This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5363

Pathways for Nitrogen Cycling in Earth's Crust and Upper Mantle: A Review and New Results for Microporous Beryl and Cordierite Gray E. Bebout¹, Kris E. Lazzeri², and Charles A. Geiger³ ¹Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, Pennsylvania, 18015, USA ²EA Engineering, Science and Technology, Inc., Layton, Utah 84041, USA ³Department of Materials Science and Physics, Section Mineralogy, Salzburg University, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria revised for American Mineralogist as an Invited Centennial Article (6-07-15)

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5363

43

ABSTRACT

Earth's atmosphere contains 27-30% of the planet's nitrogen and recent estimates are that
about one-half that amount (11-16%) is located in the continental and oceanic crust combined.
The percentage of N in the mantle is more difficult to estimate but it is thought to be near 60%,
at very low concentrations. Knowledge of the behavior of N in various fluid-melt-rock settings is
key to understanding pathways for its transfer among the major solid Earth reservoirs.

49 Nitrogen initially bound into various organic materials is transferred into silicate minerals 50 during burial and metamorphism, often as NH₄⁺ substituting for K⁺ in layer silicates (clays and 51 micas) and feldspars. Low-grade metamorphic rocks appear to retain much of this initial organic 52 N signature, in both concentrations and isotopic compositions, thus in some cases providing a 53 relatively un- or little-modified record of ancient biogeochemical cycling. Devolatilization can 54 release significant fractions of the N initially fixed in crustal rocks through organic diagenesis, 55 during progressive metamorphism at temperatures of ~350-550°C (depending on pressure). Loss 56 of fractionated N during devolatilization can impart an appreciable isotopic signature on the 57 residual rocks, producing shifts in δ^{15} N values mostly in the range of +2 to +5%. These rocks 58 then retain large fractions of the remaining N largely as NH₄⁺, despite further heating and ultimately partial melting, with little additional change in δ^{15} N. This retention leads to the storage 59 60 of relatively large amounts of N, largely as NH_4^+ , in the continental crust. Nitrogen can serve as a 61 tracer of the mobility of organic-sedimentary components into and within the upper mantle.

62 This contribution focuses on our growing, but still fragmentary, knowledge of the N 63 pathways into shallow to deep continental crustal settings and the upper mantle. We discuss the 64 factors controlling the return of deeply subducted N to shallower reservoirs, including the 65 atmosphere, via metamorphic devolatilization and arc magmatism. We discuss observations from 66 natural rock suites providing tests of calculated mineral-fluid fractionation factors for N. 67 Building on our discussion of N behavior in continental crust, we present new measurements on 68 the N concentrations and isotopic compositions of microporous beryl and cordierite from 69 medium- and high-grade metamorphic rocks and pegmatites, both phases containing molecular 70 N_2 , and NH_4^+ -bearing micas coexisting with them. We suggest some avenues of investigation 71 that could be particularly fruitful toward obtaining a better understanding of the key N reservoirs 72 and the more important pathways for N cycling in the solid Earth.

