz diorite in its structurally lowest
203	part (ca. 14 km paleodepth) to biotite hornblende granite in its uppermost parts (ca. 10 km
204	paleodepth; Fig. 1). All samples are characterized by hypidiomorphic granular texture and
205	contain phenocrysts of plagioclase and hornblende \pm biotite. The upward compositional variation
206	is expressed as a decrease in abundance of the mafic minerals, increase in abundances of quartz

207	and K-feldspar, and a change in K-feldspar habit from interstitial to poikilitic (Barnes, 1983;
208	Coint et al., 2013b). Relict augite is sparsely present as cores in hornblende. Foliation in upper
209	zone rocks, which is formed by aligned plagioclase and hornblende, varies from moderate to
210	absent. The intensity of the foliation increases structurally downward.
211	The central zone is characterized by a series of intrusive sheets from 1–10 m width that
212	range from gabbro to tonalite (Coint et al., 2013a). Mineral and bulk-rock compositions along
213	with textural features indicate that the majority of central zone samples are petrologically linked
214	to the upper zone (Coint, 2013a, b). Most samples contain biotite and hornblende as
215	ferromagnesian phases, but relict augite and opx are common (Barnes, 1983). The central zone
216	was also the site of emplacement of locally abundant synplutonic mafic dikes. These dikes are
217	mainly basaltic, are fine- to medium-grained, and are commonly deformed and disrupted in both
218	ductile and brittle fashion, leading to formation of linear swarms of mme (Barnes et al., 1986b).
219	
220	GEOCHEMISTRY
221	The geochemical data and descriptions of compositional variation in the WCb have been
222	presented in detail elsewhere (Barnes, 1983; Barnes et al., 1990; Coint et al., 2013b). In this
223	paper, bulk-rock and mineral compositions are used to subdivide lower and upper zone rocks and
224	to identify potential cumulate compositions.
225	Lower zone. It is possible to identify two groups of lower zone rocks, one of which can be
226	further subdivided. The most mafic group consists of pyroxenite, melagabbro, gabbro, and
227	diorite (including quartz-bearing diorite). In Figure 3, this group is subdivided into a pyroxenite-
228	melagabbro subgroup and a gabbro-diorite subgroup. Taken together, the pyroxenite-diorite
229	group rocks have SiO ₂ contents less than 54 wt% and most have MgO contents > 7 wt% (Fig.

230	3A). The one exception is a leucocratic, synplutonic, plagioclase-rich biotite diorite dike with 2.1
231	wt% MgO and 23.6% Al_2O_3 . Texturally, this sample (58) is a plagioclase cumulate.
232	The other lower-zone subgroup encompasses quartz diorite and tonalite, with silica
233	contents from \sim 53–60 wt%. Compositions of this subgroup show negative correlation between
234	SiO_2 and MgO, TiO ₂ , and Sr (Fig. 3) and no correlation between SiO_2 and Na_2O (Fig. 3B) or
235	total alkalis, (Mg/Mg+Fetotal), and Hf (not shown). Average plagioclase composition is <55% An
236	in quartz diorite and tonalite, although there is broad overlap in plagioclase compositions in this
237	group compared to the pyroxenite-diorite group (Fig. 2A). A few samples were analyzed for
238	trace element concentrations in plagioclase (Table 1), in which Sr contents vary from ~470 to
239	~700 ppm (Fig. 3D).
240	Pyroxene compositions Fig. 2B) show progressive enrichment in Fe from pyroxenitic to
241	tonalitic rocks, as would be expected in a suite of differentiating magmas. However, comparison
242	of Mg/Fe values of orthopyroxene (opx) with the Mg/Fe values of the rocks in which the
243	pyroxenes occur shows that the opx cannot have been in equilibrium with a melt whose
244	composition was that of the bulk rock (Fig. 3E). Similarly, Figure 3F compares measured CaTs,

249 Detailed trace element analysis of lower-zone augite (Coint et al., 2013a) showed that: (1) some samples show well-defined trace element variation, (2) other samples contain two or 250 more populations of augite, and most significantly, (3) the rare earth elements (REE) of augite 251 from lower zone samples vary in abundance, shape of the REE pattern, and dimensions of the Eu 252

EnFs, and DiHd components in augite with the values predicted assuming the augite was in

equilibrium with a melt of the bulk-rock composition (after Putirka, 2008). From these diagrams,

it is clear that neither opx nor augite in lower-zone rocks were in equilibrium with melts whose

compositions were the same as the bulk-rock compositions, because the latter are too rich in Mg.

245

246

247

anomaly (Fig. 2C), with more than a 10-fold variation in augite REE within a single sample.

These features led Coint et al. (2013a) to conclude that lower zone magmas could not be related

to a single parental composition, and certainly not to a single parental magma.

256 <u>Central zone</u>. The central zone is the most heterogeneous part of the WCb, primarily because of

numerous synplutonic dikes and swarms of mafic magmatic enclaves (e.g., Barnes et al., 1986a;

258 Coint et al., 2013b). The majority of synplutonic dikes have SiO₂ less than 56 wt% (Fig. 3A) and

tend to show wide scatter in major element compositions, whereas the central zone host rocks to

these dikes have bulk-rock SiO_2 contents from 51.2 to 65.6 wt% (Fig. 3) and coherent major

element trends (Coint et al., 2013b). Average plagioclase compositions range from An₅₀ to An₄₆,

with some cores as calcic as An_{60} and rims as sodic as An_{17} (Fig. 2A).

263 <u>Upper zone</u>. Samples of the upper zone range from quartz diorite to granite. Their bulk SiO₂

contents vary from 53.1 to 70.1 wt % (Fig. 4; Coint et al., 2013b, their Fig. 8). The An contents

in plagioclase decrease as a function of bulk SiO₂ contents (Barnes, 1987), with average An

266 contents varying from An_{50} to An_{30} , cores as calcic as An_{57} and rims as sodic as An_{19} (Fig. 2A).

267 Trace element data on plagioclase from two samples (Table 1) indicate Sr contents from ~750 to

268 ~1160 ppm. In contrast to the highly variable REE compositions of augite in the lower zone,

hornblende in upper zone rocks shows very similar REE patterns and abundances, although in

270 general the size of the negative Eu anomaly increases from core to rim (Coint et al., 2013a, their

271 Fig. 2D).

The variation of several elements, including Al_2O_3 (Fig. 4A) is notable because in the samples of the upper zone with $SiO_2 < 60$ wt%, Al_2O_3 contents are uncorrelated with SiO_2 or other differentiation indices. In contrast, upper zone samples with > 60 wt% SiO_2 show a decrease in Al_2O_3 as SiO_2 increases. The plot of Hf versus SiO_2 (Fig. 4B) shows a somewhat

276	similar relationship. With the exception of three upper zone samples, Hf increases with SiO ₂ in
277	rocks with <60 wt% but decreases as SiO ₂ increases from 60 to 74 wt%. This change from
278	increasing to decreasing Hf contents is characteristic of the onset of zircon fractionation.
279	Roof zone dikes. Mineral and bulk-rock compositions of the roof zone dikes are discussed in
280	detail elsewhere (Barnes, 1987; Barnes et al., 1990; Coint et al., 2013a). Compared to mafic
281	synplutonic dikes, mafic roof-zone dikes generally have similar MgO, higher SiO ₂ , and lower
282	TiO_2 (not shown). The dacitic and rhyodacitic dikes are generally similar in composition to
283	upper-zone rocks and share similar plagioclase (Fig. 2E) and hornblende compositions (Coint et
284	al., 2013a, their Fig. 8).

285

286

CRYSTAL ACCUMULATION IN THE WOOLEY CREEK BATHOLITH

Within the upper zone, the uniformity of texture and mineral compositions, combined with upward change in rock type from quartz diorite to granite, suggest evolution from a single magma reservoir (Coint et al., 2013a, b). If this was the case, then the most mafic rocks in this zone should have chemical characteristics of cumulates and the most evolved rocks should represent differentiates, assuming that not all such differentiated magmas rose to higher crustal levels. These conclusions should be supported by changes in the slope of trends in variation diagrams.

In contrast, because the lower zone was constructed from multiple magma batches with a range of compositions, it is difficult to interpret compositional trends among lower-zone rocks as being related to in-situ magma differentiation. The compositional variation seen in lower-zone rocks led previous workers (Barnes et al., 1990; Coint et al., 2013b) to suggest that many lowerzone samples are cumulates. In the following sections, possible explanations for compositional

variation in the lower and upper zone magmas are modeled via mass balance calculations and
tested using rhyolite-MELTS and trace element mass balance calculations.