73 Keywords: nitrogen cycling, nitrogen isotopes, ammonium, microporous silicate, isotope 74 fractionation, layer silicates, cordierite 75 76 **INTRODUCTION** 77 78 It is often thought that Earth nitrogen (N) resides entirely in the atmosphere and the 79 biosphere, which together account for 27-30% of the total N budget. Many are surprised to learn 80 that ~60% of the N resides in the mantle and that another 11-16% is stored in the continental and 81 oceanic crust combined (see **Table 1**). In fact, the surface reservoirs of N receiving the most 82 attention (i.e., ocean, soils, biosphere) contain far less than 1% of Earth's N by mass (Table 1; 83 also see Bebout et al., 2013b). Despite its relatively inert and volatile behavior, N can occur in certain minerals in the crust and mantle, particularly when structurally bound as NH₄⁺ (Bebout et 84 85 al., 2013a; Busigny and Bebout, 2013). Ammonium-bound N in micas and feldspars (Eugster 86 and Munoz, 1966; Honma and Itihara, 1981; Bos et al., 1988; Hall et al., 1996; Hall, 1999) is an 87 efficient carrier of initially-organic N from surface reservoirs into the deep Earth at subduction 88 zones and during formation of the continental crust. In the upper mantle, small amounts of N 89 could be stored as NH₄⁺ in silicate phases such as amphibole, phlogopite, clinopyroxene, and 90 olivine (Yokochi et al., 2009; Watenphul et al., 2010) or as other species in diamond and various 91 nitrides (e.g., TiN; Cartigny, 2005; Dobrzhinetskaya et al., 2009; see the discussion by Busigny 92 and Bebout, 2013). Johnson and Goldblatt (2015) discuss the possibility that, in the deeper 93 mantle, N is soluble in (Fe, Ni) alloy (see Roskosz et al., 2013). 94 Figure 1 illustrates key geologic reservoirs and sedimentary-organic pathways for N. The 95 cycle begins with the incorporation of initially organic N into clays, during diagenesis, and 96 involves the evolution of this N during prograde metamorphism, melting, and ultimately, melt

97	degassing during crystallization. It ends with the release of N back into the atmosphere.
98	Diagenesis and metamorphism can provide for the addition of N to the mantle at subduction
99	zones, by its release into fluids (see Bebout and Fogel, 1992), and the balance of this addition
100	with the output of N via magmatism is important for understanding the long-term evolution of
101	the mantle N reservoir (see Sano et al., 2001; Hilton et al., 2002). Study of N behavior in the
102	deep-Earth (crust and mantle) has lagged behind investigations using other stable isotope
103	systems (e.g., O, H, C, S). This is partly due to the difficulty in analyzing the N concentrations
104	and isotopic compositions of silicate minerals and partly due the association of N with life
105	resulting in greater attention from the biological community. As a result of these factors,
106	knowledge of not only the sizes (Table 1), but also the isotopic compositions, of the important
107	crust and mantle reservoirs is based on a relatively small number of studies (see Cartigny and
108	Marty, 2013; Johnson and Goldblatt, 2015). In comparison, analyses of N in biological and
109	soil/sediment systems abound because they can be made using less sensitive analytical methods
110	often using highly automated modes (see Bebout et al., 2013b).
111	In this review article, we synthesize the present knowledge concerning the sizes and isotopic
112	compositions of major crust and upper-mantle N reservoirs in the Earth and the key pathways
113	among them. We stress that, because N can be retained in certain silicate phases, particularly
114	those containing appreciable K^+ (i.e., layer silicates and feldspars), N can be retained to great
115	depths in the continental crust and carried to even greater depths at subduction zones. We
116	consider briefly the avenues for the incorporation of initially organic N into silicate materials
117	(minerals and glasses) during diagenesis and seafloor alteration, as this process, followed by
118	burial and subduction, largely governs the nature of the crust and upper-mantle N reservoirs. In
119	this context, we also present new N isotope data for the microporous silicates beryl and

cordierite, and coexisting micas, and we discuss the implications of these results for N behavior
during fluid-rock interactions and for the storage of N in the continental crust.

122

123 TECHNIQUES FOR ANALYSIS OF THE ISOTOPIC COMPOSITIONS OF NITROGEN IN SILICATES

124 Research relating to the behavior of N isotopes in silicate systems has largely been conducted

125 by a small number of laboratories, owing to the trace concentrations of N in most rocks and

126 minerals and the need to quantitatively release N from them (see the review by Cartigny and

127 Marty, 2013). There are a few natural NH_4^+ -rich silicate minerals such as buddingtonite

129 1982), but most N tends to occur in the major rock-forming silicates at concentrations of several

ppm to several thousand ppm (e.g., Honma and Itihara, 1981). Extraction of structurally bound N

131 from silicate minerals and whole-rock samples in general requires heating for sustained periods

132 of time at temperatures greater than about 1050°C, normally with some means of controlling

redox conditions so that the speciation of the released N is known (see Cartigny and Marty,

134 2013). Heating can be accomplished by use of online furnaces similar to those used for noble gas

measurements that allow stepped-heating or combustion experimentation (see Boyd et al., 1993;

136 Pinti et al., 2007), in quartz tubes that are sealed at high vacuum and then heated in offline

137 furnaces (allowing longer heating periods; see Bebout and Fogel, 1992; Boyd, 1997; Bebout and

138 Sadofsky, 2004; Busigny et al., 2005a; Bebout et al., 2007), or via flash combustion in element

analyzers that allow more rapid throughput (see Bräuer and Hahne, 2005; cf. Jia et al., 2003).

140 Each of these methods has its advantages and disadvantages, but it is clear that any quantitative

- 141 study of N concentrations and isotopic compositions in silicate systems must demonstrate that
- 142 complete yields are obtained. Whereas some minerals and rocks appear to release most or all of

143	their N upon heating to such temperatures of 910 to 1000°C, higher temperatures or even melting
144	could be necessary for release of N from some materials (e.g., data for biotite separates in
145	Sadofsky and Bebout, 2000; results for buddingtonite in Bebout and Sadofsky, 2004).
146	Older techniques for analyzing N in silicate rocks and minerals include the Kjeldahl method,
147	employed by Haendel et al. (1986) and in other studies from that laboratory (e.g., Junge et al.,
148	1989). Bräuer and Hahne (2005) compared results obtained using the Kjeldahl method, element
149	analyzer techniques, and sealed-tube combustions followed by dual-inlet mass spectrometry.
150	They found that the sealed-tube combustion technique (see Sadofsky and Bebout, 2000) yields
151	results indistinguishable from those obtained via the Kjeldahl method, whereas the element
152	analyzer technique appeared to produce minor N fractionation arising from incomplete yields
153	that were obtained. Ammonium concentrations in micas and feldspar have also been measured
154	using IR spectroscopy, as demonstrated by Boyd (1997) and Busigny et al. (2004). This method
155	appears to produce good results comparable with those obtained by mass spectrometry (also see
156	the results for phengite, biotite, and tourmaline in Wunder et al., 2015).
157	Mass spectrometry measurements of the isotopic compositions of N_2 liberated by the various
158	extractions have been undertaken using gas-source instruments operated in either static or
159	dynamic modes, with the latter employing either dual-inlet (viscous flow) or carrier gas methods
160	using He (see discussion of these methods in Hashizume and Marty, 2005; Bebout et al., 2007;
161	Cartigny and Marty, 2013). Nitrogen isotope compositions are expressed as $\delta^{15}N_{air}$, which is
162	defined as:
	$\begin{bmatrix} (^{15}N / ^{14}N) & -(^{15}N / ^{14}N) \end{bmatrix}$

163
$$\delta^{15} \mathrm{N} = \left[\frac{\binom{1^5 N / {}^{14} N}{sample} - \binom{1^5 N / {}^{14} N}{std}}{\binom{1^5 N / {}^{14} N}{std}} \right] x 10^3$$