Lower zone: pyroxenite-diorite group. The high MgO and low Al₂O₃ of these rocks, combined 301 302 with the lack of correlation with SiO₂ or other indices of differentiation (Fig. 3) suggest that the 303 bulk compositions do not represent a differentiation trend. Instead, many of these sample compositions plot within or to the low-SiO₂ side of the field bounded by compositions of augite, 304 305 opx, and plagioclase (Fig. 3). In addition, there is scant overlap of the pyroxenite-diorite compositions with potential basaltic melts, as represented by the fine-grained symplutonic dikes 306 (e.g., Fig. 3A). These geochemical features can be explained if the coarse-grained pyroxenite-307 308 diorite group rocks are cumulate in origin, and this explanation is consistent with the lack of

309 equilibrium relationships between opx–bulk-rock and augite–bulk-rock compositions (Fig. 3E, F,

respectively). This discrepancy results from the fact that the pyroxenes are too Fe-rich relative to

the bulk-rock composition. Explanations for this compositional mismatch include: (1) the bulk-

rock compositions result from mixing of an evolved, pyroxene-phyric magma with an aphyric

313 Mg-rich magma. The effects of mixing are locally evident. For example, Cr contents in some

augite crystals show zoning reversals interpreted to result from magma mixing (Coint et al.,

2013a). Likewise, crossing tie lines between coexisting pyroxene compositions (Fig. 2A) suggest

local mingling. Nevertheless, batch-wise emplacement of lower zone magmas and the paucity of

prominent zoning reversals in plagioclase (Barnes, 1987) suggest that mixing within lower zone

magmas was minor. (2) The pyroxenes equilibrated with Fe-rich residual melts. Percolation of

319 Fe-rich melts through lower-zone magmatic mushes would be expected to result in samples rich

320 in Fe-Ti oxides. However, oxide-rich samples have not been found. (3) The majority of

pyroxenite-diorite samples are cumulates, in which the accumulating phases were augite and
 orthopyroxene ± plagioclase ± olivine ± accessory minerals.

323 If rocks of the lower-zone pyroxenite-diorite group are cumulates, then their bulk 324 compositions must be the sum of cumulus minerals augite \pm opx \pm plagioclase \pm olivine \pm Fe-Ti

oxides, plus a melt phase that was in equilibrium with the cumulus minerals. For this study, we

compared Mg/Fe in augite with Mg/Fe of fine-grained rocks in the WCb system (mafic roof-

327 zone dikes, synplutonic dikes, and sheets in the central zone). Four rocks had Mg/Fe values

consistent with equilibrium with lower-zone pyroxenes: MMB-236A, MMB-555, MMB-771,

and WCB-4809. Compositions of these samples are plotted as blue stars in Figure 3, which

shows that their compositions lie within or near the 'cumulate box' formed by the compositions

331 of pyroxenes and plagioclase.

325

332 Lower zone quartz diorite-tonalite group. As with the pyroxenite-diorite group, pyroxenes in the lower zone quartz diorite-tonalite group cannot have been in equilibrium with melts having the 333 334 compositions of the bulk rocks (Fig. 3E, F). It is thus logical to assume that these rocks are cumulate. However, because nearly all quartz diorite-tonalite compositions lie on the high-silica 335 side of the cumulate box, it is also logical that the cumulate minerals in these rocks were in 336 337 equilibrium with a melt more siliceous than the most SiO₂-rich tonalite. Two fine-grained rocks. roof-zone dike MMB-548 and central zone sheet MMB-777A (shown was green stars in Fig. 3), 338 339 have Mg/Fe appropriate for equilibrium with pyroxenes in lower zone tonalites; both samples 340 have dacitic bulk compositions (Table 2).

341 Lower zone mass balance models. If bulk compositions of lower zone samples are, in part, due to

342 crystal accumulation, and if the samples identified above represent potential interstitial melts,

then it should be possible to mass balance rock compositions with the compositions of the

344	cumulate phases and an interstitial melt phase. Results of major element mass balance
345	calculations (least-squares model of Bryan et al., 1969) indicate that such accumulation is
346	possible (Table 3). For the pyroxenite-diorite group, proportions of interstitial melt (represented
347	by blue stars in Fig. 3) range from \sim 7% to 83%. In most calculations, the cumulate phases are
348	augite, opx, and plagioclase \pm olivine \pm Fe-Ti oxides. The proportions of cumulate plagioclase
349	(compared to total cumulates) vary from 2–54% and average $30 \pm 23\%$. It is noteworthy that use
350	of MMB-771 composition as the interstitial melt requires accumulation of An_{85} plagioclase
351	(Table 3). However, plagioclase this calcic is uncommon in lower zone samples (Fig. 2E),
352	suggesting that MMB-771 is not an appropriate proxy for interstitial melt.
353	Mass balance calculations for the quartz diorite-tonalite group indicate that augite, opx,
354	and plagioclase are cumulate phases, and that small proportions of Fe-Ti oxides were also
355	cumulate (Table 3). Although the choice of interstitial melt composition (green stars in Fig. 3)
356	clearly affects the calculated percentage of melt, the calculations are consistent with \sim 30–70% of
357	quartz diorite-tonalite samples being cumulate minerals. Moreover, the proportions of cumulate
358	plagioclase (compared to total cumulates) vary over a narrow range of 41–57% and average 52 \pm
359	5%.
360	The mass balance calculations indicate that the ratio of cumulate
361	[plagioclase/(plagioclase + pyroxene)] in rocks of the pyroxenite-diorite group varies widely,
362	whereas the same ratio in rocks of the quartz diorite-tonalite group has a relatively limited range
363	of values (Fig. 5; Table 3). These differences are consistent with the wide compositional scatter
364	observed in the pyroxenite-diorite group (Fig. 3), and suggest the potential for a range of
365	magmatic conditions and/or accumulation processes that permitted preferential segregation of
366	pyroxene versus plagioclase. In contrast, the comparatively small range of the ratio of cumulate

minerals in the quartz diorite-tonalite group (Fig. 5) suggests that separation of cumulate 367 minerals from their host magmas was in approximately cotectic proportions. 368 369 Tests of lower zone mass balance calculations: pyroxenite-diorite group. The major-element 370 mass balance models show that use of compositions of samples MMB-555 and WCB-4809 as proxies for interstitial melts provide adequate fits (low r^2 values) and match plagioclase 371 372 compositions, whereas use of sample MMB-771 requires plagioclase more calcic than is typical of the natural samples. To further test the viability of the first two compositions as interstitial 373 melt proxies, simulations of magma crystallization were made using rhyolite-MELTS (Gualda 374 375 and Ghiroso, 2014, 2015) in an attempt to match the anorthite contents of plagioclase and Mg/Fe values of opx and augite (supplementary Appendix). The models were run at 500 MPa and NNO 376 oxygen buffer; values consistent with conditions in the lower zone (Barnes, 1987). The H₂O 377 contents used in the models varied from 1–5 wt%. For proxy melt compositions MMB-555 and 378 WCB-4809, matches to plagioclase An contents and pyroxene Mg/Fe values were achieved at 3-379 4 wt% H₂O. These models indicate liquidus temperatures from 1165–1136°C, augite as the 380 liquidus phase, and plagioclase crystallization at least 140–150°C below the liquidus. At the 381 plagioclase liquidus the proportion of melt was ≥ 60 volume% and the melt density was ~ 1000 382 kg/m^3 lower than that of the bulk solid. This density difference suggests that migration of the 383 melt away from the solid was possible, and could leave a pyroxenitic to gabbroic cumulate. 384 385 Tests of lower zone mass balance calculations: *quartz diorite-tonalite group*. The proxy compositions for interstitial melt (MMB-548 and MMB-777A) were modeled using rhyolite-386 MELTS at 400 MPa, NNO, and H₂O contents of 1–5 wt% (supplementary Appendix). Liquidus 387 temperatures decreased with increasing H₂O contents from 1168–1084°C for composition 388 MMB-548 and from 1129–1041°C for composition MMB-777A. Orthopyroxene was the 389

18

390	liquidus phase in all simulations and compositional matches of Mg/Fe in opx and augite were
391	achieved in the 900–950°C range at 3–5 wt% H_2O and 980–1040°C at 2% H_2O . In simulations
392	run at 1% H ₂ O, opx Mg/Fe values were matched at 1000°C, but calculated augite compositions
393	were too Fe rich at any temperature. Modeled plagioclase stability in systems with 2% H_2O is
394	60–80°C below the liquidus temperature and plagioclase compositions were in the An_{56} – An_{54}
395	range for all models. Rim compositions of plagioclase in the quartz diorite-tonalite group are
396	~An ₄₅ , which corresponds to T of ~950°C in models at 2% H_2O . At this condition, melt
397	constitutes \sim 70% of the volume and the difference between densities of the bulk solid and the
398	melt is \sim 560 kg/m ³ . The best matches to mineral compositions indicate that rocks of quartz
399	diorite–tonalite group are partial cumulates from magmas with relatively low H_2O contents (~2
400	wt%). This conclusion is consistent with the fact that hornblende is absent in some quartz
401	diorite-tonalite group samples; biotite is the late-stage hydrous phase (Barnes, 1987), indicating
402	that H ₂ O contents were relatively low (<3–4%; e.g., Naney, 1983). Variable proportions of
403	separation of melt from pyroxene and plagioclase could result in the range of bulk compositions
404	seen in the quartz diorite-tonalite group.
40E	A second set of tests involves mass belance of the DEE. These tests used the propertiens

A second set of tests involves mass-balance of the REE. These tests used the proportions of cumulate minerals determined from major element mass balance calculations to sum the REE abundances of augite, opx, plagioclase, and an interstitial melt in an attempt to match the bulkrock composition (Fig. 6). For each mass balance, two compositions of interstitial melt were used. One composition was that of the rock used as a proxy for interstitial melt; the other was calculated on the basis of average augite REE compositions in the sample of interest. In general, interstitial melt compositions calculated on the basis of augite REE resulted in close fits to the bulk-rock data (Fig. 6A, B, D). However, in samples with a wide range of augite REE contents
large misfits can occur (e.g., MMB-30; Fig. 6C).