where the standard (std) is the Earth atmospheric N₂ with isotopic ratio ${}^{14}N/{}^{15}N = 272$ (Mariotti, 164 165 1984) 166 167 CURRENT UNDERSTANDING OF NITROGEN PARTITIONING BEHAVIOR, SPECIATION IN FLUIDS, 168 AND ISOTOPE FRACTIONATION IN SILICATE SYSTEMS 169 170 Partitioning of Nitrogen Between Fluid and Silicate Mineral Phases 171 The partitioning of N and its isotopes among minerals, fluids, and melts exerts a primary 172 control over the evolution of all deep-Earth N reservoirs, in addition to governing the flux of N 173 among the biosphere, atmosphere, and surface hydrosphere (see for example, recent discussion 174 by Cartigny and Marty, 2013; Johnson and Goldblatt, 2015). It is reflected in the distribution of 175 N among solid phases, and its speciation in these phases, and the degree to which N is stabilized 176 in various molecules in fluids and melts. Busigny and Bebout (2013) provided a brief survey of 177 the most significant N-bearing minerals, with an emphasis on the distribution of N in major rock-178 forming silicates in the crust and mantle (also see the more thorough discussion of other N-179 bearing silicate and non-silicate phases by Holloway and Dahlgren, 2002). 180 Honma and Itihara (1981) measured the NH₄⁺ concentrations in coexisting minerals from 181 various igneous and high-grade metamorphic rocks and proposed a hierarchy of NH₄⁺ 182 concentration, from most to least enriched, as: biotite > muscovite > K-feldspar > plagioclase feldspar > quartz. Biotite generally contains $\sim 2.5x$ more NH₄⁺ than coexisting muscovite (cf. 183 Sadofsky and Bebout, 2000; cf. Boyd, 1997), ~3.7x more NH₄⁺ than coexisting K-feldspar, and 184 \sim 20x more NH₄⁺ than plagioclase. This indicates that partitioning behavior is largely a function 185 186 of the size of the interlayer sites in dioctahedral and trioctahedral micas and that NH_4^+ 187 partitioning behavior into micas is similar to that for Rb⁺, where both ions are slightly larger than

7

188	K^+ (i.e., 1.38 Å for K^+ , 1.48Å for NH_4^+ , and 1.52 Å for Rb^+ ; see Honma and Itihara, 1981).
189	Wunder et al. (2015) analyzed the NH_4^+ concentrations in coexisting minerals from a
190	metasedimentary rock (a high-P/low-T mica schist from the Erzgebirge, Germany) and
191	demonstrated that NH_4^+ concentrations in tourmaline can be roughly similar to those of phengite
192	in the same rock (i.e., biotite $NH_4^+ = 1400 \text{ pm}$; phengite $NH_4^+ = 700 \text{ ppm}$; tourmaline $NH_4^+ =$
193	500 ppm).
194	The speciation of N in fluid-rock systems is thought to be dependent on pressure,
195	temperature, redox conditions, pH, and the N content of the fluids (see the calculations by
196	Bottrell et al., 1988; Bakker and Jansen, 1993; Moine et al., 1994; Li and Keppler, 2014; Mikhail
197	and Sverjensky, 2014; discussion by Johnson and Goldblatt, 2015). The calculations of
198	Sverjensky et al. (2014) utilize a revised Helgeson-Kirkham-Flowers equation of state for
199	describing aqueous speciation for use at up to upper mantle <i>P</i> - <i>T</i> conditions (also see Pan et al.,
200	2013; Facq et al., 2014; Mikhail and Sverjensky, 2014). In crustal and subduction zone settings,
201	where $P \le 3.0$ GPa and on which this contribution mainly focuses, the dominant fluid N species
202	is generally regarded as being N ₂ , with NH ₃ being stable at reduced conditions. In silicate melts,
203	speciation of N is both temperature- and redox-dependent, and variations in speciation could
204	significantly affect N isotope fractionation during partial melting and crystallization (Libourel et
205	al., 2003; Roskosz et al. 2006; Mysen and Fogel 2010). Pöter et al. (2004) determined
206	experimentally NH_4^+ partitioning among muscovite, K-feldspar, and aqueous chloride solutions
207	in which the N was contained in NH ₄ Cl. Although it is difficult to use these results to predict the
208	partitioning and isotope fractionation in low-Cl systems, these experimental results show
209	partitioning of NH4 among the three mineral phases largely consistent with the observations from
210	the natural suites (for the latter, Honma and Itihara, 1981; Sadofsky and Bebout, 2000).