In summary, it is first worth reiterating geological and petrological observations, which 414 indicate that assembly of the lower zone was a piecemeal process and undoubtedly involved a 415 416 diversity of magmas ranging from basaltic andesite to dacite. Moreover, some magma batches 417 mixed/mingled at the level of emplacement, others did not. Nevertheless, the major element mass 418 balance calculations coupled with rhyolite-MELTS simulations suggest that many/most lowerzone samples are partial cumulates. Interstitial melts in the pyroxenite-diorite group were 419 420 broadly basaltic andesite in composition, whereas interstitial melts in the quartz diorite-tonalite group were dacitic. The rhyolite-MELTS simulations suggest that the basaltic andesite melts 421 422 were richer in H_2O than the dacitic ones. If so, this difference in H_2O content precludes a direct 423 relationship between the pyroxene-diorite group and the quartz diorite-tonalite group. Results of the rhyolite-MELTS simulations provide estimates of the crystal fraction at 424 425 any specific temperature. For simulations involving quartz diorite-tonalite at 2 wt% H_2O_2 , 426 observed mineral compositions and approximate cumulate proportions are reproduced at 427 $\sim 1000^{\circ}$ C, a temperature that is consistent with two-pyroxene geothermometry (Barnes, 1987). In 428 this temperature range, the simulations indicate crystal mass fractions of $\sim 17-22\%$. If the various assumptions embedded in the preceding discussion are appropriate, then rocks of the quartz 429 430 diorite-tonalite group represent accumulation of as little as 10% to as much as 50% crystals. 431 ACCUMULATION AND FRACTIONAL CRYSTALLIZATION IN THE UPPER ZONE The striking similarity of hornblende trace element compositions in the upper zone led 432 433 Coint et al. (2013a) to suggest that the upper zone evolved from an essentially homogeneous magma. [N.b., Coint et al. (2013a) did not suggest that the upper zone formed from a single 434

435	magma batch, but instead from magmas of similar/identical compositions that coalesced and
436	were mixed due to injection of basaltic magmas at the base of the zone (cf., Burgisser and
437	Bergantz, 2011).] If the upper zone magma was initially homogeneous, then upward zoning from
438	quartz diorite and tonalite to granite requires that some upper zone rocks are cumulates, others
439	represent fractionated magmas, and a few may be representative of the original (parental) magma
440	composition. Compositional variation of the major elements is characterized by nearly linear
441	trends (Coint et al., 2013b), however, for several trace elements the compositional trends show
442	changes from positive to negative slopes with increasing SiO ₂ (Fig. 4; Coint et al., 2013b), which
443	may be interpreted as constituting evidence for crystal-liquid separation (e.g., Bowen, 1928;
444	Deering and Bachmann, 2010; Lee and Morton, 2015).
445	If the upper zone was related to a single magma composition, the parental magma must
446	lie at SiO ₂ contents lower than the value at which incompatible elements become compatible (the
447	'peak' in variation diagrams). For this discussion, the composition of roof zone andesitic dike
448	sample MMB-612 was used because it lies near the change in slope in variation diagrams (Fig.
449	4), contains phenocrysts of augite, hornblende, and plagioclase, and shows evidence for late-
450	stage biotite stability. Use of this composition required that mass balance models be of two
451	types. Compositions of upper zone samples more mafic than MMB-612 were modeled in terms
452	of accumulation, in which the presumed cumulate rock composition was calculated as the sum of
453	crystals and 'melt' (= MMB-612). In these calculations, the proportion of crystals represents the
454	cumulate fraction of the modeled rock composition. In contrast, compositions of samples more
455	felsic than MMB-612 were modeled in terms of fractional crystallization, in which the 'parental'
456	composition (MMB-612) was calculated as the sum of crystals plus evolved rock compositions.

In these calculations, the proportion of evolved rock used in the calculation represents the meltfraction at the end of fractionation.

Mass balance calculations of accumulation were of two types. One set of calculations 459 considered only plagioclase and hornblende \pm accessory minerals as cumulate phases. Successful 460 calculations (lowest sum of squares of residuals) yielded proportions of interstitial melt from 461 462 0.49 to 0.88. A characteristic of these results was that the composition of the cumulate plagioclase was in the range An₆₀–An₇₇, much more calcic than is observed in the rocks (Fig. 463 2E). A second set of calculations (Table 4) considered augite, plagioclase, hornblende, and 464 465 biotite as potential cumulate minerals, along with accessory phases. These calculations yielded proportions of interstitial melt from 0.37 to 0.86, slightly lower than results from the first set of 466 467 models, and compositions of cumulate plagioclase in the range observed in the rocks: from An_{43-} 468 50.

469 Mass balance calculations for <u>fractional crystallization</u> used hornblende + plagioclase 470 $(An_{43-56}) \pm$ biotite and accessory minerals as fractionating phases (Table 4). The calculated 471 fraction of melt remaining varied from ~92% to ~54%.

Testing upper zone mass balance calculations using rhyolite-MELTS is complicated by 472 473 the fact that solution models for hornblende are not available and in some cases the program has difficulty modeling plagioclase compositions. Simulations were run using MMB-612 (300 MPa, 474 NNO) over a range of H₂O contents from 2–5 wt%. The results suggest that at H₂O contents 475 476 greater than 3 wt%, plagioclase crystallization occurs at unrealistically low temperatures (\leq 950°C), which results in excessive Al₂O₃ enrichment in the melt (\geq 18wt%). In contrast, the 477 rhyolite-MELTS simulation with 2 wt% H₂O indicates plagioclase stability at 1040°C at a silica 478 content of the melt of ~61.9 wt%. These results, and the major element mass balance 479

480	calculations, are consistent with bulk-rock compositions. For example, upper zone samples with
481	$SiO_2 < 62$ wt% show a wide scatter of Al_2O_3 contents (Fig. 4A), which would be expected if the
482	low-SiO ₂ samples contained variable proportions of cumulate plagioclase and hornblende,
483	whereas Al ₂ O ₃ decreases in samples with higher SiO ₂ . Similarly, Hf increases in samples with
484	$SiO_2 < 60$ wt% but decreases in samples with higher SiO_2 contents, consistent with zircon ±
485	hornblende fractionation (also see Coint et al., 2013a, b). Barium abundances also decrease
486	above SiO ₂ contents of ~65 wt%, which is consistent with late-stage biotite fractionation (K-
487	feldspar is interstitial to poikilitic in the WCb).
488	As with the lower zone, the major element mass balance calculations were also tested
489	using the REE. For crystal accumulation models, these calculations were similar to those for the
490	lower zone, in which REE abundances of hornblende, augite, plagioclase, biotite, and an
491	assumed melt were summed using proportions from the major element calculations. For each
492	test, one set of calculations used the composition of sample MMB-612 as the interstitial melt. A
493	second set used melt compositions calculated from hornblende, using partition coefficients from
494	Bachmann et al. (2005). Both proxies for melt composition result in close fits to the <i>shape</i> of the
495	bulk-rock REE pattern, although the fit to absolute abundances is variable (Fig. 7). Better fits can
496	be achieved by substituting different amphibole compositions and/or using different REE
497	partition coefficients; however, our goal here is to assess the viability of the models rather than
498	to achieve perfect fits. In that regard, it is noteworthy that although the two melt proxies are quite
499	distinct in their REE patterns and abundances, the results of trace element mass balance provide
500	close fits to the bulk-rock composition, an indication that the bulk-rock REE budget is dominated
501	by hornblende. In addition, although the cumulate minerals all have Eu anomalies, the calculated
502	REE patterns either lack Eu anomalies or have negligible ones (Fig. 7). Evidently, the presence

or absence of Eu anomalies may be an unreliable indicator of plagioclase fractionation oraccumulation (cf. Deering and Bachmann, 2010).

Rare earth element mass balance tests of fractional crystallization attempted to match the composition of the presumed parent (MMB-612) to the sum of the fractionated melt (bulk-rock composition) plus fractionated crystals. The results (Fig. 8) show close fits to the REE patterns and abundances.

The relative proportions of cumulate minerals or residual melts are plotted on the 509 geologic map (Fig. 1). Cumulate rocks occupy structurally lower parts of the upper zone (NE 510 511 side; Fig. 9), whereas fractionated samples are in the structurally highest part of the zone. There 512 is no discernable regular variation of the percentage of cumulate minerals among the cumulate 513 rocks, or of the residual melt among the fractionated rocks. This lack of regular variation suggests that accumulation within the upper zone resulted from variable separation of melt from 514 an initial andesitic magma (Fig. 9), leading to variable compositions of evolved magma in the 515 516 uppermost parts of the system.