212 Calculated Fractionation Factors

- 213 Nitrogen isotope fractionations have been calculated using vibrational spectroscopic data for
- several molecular species that are important for crust-mantle cycling, namely NH_4^+ , NH_3 , and N_2 .
- The results of these calculations are shown in **Fig. 2a** (compiled by Busigny and Bebout, 2013).
- 216 Disagreement in the calculations among several studies (Scalan, 1958; Richet et al., 1977;
- 217 Hanschmann, 1981), particularly for fractionations involving N₂, suggests that further theoretical
- 218 consideration is warranted, perhaps with improved spectroscopic data. It is evident though, in
- both Scalan's (1958) and Hanschmann's (1981) calculations, that N isotopic fractionation
- between NH_3 and NH_4^+ is far larger, at a given temperature, than that between N_2 and NH_4^+ .
- 221 Thus, redox conditions can greatly influence the degree of isotopic fractionation in fluid-melt-
- 222 mineral systems. There is no evidence that coexisting NH_4^+ -bearing minerals partition N isotopes
- 223 differentially; however, there has been little work done on this topic. The only studies addressing
- this question demonstrated that there is no statistical difference in δ^{15} N values for coexisting
- biotite and muscovite occurring in amphibolite-grade metapelitic rocks (Boyd, 1997; Sadofsky
- and Bebout, 2000).
- 227

228 Results Relating to the Direction and Magnitude of Nitrogen Isotope Fractionation in

229 Fluid-Rock Systems

For metasedimentary rock suites, increases in δ^{15} N with increasing grade, correlated with N losses, are consistent in direction and magnitude with an exchange between NH₄⁺ in the silicates and N₂ in fluids, perhaps by a process approximating Rayleigh distillation (Haendel et al., 1986; Bebout and Fogel, 1992; Bebout et al., 1999a; Mingram and Bräuer, 2001; Busigny et al., 2003;

234	Mingram et al., 2005; Pitcairn et al., 2005; Jia, 2006; Bebout et al., 2013a). Kerrich et al., 2006
235	(see their Table 4 and Fig. 5) provide a good summary of the shifts in $\delta^{15}N$ values in
236	metasedimentary rocks resulting from N loss during devolatilization. Figure 2b demonstrates
237	that significant shifts in the δ^{15} N value of a residual N reservoir can occur via either a batch
238	(straight line) or a Rayleigh distillation process. These isotopic shifts are strongly dependent on
239	the temperature of the release of the N and its speciation (i.e., as NH_3 or N_2)-speciation of the
240	fluid N as NH ₃ produces far greater shifts because of the larger $10^3 ln\alpha$ associated with this
241	exchange (see Fig. 2a). Based on the calculations in Fig. 2b, if N_2 is the dominant N molecular
242	species in the fluid produced during devolatilization of sandstones and pelitic rocks, fluid N_2
243	with a range in $\delta^{15}N$ values of -2 to +6‰ could be expected. Indeed, analyses of the $\delta^{15}N$ of N_2
244	in fluid inclusion in quartz veins from low-grade metasedimentary exposures show values of -3
245	to +5‰ (Kreulen et al., 1982), -6.9 to -1.5‰ (Bottrell et al., 1988), and +3.7 to +4.0‰ (Bebout
246	and Sadofsky, 2004). The range of δ^{15} N of -2 to +6‰ also largely overlaps the range
247	characteristic for N ₂ in natural gases (Müller et al., 1976; Jenden et al., 1988; Mingram et al.,
248	2005). Pitcairn et al. (2005) noted a larger degree of fractionation at the highest grades of a
249	metasedimentary suite in New Zealand showing a range in grade from nearly unmetamorphosed
250	to upper amphibolite conditions. They proposed that this reflects a change in the speciation of N
251	in the fluid phase from dominantly N_2 at the lower grades to dominantly NH_3 at higher grades.
252	Bebout and Sadofsky (2004), in another investigation of fluid-mineral N isotope fractionation
253	behavior, measured the $\delta^{15}N$ of N_2 in fluid inclusions and NH_4^+ in biotite in one low-grade
254	metamorphic quartz vein from Bastogne, Belgium (see Darimont et al., 1988; sample provided
255	by J. Touret). The fluid inclusions contain \ge 93 mole % N ₂ and small amounts of CO ₂ and/or
256	CH_4 , and the coexisting biotite contains 2280 ppm NH_4^+ . Isotopic analyses of three samples of