517

518

DISCUSSION

Lower zone. Aside from a few pyroxenite and melagabbro samples with adcumulate textures
(Barnes, 1983; Coint et al., 2013b), most samples of the lower WCb lack structural or
petrographic features that would identify them as cumulates in the sense of Wager and Brown
(1968). Nevertheless, mineral compositions and mass balance calculations indicate that most
lower-zone rocks are partial cumulates. If so, then the question arises: how did residual melts
from lower-zone magmas separate from the cumulate minerals? We rule out crystal settling for a
number of reasons, including the lack of field evidence and the fact that the lower zone formed

526	primarily by emplacement of multiple steeply-dipping, sheet-like bodies. In contrast, magma
527	emplacement in sheet-like masses is consistent with accumulation due to flow sorting (e.g.,
528	Komar, 1972), particularly in the pyroxenite and melagabbro bodies. However, few of the bodies
529	show inward increases in grain size, as would be expected if flow sorting were the primary
530	mechanism of crystal accumulation. Some interstitial melts could escape due to a combination of
531	hindered settling and compaction, but this process is more effective in horizontally-extensive
532	tabular bodies (e.g., Bachmann and Bergantz, 2004).
533	We suggest that a more likely cause of expulsion of interstitial melts from lower-zone
534	magmas was by deformation-induced filter pressing. Deformation was probably in part related to
535	regional tectonic effects (e.g., Bea et al., 2005), which is consistent with the fact that magmatic
536	foliation in the lower zone is subparallel to foliation in adjacent host rocks (Barnes, 1983; Coint
537	et al., 2013b). In addition, growth of the lower zone by incremental emplacement of new
538	magmas into existing, crystal-rich magmas would have resulted in compaction of existing mushy
539	magmas and expulsion of interstitial melts. The latter process explains the highly variable
540	calculated proportions of cumulate minerals in the pyroxenite-diorite group, because the types
541	and proportions of cumulate minerals would be dependent on phenocryst assemblage at the time
542	of filter pressing. The phenocryst assemblage would, in turn, depend on the T and H ₂ O content
543	of the melt: higher T and H ₂ O content would result in suppression of plagioclase stability and
544	therefore pyroxenitic-melagabbroic cumulate rocks, whereas lower T and/or lower H ₂ O content
545	would promote plagioclase stability and formation of gabbroic to dioritic cumulate rocks.
546	In contrast to the pyroxenite-diorite group, the ratios of cumulate
547	plagioclase/(plagioclase + pyroxene) in the quartz diorite-tonalite group are quite uniform, and
548	this plagioclase/pyroxene proportion is similar to the plagioclase/(plagioclase + pyroxene) ratio

549 determined from rhyolite-MELTS models at temperatures of 950–1000°C and low to moderate H₂O contents. Evidently, in the case of the quartz diorite-tonalite group, deformation-induced 550 filter pressing preserved a cumulate assemblage that closely mimicked cotectic mineral 551 552 proportions. As a result, the compositional trends within this group (Fig. 3) are best interpreted 553 as accumulation trends rather than as liquid lines of descent. Inasmuch as rocks in this group generally have moderate to strong magmatic foliation defined by oriented plagioclase, loss of 554 melt by deformation-induced filter pressing at temperatures somewhat lower than 950°C. 555 Upper zone. Changes in slope of the compositional trends for the upper zone are characteristic of 556 557 fractional crystallization. However, the uniformity of hornblende compositions (Coint et al., 558 2013a) and plagioclase core compositions (Fig. 2A; Barnes, 1987) indicate that the crystal-liquid separation in the upper zone was inefficient. Moreover, the mass balance calculations are entirely 559 560 consistent with zonation within the upper zone caused by separation of melt from a cumulate assemblage that closely approached a plagioclase/(plagioclase + mafic mineral) ratio of 0.47561 562 (Table 4). In this interpretation, the melt phase in a nominally homogeneous upper-zone magma 563 body was able to rise to structurally high levels of the batholith, leaving partial cumulates 564 behind. This process requires that a melt-rich zone as much as 1.35 km thick formed from an 565 upper-zone magma body that was as much as 4 km thick. For this separation to occur, magma 566 properties must be appropriate for a process such as hindered settling to occur. 567 In a recent contribution, Lee et al. (2015) calculated conditions necessary for hindered 568 settling and compaction to result in crystal-melt separation over geologically reasonable times.

569

570 crystalline assemblage and melt, crystal size, and time as variables. We used the results of mass

These calculations utilized porosity (~melt fraction), melt viscosity, density difference between

balance calculations to estimate porosity and output from rhyolite-MELTS simulations to 571 estimate magma properties for comparison with the calculations of Lee et al. (2015). 572 Melt viscosity was calculated at 850°C for the compositions of sample MMB-612 and of 573 574 differentiated melt compositions from rhyolite-MELTS output. The method of Giordano et al. (2008) yields log₁₀ melt viscosities in the range of 4.1 to 4.9 Pa sec. At 850°C, rhyolite-MELTS 575 calculations indicate density differences between melt and solids of 600-700 kg/m³. If the mass 576 balance results are taken to approximate porosity, then porosity ranged from 0.8 to 0.37, with 577 most values >0.55. 578 579 The results of Lee et al. (2015) indicate that for porosity of 0.55, solid/melt density difference of 300 kg/m³, crystal diameter of 3mm, and log₁₀ melt viscosity of 5 Pa sec, a 500m-580 thick differentiated 'boundary layer' can form in ~30 kyr by hindered settling and ~50 kyr by 581 compaction. The models of Lee et al. (2015) assume no addition of heat during crystal-melt 582 separation. However, zones of mixing/mingling are common at the base of the upper zone. If 583 584 these magma influxes provided heat to the upper zone magma, then it is likely that sufficient time was available for formation of the ca. 1.35 km thick fractionated zone. 585 **IMPLICATIONS** 586 587 On the basis of textural and bulk-rock compositional data, mineral-bulk-rock Fe-Mg K(d) data, major element mass balance calculations, and rhyolite-MELTS simulations, we 588 conclude that the great majority of rocks in the WCb are cumulate. Only the uppermost part of 589

the batholith represents differentiated magmas, and these rocks are interpreted to result from

upward percolation of melts in a magmatic mush. Among the most mafic lower zone rocks, the

592

593 contrast, with increasing SiO_2 content of the magmas, the percentage of trapped melt tends to be

total mass of cumulate minerals varies widely, as do the proportions of cumulate minerals. In

594	more uniform, as do the proportions of cumulate minerals. This consistency of cumulate mineral
595	proportions results from accumulation in near-cotectic proportions and leads to bulk-rock
596	compositional trends that mimic liquid lines of descent.
597	If the type of accumulation seen in the WCb is typical of arc plutons, then direct
598	comparison of plutonic rock compositions with volcanic rock compositions will result in the
599	observation that plutons are more mafic than coeval volcanic rocks (e.g., Lee and Morton, 2015).
600	Our results indicate that such comparisons should be made with caution, and that the expectation
601	that direct comparison between volcanic and plutonic suites will yield identical compositional
602	ranges is probably unrealistic. Instead, we suggest that wherever possible mineral-bulk-rock Fe-
603	Mg K(d) values should be used to assess the likelihood of accumulation. Inasmuch as hornblende
604	is the common ferromagnesian silicate in many arc plutons, further research on refining the
605	range of mineral-melt K(d) values for calcic amphibole is highly desirable.
606	ACKNOWLEDGEMENTS
607	We thank reviewers Chad Deering and Drew Coleman and Associate Editor Calvin
608	Miller for helpful comments. This research was supported by NSF grant EAR-0838342 to
609	Yoshinobu and Barnes and a Geological Society of America Penrose grant to Coint.
610	
611	REFERENCES CITED
612	Annen, C., Blundy, J.D., and Sparks, R.S.J. (2006) The genesis of intermediate and silicic
613	magmas in deep crustal hot zones. Journal of Petrology, 47, 505-539.
614	Bachmann, O., and Bergantz, G.W. (2004) On the origin of crystal-poor rhyolites: Extracted
615	from batholithic crystal mushes. Journal of Petrology, 45, 1565–1582.

616	Bachmann, O., Dungan, M.A., and Bussy, F. (2005) Insights into shallow magmatic processes in
617	large silicic magma bodies: the trace element record in the Fish Canyon magma body,
618	Colorado. Contributions to Mineralogy and Petrology, 149, 338–349.
619	Bachmann, O., Oberli, F., Dungan, M.A., Meier, M., Mundil, R., and Fischer, H. (2007)
620	⁴⁰ Ar/ ³⁹ Ar and U–Pb dating of the Fish Canyon magmatic system, San Juan Volcanic
621	filed, Colorado: Evidence for an extended crystallization history. Chemical Geology, 236,
622	134–166.
623	Barnes, C.G. (1983) Petrology and upward zonation of the Wooley Creek batholith, Klamath
624	Mountains, California. Journal of Petrology, 24, 495-537.
625	Barnes, C.G. (1987) Mineralogy of the Wooley Creek batholith, Slinkard pluton, and related
626	dikes, Klamath Mountains, northern California. American Mineralogist, 72, 879–901.
627	Barnes, C.G., Allen, C.M., and Saleeby, J.B. (1986a) Open- and closed-system characteristics of
628	a tilted plutonic system, Klamath Mountains, California. Journal of Geophysical
629	Research, 91, 6073–6090.
630	Barnes, C.G., Rice, J.M., and Gribble, R.F. (1986b) Tilted plutons in the Klamath Mountains of
631	California and Oregon. Journal of Geophysical Research, 91, 6059-6071.
632	Barnes, C.G., Allen, C.M., Hoover, J.D., & Brigham, R.H. (1990) Magmatic components of a
633	tilted plutonic system, Klamath Mountains, California. In Anderson, J.L., Ed., The nature
634	and origin of Cordilleran magmatism. Geological Society of America Memoir, 174, 331-
635	346.
636	Barnes, C.G., Johnson, K., Barnes, M.A., Prestvik, T., Kistler, R.W., and Sundvoll, B. (1995)
637	The Grayback pluton: Magmatism in a Jurassic back-arc environment, Klamath

638 Mountains, Oregon. Journal of Petrology, 36, 397–416.

639	Barnes C.G., Mars, E.V., Swapp, S., and Frost, C.D. (2006) Evolution of potassic magmas in a
640	primitive arc setting. In Snoke, A.W. and Barnes, C.G., Eds, Geological studies in the
641	Klamath Mountains province, California and Oregon: A volume in honor of William P.
642	Irwin. Geological Society of America Special Paper, 410, 199–221.
643	Beane, R., and Wiebe, R.A. (2012) Origin of quartz clusters in Vinalhaven granite and porphyry
644	coastal Maine. Contributions to Mineralogy and Petrology, 163, 1069-1082.
645	Beard, J.S. (1986) Characteristic mineralogy of arc-related cumulate gabbros: Implications for
646	the tectonic setting of gabbroic plutons and for andesite genesis. Geology, 14, 848-851.
647	Bédard, J.H., Leclerc, F., Harris, L.B., and Gulet, N. (2009) Intra-sill magmatic evolution in the
648	Cummings Complex, Abitibi greenstone belt: Tholeiitic to calc-alkaline magmatism
649	recorded in an Archaean subvolcanic conduit system. Lithos, 111, 47–71.
650	Bowen, N.L (1928) The evolution of the igneous rocks. Princeton Univ. Press, 334 p.
651	Bryan, W. B., Finger, L. W., and Chayes, F. (1969) Estimating proportions in petrographic
652	mixing equations by least-squares approximation. Science, 163, 163–164.
653	Burgisser, A., and Bergantz, G.W. (2011) A rapid mechanism to remobilize and homogenize
654	highly crystalline magma bodies. Nature, 471, 212–217.
655	Clemens, J.D., Helps, P.A., and Stevens, G. (2010) Chemical structure in granitic magmas – a
656	signal from the source?: Earth and Environmental Science Transactions of the Royal
657	Society of Edinburgh, 100, 159–172.
658	Coint, N., Barnes, C.G., Yoshinobu, A.S., Barnes, M.A., and Buck, S. (2013a) Use of trace
659	element abundances in augite and hornblende to determine the size, connectivity, timing,
660	and evolution of magma batches in a tilted pluton. Geosphere, 9, 1747–1765.

Coint, N., Barnes, C.G., Yoshinobu, A.S., Chamberlain, K.R., and Barnes, M.A. (2013b) Batch-661 wise assembly and zoning of a tilted calc-alkaline batholith: Field relations, timing, and 662 compositional variation. Geosphere, 9, 1729–1746. 663 664 Coleman, D.S., Bartley, J.M., Glazner, A.F., and Pardue, M.J. (2012) Is chemical zonation in plutonic rocks driven by changes in source magma composition or shallow-crustal 665 differentiation? Geosphere, 8, 1568–1587. 666 Darwin, C. (1844) Geological observations on the volcanic islands visited during the voyage of 667 the HMS Beagle, together with some notes on the geology of Australia and the Cape of 668 669 Good Hope, being the second part of the geology of the voyage of the Beagle, under the command of Capt. Fitzroy, R.N., during the years 1832 to 1836. Smith Elder, London. 670 Daly, R.A. (1933) Igneous Rocks and the Depths of the Earth. New York, McGraw-Hill, 598 p. 671 672 Deering, C.D., and Bachmann, O. (2010) Trace element indicators of crystal accumulation in silicic igneous rocks. Earth and Planetary Science Letters, 297, 324–331. 673 Donato, M.M., Barnes, C.G., and Tomlinson, S.L. (1996) The enigmatic Applegate Group of 674 675 southwestern Oregon: Age, correlation, and tectonic affinity. Oregon Geology, 58, 79– 91. 676 du Bray, E.A., Bacon, C.R., John, D.A., Wooden, J.L., and Mazdab, F.K. (2011) Episodic 677 678 intrusion, internal differentiation, and hydrothermal alteration of the Miocene Tatoosh 679 intrusive suite south of Mount Rainier, Washington. Geological Society of America 680 Bulletin, 123, 534–561. Flood, R.H., and Shaw, S.E. (1979) K-rich cumulate diorite at the base of a tilted granodiorite 681 682 pluton from the New England batholith, Australia. Journal of Geology, 87, 417–425.

- Gelman, S.E., Deering, C.D., Bachmann, O., Huber, C., and Gutiérrez, F.J. (2014) Identifying
- the crystal graveyards remaining after large silicic eruptions. Earth and Planetary Science
- 685 Letters, 403, 299–306.
- Gillluly, J. (chairman) (1948) Origin of granites. Geological Society of America, Memoir 28,
 139p.
- Glazner, A.F., Coleman, D.S., and Mills, R.D. (2015) The volcanic-plutonic connection.
- 689 Advances in Volcanology, Springer Berlin Heidelberg, 1–22, doi:
- 690
 10.1007/11157_2015_11.
- Gray, G.G. (1986) Native terranes of the central Klamath Mountains, California. Tectonics, 5,
 1043–1054.
- 693 Grunder, A.L., Klemetti, E.W., Feeley, T.C., and McKee, C.M. (2006) Eleven million years of
- arc volcanism at the Aucanquilcha Volcanic Cluster, northern Chilean Andes:
- 695 implications for the life span and emplacement of plutons. Transactions of the Royal
- 696 Society of Edinburgh: Earth Sciences, 97, 415–436.
- Gualda, G.A.R., and Ghiorso, M.S. (2014) Phase-equilibrium geobarometers for silicic rocks
 based on rhyolite-MELTS. Part 1.: Principles, procedures, and evaluation of the method.
 Contributions to Mineralogy and Petrology, 168, http://dx.doi.org/10.1007/s00410-0141033-3.
- Gualda, G.A.R., and Ghiorso, M.S. (2015) MELTS_Excel: A Microsoft Excel-based MELTS
 interface for research and teaching of magma properties and evolution. Geochemistry
- 703Geophysics Geosystems, 16, http://dx.doi.org/10.1002/2014GC005545

704	Hacker, B.R., Donato, M.M., Barnes, C.G., McWilliams, M.O., and Ernst, W.G. (1995)
705	Timescales of orogeny: Jurassic construction of the Klamath Mountains. Tectonics, 14,
706	677–703, doi: 10.1029/94TC02454.
707	Harper, B.E., Miller, C.F., Koteas, G.C., Cates, N.L., Wiebe, R.A., Lazzareschi, D.S., and Cribb,
708	J.W. (2004) Granites, dynamic magma chamber processes and pluton construction: the
709	Aztec Wash pluton, Eldorado Mountains, Nevada, USA. Transactions of the Royal
710	Society of Edinburgh: Earth Sciences, 95, 277–295.
711	Hildreth, W. (2004) Volcanological perspectives on Long Valley, Mammoth Mountain, and
712	Mono Craters: several contiguous but discrete systems. Journal of Volcanology and
713	Geothermal Research, 136, 169–198.
714	Hildreth, W., and Moorbath, S. (1988) Crustal contributions to arc magmatism in the Andes of
715	central Chile. Contributions to Mineralogy and Petrology, 98, 455-489.
716	Hunter, R. (1996) Texture development in cumulate rocks, In Cawthorn, R., Ed., Layered
717	Intrusions, Elsevier Sciences B.V., p. 77-101.
718	Irwin, W.P. (1960) Geologic reconnaissance of the northern Coast Ranges and Klamath
719	Mountains, California, with a summary of the mineral resources. San Francisco,
720	California Division of Mines Bulletin 179, 80 p.
721	Irwin, W.P. (1972) Terranes of the Western Paleozoic and Triassic belt in the southern Klamath
722	Mountains, California. U.S. Geological Survey Professional Paper, 800-C, 103-111.
723	Jachens, R.C., Barnes, C.G., and Donato, M.M. (1986) Subsurface configuration of the Orleans
724	fault: Implications for deformation in the western Klamath Mountains, California.
725	Geological Society of America Bulletin, 97, 388–395.

2	2
~	~
. 3	. 3
-	-

- 726 Keller, C.B., Schoene, B., Barboni, M., Samperton, K.M., and Husson, J.M. (2015) Valcanic-
- plutonic parity and the differentiation of the continental crust. Nature, 523, 301–307.
- Komar, P.D. (1972) Flow differentiation of igneous dikes and sills: Profiles of velocity and
- phenocryst concentration. Geological Society of America Bulletin, 83, 973–988.
- Lee, C.-T.A., and Morton, D.M. (2015) High silica granites: Terminal porosity and crystal
- settling in shallow magma chambers. Earth and Planetary Science Letters, 409, 23–31.
- Lee, C.-T.A., Morton, D.M., Farner, M.J., and Moitra, P. (2015) Field and model constraints on
- silicic melt segregation by compaction/hindered settling: the role of water and its effect
 on latent heat release. American Mineralogist, 100, 1762–1777.
- Lipman, P.W., and Bachmann, O. (2015) Ignimbrites to batholiths: Integrating perspectives from
 geological, geophysical, and geochronological data. Geosphere, 11,
- 737 doi:10.1130/GES01091.1.
- Lux, D.R., Hooks, B., Gibson, D., and Hogan, J.P. (2007) Magma interactions in the Deer Isle
- granite complex, Maine: Field and textural evidence. The Canadian Mineralogist, 45,
 131–146.
- 741 Miller, C.F., and Miller, J.S. (2002) Contrasting stratified plutons exposed in tilt blocks,
- Eldorado Mountains, Colorado River rift, NV, USA. Lithos, 61, 209–224.
- 743 Miller, C.F., Furbish, D.J., Walker, B.A., Claiborne, L.L., Koteas, G.C., Bleick, H.A., and
- 744 Miller, J.S. (2011) Growth of plutons by incremental emplacement of sheets in crystal-
- rich host: Evidence from Miocene intrusions of the Colorado River region, Nevada, USA.
- 746 Tectonophysics, 500, 65–77.

747	Mills, R.D., and Coleman, D.S. (2013) Temporal and chemical connections between plutons and
748	ignimbrites from the Mount Princeton magmatic center. Contributions to Mineralogy and
749	Petrology, 165, 961–980.
750	Mills, R.D., Coleman, D.S., Frazer, R.E., Glazner, A.F., and Tappa, M.J. (2012) The general lack
751	of igneous rocks with cumulate chemical signatures: is there an elephant in the room?
752	Abstract V43D-2893 presented at 2012 Fall Meeting, AGU, San Francisco, Calif., 3-7
753	Dec.
754	Naney, M.T. (1983) Phase equilibria of rock-forming ferromagnesian silicates in granitic
755	systems. American Journal of Science, 283, 993-1033.
756	Naslund, H., and McBirney, A. (1996) Mechanisms of formation of igneous layering, In
757	Cawthorn, R., Ed., Layered Intrusion, Elsevier Science B.V., 1-41.
758	Paterson, S.R. (2009) Magmatic tubes, pipes, troughs, diapirs, and plumes: Late-stage convective
759	instabilities resulting in compositional diversity and permeable networks in crystal-rich
760	magmas of the Tuolumne batholith, Sierra Nevada, California. Geosphere, 5, 1–32.
761	Putirka, K. (2008) Thermometers and Barometers for Volcanic Systems. In: Putirka, K., Tepley,
762	F., Eds., Minerals, Inclusions and Volcanic Processes, Reviews in Mineralogy and
763	Geochemistry, Mineralogical Society of America, 69, 61-120.
764	Reubi, O., and Blundy, J. (2009) A dearth of intermediate melts at subduction zone volcanoes
765	and the petrogenesis of arc andesites. Nature, 461, 1269–1274.
766	Ruprecht, P., Bergantz, G.W., Cooper, K.M., and Hildreth, W. (2012) The crustal magma storage
767	system of Volcán Quizapu, Chile, and the effects of magma mixing on magma diversity.
768	Journal of Petrology, 53, 801–840.

769	Sawka, W.N., Chappell, B.W., and Kistler, R.W. (1990) Granitoid compositional zoning by side-
770	wall boundary layer differentiation: Evidence from the Palisade Crest intrusive suite,
771	central Sierra Nevada, California. Journal of Petrology, 31, 519-553.
772	Singer, B.S., Andersen, N.L., Le Mével, H., Feigl, K.L., DeMets, C., Tikoff, B., Thurber, C.H.,
773	Jicha, B.R., Cardona, C., Códova, L., Gil, F., Unsworth, M.J., Williams-Jones, G., Miller,
774	C.F., Fierstein, J., Hildreth, W., and Vazquez, J. (2014) Dynamics of a large, restless,
775	rhyolitic magma system at Laguna del Maule, southern Andes, Chile. GSA Today, 24, 4-
776	10.
777	Snoke, A. W. and Barnes C. G. (2006) The development of tectonic concepts for the Klamath
778	Mountains province, California and Oregon. In Snoke, A.W. and Barnes, C.G., Eds,
779	Geological studies in the Klamath Mountains province, California and Oregon: A volume
780	in honor of William P. Irwin. Geological Society of America Special Paper, 410, 1–29.
781	Srogi, L., and Lutz, T.M. (1996) The role of residual melt migration in producing compositional
782	diversity in a suite of granitic rocks. Earth and Planetary Science Letters, 144, 563–576.
783	Srogi, L., and Lutz, T.M. (1997) Chemical variation in plutonic rocks caused by residual melt
784	migration: Implications for granite petrogenesis, In Sinha, A.K., Whalen, J.B., and
785	Hogan, J.P., Eds., The nature of magmatism in the Appalachian Orogen, Volume 191:
786	Geological Society of America Memoir, 191 309–335.
787	Tappa, M.J., Coleman, D.S., Mills, R.D., and Samperton, K.M. (2011) The plutonic record of a
788	silicic ignimbrite from the Latir volcanic field, New Mexico. Geochemistry Geophysics
789	Geosystems, 12, doi: 10.1029/2011GC003700.

790	Vernon, R.H., and Paterson, S.R. (2008) Mesoscopic structures resulting from crystal
791	accumulation and melt movement in granites. Transactions of the Royal Society of
792	Edinburgh: Earth Sciences, 97,369–381.
793	Wager, L.R., and Brown, G.M. (1968) Layered igneous rocks. Edinburgh. Oliver and Boyd, 588
794	p.
795	Wager, L.R., Brown, G.M., and Wadsworth, W.J. (1960) Types of igneous cumulates. Journal of
796	Petrology, 1, 73–85.
797	Wiebe, R., and Collins, W. (1998) Depositional features and stratigraphic sections in granitic
798	plutons: implications for the emplacement and crystallization of granitic magma. Journal
799	of Structural Geology, 20, 1273–1289.
800	Wright, J.E. (1982) Permo-Triassic accretionary subduction complex, southwestern Klamath
801	Mountains, northern California. Journal of Geophysical Research, 87, 3805-3818.
802	Wright, J.E., and Fahan, M.R. (1988) An expanded view of Jurassic orogenesis in the western
803	United States Cordillera: Middle Jurassic (pre-Nevadan) regional metamorphism and
804	thrust faulting within an active arc environment, Klamath Mountains, California.
805	Geological Society of America Bulletin, 100, 859-876.
806	Wright, J.E., and Wyld, S.J. (1994) The Rattlesnake Creek terrane, Klamath Mountains,
807	California: An early Mesozoic volcanic arc and its basement of tectonically disrupted
808	oceanic crust. Geological Society of America Bulletin, 106, 1033-1056.
809	
810	FIGURE CAPTIONS

811

812	Figure 1. Map of Wooley Creek batholith showing sample locations, rock types, and zone
813	boundaries. The upper zone is divided into the structurally lower part with partial cumulate rocks
814	and the structurally higher part with differentiated rocks. Numbers adjacent to sample locations
815	in the 'upper zone cumulates' region indicate calculated proportion of intergranular melt.
816	Numbers adjacent to sample locations in the 'upper zone differentiates' region represent the
817	differentiated melt fraction represented by the rock. Inset shows the location of the batholith in
818	the Klamath Mountain geologic province.
819	
820	Figure 2. Mineral compositions. A. Ranges of plagioclase compositions in the batholith. The
821	central tic mark indicates average plagioclase composition for each sample. For lower zone
822	samples, blue symbols are plagioclase from the pyroxenite-diorite group and green symbols are
823	for plagioclase from the quartz diorite-tonalite group. B. Pyroxene quadrilateral. C. Rare earth
824	element patterns of augite from selected lower zone samples. Fields indicate the ranges of augite
825	compositions in individual samples except for tonalite sample MMB-30, for which the range of
826	REE patterns encompasses nearly the entire range of the other three samples.
827	
828	Figure 3. A–D are variations diagrams of MgO (A), Na ₂ O (B), TiO ₂ (C), and Sr (D) of bulk

rocks, pyroxenes, hornblende, and plagioclase plotted versus SiO_2 for rocks of the lower and central zones. Compositions of mafic synplutonic dikes are plotted in (A) but not shown in the other diagrams. The star symbols represent samples used in mass balance calculations and are labelled according to sample number. Blue stars indicate interstitial melt compositions used in lower zone pyroxenite–diorite calculations, green stars indicate interstitial melt used in lower zone quartz diorite–tonalite calculations. (E) The curves represent the range of K(d)_{Fe-Mg}

835	equilibrium values $[(K(d)_{Fe-Mg} = (Mg_{rock})*(Fe_{pyroxene})/(Mg_{pyroxene})*(Fe_{rock})]$ indicating equilibrium
836	between opx and its host melt (after Putirka, 2008). (F) Observed clinopyroxene components
837	plotted against components predicted on the basis of their host bulk-rock compositions (Putirka,
838	2008).
839	
840	Figure 4. Variation diagrams for upper zone rocks. The star symbol represents sample MMB-
841	612, which was used as a potential parental composition to the upper zone. The arrow is the
842	inferred liquid line of descent from the parent, whereas samples with SiO ₂ contents lower than
843	MMB-612 are interpreted to be partial cumulates.
844	
845	Figure 5. Summary of mass balance calculations of lower zone samples. Percent melt is plotted
846	against mass percentages of augite, opx, and plagioclase.
847	
848	Figure 6. Rare earth element tests of lower-zone mass balance calculations. Calculations were
849	based on the results of major element mass balance and compositions of augite, orthopyroxene,
850	and plagioclase. Two compositions of interstitial melt were used: the bulk-rock composition of
851	the 'melt' used in major element models (gray squares) and the REE of melt calculated to be in
852	equilibrium with augite (pink squares). Green squares are REE patterns of the bulk rock
853	composition to be matched. A. Match to diorite WCB-152. B. Match to tonalite WCB-156. C
854	and D. Match to tonalite MMB-30, in which REE concentrations in augite vary over more than
855	1.5 orders of magnitude. In C, the calculated melt used a high-REE value, but in D the average
856	REE content of augite was used.
851 852	the 'melt' used in major element models (gray squares) and the REE of melt calc equilibrium with augite (pink squares). Green squares are REE patterns of the bu

Figure 7. Rare earth element tests of upper-zone accumulation mass balance calculations. 858 Calculations were based on the results of major element mass balance and compositions of 859 860 hornblende, augite, biotite, and plagioclase. Two compositions of interstitial melt were used: the 861 bulk-rock composition of the 'melt' used in major element models (MMB-612; orange squares) 862 and the REE of melt calculated to be in equilibrium with hornblende (red squares). Yellow 863 circles are REE patterns of the bulk rock composition to be matched. A. Match to biotite 864 hornblende tonalite MMB-379. B. Match to biotite hornblende tonalite MMB-687. C. Match to 865 biotite hornblende quartz diorite MMB-318. 866 867 Figure 8. Rare earth element tests of upper-zone fractional crystallization mass balance 868 calculations. Calculations were based on the results of major element mass balance and 869 compositions of hornblende, biotite, and plagioclase. The compositions of the 'daughter' melt (bulk rock composition) were added to mineral composition in an attempt to match the potential 870 871 parental magma (MMB-612; pink triangles). A. Match to biotite hornblende granite MMB-372A. 872 B. Match to biotite hornblende granodiorite MMB-361. Match to biotite hornblende granodiorite 873 MMB-320. 874 Figure 9. Cartoon of emplacement and evolution of upper zone magmas. A. The upper zone is 875 876 constructed from pyroxene hornblende andesite, with overall composition similar to MMB-612, examples of which are preserved as 'roof-zone' dikes. Basaltic magmas were emplaced into and 877

through the central zone and ponded at the base of the upper zone, forming zones of pillowed

879 mafic enclaves. Heat from these mafic magmas drove convection of upper zone magmas,

effectively mixing any distinct magma batches and entraining and dispersing mafic enclaves. B.

881	Subsequent	cooling and	crystallization	of upper zon	e magmas re	sulted in	accumulation of	f
-----	------------	-------------	-----------------	--------------	-------------	-----------	-----------------	---

- hornblende and plagioclase \pm biotite in structurally lower parts of the zone as residual melt-rich
- 883 magmas migrated upward.

- 885 TABLES
- Table 1. Trace element abundances in WCb plagioclase.

887

Table 2. Representative input to mass balance calculations.

889

890 Table 3. Mass balance results for lower zone.

891

Table 4. Mass balance results for upper zone.

Figure 1

Figure 4

Figure 5

Figure 7

Figure 8

			plagioclase			biotite
sample*	MMB-354	WCB-8	WCB-156	WCB-152	MMB-471	MMB-471
Р	70.9	63.3	49.9	69.5	dl	28.8
Zn	5.3	7.0	4.8	3.6	dl	264
Rb	0.95	0.17	0.40	0.26	1.03	375
Sr	489	631	564	556	902	1.76
Y	0.41	0.26	0.18	0.24	0.14	0.52
Zr	1.06	0.14	0.17	0.25	1.27	1.76
Ba	291	260	279	196	280	4776
La	6.96	5.22	6.92	2.46	6.49	0.10
Ce	9.28	8.24	9.24	4.17	7.62	0.08
Pr	0.85	0.69	0.73	0.39	0.51	0.02
Nd	2.58	2.16	2.08	1.24	1.23	0.08
Sm	0.34	0.24	0.20	0.14	0.09	0.01
Eu	0.94	0.88	0.84	0.62	0.92	0.18
Gd	0.20	0.15	0.12	0.10	dl	0.15
Tb	0.021	0.013	0.007	0.009	dl	dl
Pb	12.0	8.3	10.5	2.9	dl	1.36

Table 1. Representative plagioclase and biotite trace element abundances in ppm.

dl = below detection limits

* samples MMB-354, WCB-8, and WCB-156 are lower zone tonalites

* sample WCB-152 is a lower zone diorite

* sample MMB-471 is an upper zone granodiorite

 Table 2. Representative rock compositions used as input to mass balance calculations.

Sample	SiO2	TiO2	Al2O3	Fe2O3	MnO	MgO	CaO	Na2O	К2О	P2O5	LOI	TOTAL	Mg#
Lower zone quartz diorite–tonalite group.													
MMB-15	60.24	0.59	15.28	6.42	0.11	4.22	7.13	2.71	1.38	0.09	2.27	100.44	0.57
MMB-30	60.17	0.53	15.28	6.47	0.13	5.14	7.63	2.45	1.16	0.07	0.37	99.40	0.61
MMB-284	59.00	0.51	15.25	6.69	0.11	5.29	7.72	2.56	1.44	0.07	0.83	99.47	0.61
MMB-293	58.36	0.53	15.44	6.80	0.13	5.29	7.67	2.75	1.37	0.11	0.67	99.12	0.61
MMB-342	56.91	0.48	15.64	7.55	0.14	5.21	8.26	2.65	1.27	0.16	1.23	99.50	0.58
WCB-8	56.34	0.63	16.57	7.67	0.14	5.74	8.39	2.67	1.10	0.13	0.92	100.29	0.60
WCB-156	54.12	0.69	16.89	8.28	0.15	6.03	9.14	2.72	0.78	0.13	0.79	99.72	0.59
Lower zone pyroxenite-diorite group.													
MMB-103	52.92	0.54	16.78	8.41	0.15	6.74	9.35	2.43	1.00	0.19	0.85	99.37	0.61
MMB-121	49.99	0.29	15.54	9.67	0.17	8.97	11.61	1.52	0.28	0.02	2.62	100.68	0.65
MMB-171	50.83	0.61	5.35	12.76	0.25	16.28	12.24	0.58	0.44	0.04	0.71	100.09	0.72
MMB-833A	48.17	0.25	18.38	7.67	0.16	10.62	13.47	0.76	0.12	dl	0.84	100.41	0.73
MMB-833B	51.65	0.39	4.71	8.76	0.19	13.68	18.39	0.58	0.26	dl	0.66	99.27	0.76
WCB-133	50.81	0.50	14.29	9.54	0.19	9.24	11.35	1.91	0.40	0.08	0.48	98.79	0.66
Potential intersti	tial melt	s in low	er zone	mass bal	lance calcu	ulations.							
MMB-236A	53.70	0.89	16.41	10.44	0.17	5.53	9.36	2.77	1.43	0.19	dl	100.88	0.51
MMB-555	51.99	0.89	15.90	10.23	0.18	5.74	9.41	2.73	1.41	0.21	0.74	99.43	0.53
MMB-771	49.92	1.01	17.55	10.27	0.19	6.02	9.92	2.64	0.72	0.27	0.93	99.44	0.54
MMB-777A	65.57	0.46	15.87	4.49	0.08	2.19	4.77	3.29	2.41	0.13	0.81	100.08	0.49
WCB-4809	53.01	0.88	18.35	8.55	0.14	5.23	8.94	3.05	1.15	0.26	0.91	100.46	0.55
Upper zone sam	oles.												
MMB-208	57.87	0.65	17.19	7.05	0.12	3.48	6.98	3.32	1.78	0.18	1.14	99.76	0.49
MMB-318	53.81	0.75	17.32	8.34	0.14	4.25	8.14	3.12	1.77	0.20	1.48	99.32	0.50
MMB-320	65.51	0.45	15.07	4.59	0.10	2.57	4.44	3.31	2.64	0.16	1.07	99.90	0.53
MMB-361	70.10	0.21	15.50	2.68	0.06	1.11	2.97	3.58	3.41	0.07	0.80	100.49	0.45
MMB-372A	70.65	0.27	14.37	2.55	0.06	1.16	2.90	3.71	3.34	0.08	0.48	99.57	0.47
MMB-379	55.95	0.59	16.18	7.83	0.15	5.24	7.83	3.04	1.44	0.18	1.31	99.74	0.57
Composition use	d as pare	ental m	agma fo	r upper z	one mass	balance	calculat	ions.					
MMB-612	60.67	0.53	16.02	6.36	0.11	3.14	6.00	3.33	2.36	0.16	1.41	100.09	0.49

dl = below detection limits

Data from Barnes (1983), Barnes et al. (1986a, 1990), Coint et al. (2013b) Mg# = Mg/(Mg+Fe) Table 3. Lower zone major element mass balance results.

Sample	rock type	'melt'	% 'melt'	% augite	% орх	% plag	%Fe-Ti oxide	r	plag/(plag+px+oli Notes	
pyroxenite to	diorite group									
MMB833A	diorite	MMB771	7.2	21.9	0.0	51.9	0.0	0.87	0.56 An77; :	18.7% Fo72
MMB833B	melagabbro	MMB236A	14.5	72.3	4.2	4.5	0.0	0.02	0.05 An73;2	2.0% Fo72
MMB833B	melagabbro	MMB771	18.4	71.7	6.2	1.8	0.0	0.02	0.02 An85	
MMB171	pyroxenite	WCB4809	7.5	43.6	37.4	7.7	0.0	0.95	0.09 An73	
MMB171	pyroxenite	WCB4809	5.0	44.9	36.6	9.5	1.1	0.30	0.10 An73	
MMB171	pyroxenite	MMB771	14.1	41.6	35.6	5.4	0.0	0.50	0.07 An85	
MMB121	gabbro	MMB236A	25.1	. 17.1	19.9	33.9	1.0	0.02	0.48 An77	
MMB121	gabbro	MMB771	50.9	14.5	15.1	18.3	0.0	0.14	0.38 An85	
WCB128A	diorite	WCB4809	34.5	9.8	25.7	6.4	0.4	1.02	0.15 An73; ⁻	k
WCB133	quartz diorite	MMB555	66.8	15.3	10.3	7.5	0.0	0.04	0.23 An78	
MMB103	quartz diorite	WCB4809	83.0	6.3	5.7	4.6	0.0	0.32	0.28 An73	
MMB103	quartz diorite	MMB555	50.0	7.3	13.1	29.0	0.0	0.50	0.59 An50	
WCB152	diorite	WCB4809	31.8	14.5	20.0	33.6	0.7	0.07	0.49 An77	
WCB152	diorite	MMB555	19.3	19.2	21.3	41.6	0.0	0.20	0.51 An73	
MMB351	quartz diorite	MMB555	48.4	9.0	14.7	27.4	0.6	0.09	0.54 An60; [•]	*
quartz diorite	to tonalite group									
WCB6809	quartz diorite	MMB548	27.7	9.0	21.5	39.8	2.0	0.31	0.57 An60; ⁻	k
WCB808	(quartz) diorite	MMB548	41.3	9.7	16.4	32.1	1.1	0.08	0.55 An60;	k
MMB354	tonalite	MMB548	70.3	11.7	6.4	12.4	0.0	0.62	0.41 An60	
MMB354	tonalite	MMB777A	58.0	13.8	0.9	19.1	0.0	0.39	0.57 An50	
WCB156	tonalite	MMB548	33.8	9.3	18.9	36.2	0.0	0.30	0.56 An68;	*
WCB156	tonalite	MMB777A	31.4	11.3	18.0	36.8	1.0	0.10	0.56 An68	
MMB594	quartz diorite	MMB548	48.5	10.4	14.0	26.2	1.7	0.07	0.52 An73	
MMB594	quartz diorite	MMB777A	40.9	7.4	19.3	31.0	1.3	0.38	0.54 An68	
MMB293	tonalite	MMB548	58.2	10.2	11.4	19.9	0.3	0.08	0.48 An60	
MMB293	tonalite	MMB777A	52.1	. 10.5	13.6	22.5	0.0	0.08	0.48 An60	
MMB430A	tonalite	MMB548	54.6	7.9	11.8	25.3	0.2	0.27	0.56 An60	
MMB342	tonalite	MMB548	52.0	12.2	10.5	23.6	1.5	0.10	0.51 An60;	k
MMB111	tonalite	MMB777A	38.4	11.7	16.1	33.4	0.3	0.29	0.55 An50	
MMB30	tonalite	MMB777A	55.5	14.5	8.5	21.2	0.0	0.42	0.48 An50	
MMB15	tonalite	MMB777A	63.0	11.9	5.8	17.4	0.7	0.15	0.50 An50	
MMB284	tonalite	MMB777A	54.9	11.7	12.3	20.3	0.0	0.10	0.46 An60	

* includes trace apatite

r², sum of squares of residual errors

Abbreviations: plag, plagioclase; px, pyroxene; opx, orthopyroxene; oliv, olivine; Fo, mole fraction forsterite in olivine;

An, mole fraction anorthite in plagioclase

'melt' = rock composition used to model interstitial melt

Table 4. Upper zone major element mass balance results.

Fractional crystallization from composition MMB-612

daughter	rock type	SiO ₂	% daughter	% hnbl	% biotite	% plag	% рх	%Fe-Ti oxide	%apatite	r⁴	plag/ (plag+mafic)	plag comp	% residual melt
MMB-471	granodiorite	62.05	91.8	4.6	0.0	2.8	0.0	0.5	0.0	0.02	0.38	An43	92
MMB-320	granodiorite	65.51	73.5	10.0	1.7	13.8	0.0	0.6	0.0	0.05	0.54	An56	73
MMB361	granodiorite	70.1	58.9	20.7	1.6	17.6	0.0	0.4	0.0	0.03	0.44	An56	59
MMB372A	granite	70.65	53.6	20.4	2.8	22.4	0.0	0.4	0.0	0.06	0.49	An50	54
average											0.46		

Accumulation from melt of composition MMB-612

								%Fe-Ti			plag/	plag	
daughter	rock type	SiO ₂	% 'melt'	% hnbl	% biotite	% plag	% рх	oxide	%apatite	r	(plag+mafic)	comp	% insterst
													melt
MMB331	qtz diorite	53.12	36.9	22.7	7.2	26.2	5.9	0.0	0.0	0.06	0.42	An50	37
MMB318	qtz monzodiorite	53.81	43.0	22.6	4.6	28.4	0.0	0.2	0.6	0.08	0.51	An50	43
MMB379	tonalite	55.95	48.6	8.4	0.0	26.1	15.5	0.2	0.2	0.05	0.52	An50	49
WCB7709	tonalite	56.31	55.0	15.1	4.3	25.8	0.0	0.0	0.5	0.01	0.57	An50	55
MMB208	qtz monzodiorite	57.87	70.9	11.6	0.0	17.0	0.0	0.4	trace	0.06	0.59	An50	71
MMB208	qtz monzodiorite	57.87	70.9	10.9	1.4	16.8	0.0	0.0	0.0	0.06	0.58	An50	71
MMB397	tonalite	58.02	73.4	2.6	4.3	11.3	9.0	0.0	0.0	0.11	0.42	An56	73
MMB687	diorite	58.34	79.7	14.4	0.0	5.2	1.2	0.0	0.1	0.05	0.25	An56	80
MMB687	diorite	58.34	79.4	15.7	0.0	5.3	0.0	0.0	0.3	0.07	0.25	An50	79
Z1	tonalite	58.59	75.3	11.7	0.0	13.4	0.0	0.1	0.1	0.05	0.53	An50	75
MMB317	qtz monzodiorite	58.71	77.6	8.8	0.0	12.8	1.3	0.0	0.1	0.09	0.56	An56	78
MMB317	qtz monzodiorite	58.71	76.3	10.9	0.0	13.3	0.0	0.2	0.2	0.08	0.55	An50	76
average											0.48		

r², sum of squares of residual errors

plag, plagioclase; px, pyroxene; hnbl, hornblende; An, mole fraction anorthite in plagioclase

'melt' = rock composition used to model interstitial melt