257	the quartz in this vein yielded $\delta^{15}N$ values of +3.7, +3.9, and +4.0‰ for the N ₂ in the fluid
258	inclusions, and a single analysis of the NH_4^+ in the vein biotite yielded a $\delta^{15}N$ value of +6.8‰.
259	The difference in $\delta^{15}N$ between the N ₂ and the NH ₄ ⁺ (the mean $\delta^{15}N$ value for the fluid inclusions
260	is +3.9‰, thus making the biotite-inclusion difference ~ +2.9‰) is similar to the $\Delta^{15}N_{NH_4+N_2}$
261	value calculated by Hanschmann (1981) for the petrologically inferred temperatures of formation
262	of ~ 400°C (~ +2.8‰; see Fig. 2a). Analyses of N_2 and NH_4^+ in coexisting microporous silicates
263	(i.e., beryl and cordierite) and micas, respectively, could provide another measure of the
264	magnitudes and directions of isotopic exchange, as discussed later in this article.
265	
266	PATHWAYS FOR NITROGEN CYCLING
267	
268	Nitrogen in silicate-containing rocks largely derives from organic N, itself derived from
269	atmospheric N via biologically mediated metabolic processes. The biological uptake of N, and its
270	later transfer during diagenesis in near-surface or upper-crustal geologic environments into
271	silicates such as clay minerals and their later metamorphic products, can ultimately give rise to a
272	significant flux of surface N into deeper crustal and upper mantle reservoirs (see Fig. 1, modified
273	after Boyd, 2001). In this section, we discuss the current understanding of the most important
274	pathways for surface to deep-Earth N cycling.
275	
276	Incorporation of Organic Nitrogen into Silicates During the Diagenesis of Sediments
277	Various low-temperature geologic processes at Earth's surface can lead to the incorporation
278	of initially organic N into silicate phases. They, in turn, ultimately contribute to the entrainment
279	of N to great depths, during burial and subduction. Low-temperature "mineralization" (i.e.,

280	devolatilization), the breakdown of organic material, releases N which is incorporated by
281	authigenic clays such as illite, seemingly with little or no isotope fractionation (see Williams et
282	al., 1989, 1995; Schroeder and McLain, 1998; Ader et al., 1998, 2006; Boudou et al., 2008; see
283	the discussion in Thomazo et al., 2011). Although the bulk of the N in these diagenetically-
284	altered sediments or metasedimentary rocks is held in clays or low-grade micas, and the organic
285	matter is low-N kerogen, the whole-sediment/rock C/N and $\delta^{13}C$ and $\delta^{15}N$ values can resemble
286	those of the sediment protoliths (see the example in Sadofsky and Bebout, 2003).
287	Nitrogen record of ancient biogeochemical processes: A number of recent studies have
288	attempted to determine paleo-biogeochemical cycling behavior using the $\delta^{15}N$ of ancient
289	sediments and low-grade metasedimentary rocks. Thomazo and Papineau (2013; also see
290	Thomazo et al., 2011) provided a compilation of $\delta^{15}N$ values and other isotopic compositions, for
291	a variety of Precambrian sedimentary materials of ages from 3.6 to 1.4 Ga. These authors discuss
292	possible pitfalls in the interpretation of this record related to unknown effects of low-grade
293	metamorphism on the N record, but suggest that any isotopic shifts due to metamorphism are
294	likely to be small (i.e., <2.0%). It appears that the greatest N loss and isotopic shifts in
295	metamorphosed shales and sandstones occur during metamorphism over the temperature range
296	of ~350-550°C, depending on pressure (see Bebout and Fogel, 1992). In many cases N loss and
297	isotopic shifts are related to the breakdown of chlorite and release of N from micas during the
298	related dehydration of the rocks. Thus, low-grade metasedimentary rocks that experienced peak
299	temperatures below ~350°C likely preserve some information relating to paleo-biological
300	processes.

302 Nitrogen Enrichment in Seafloor-Altered Basalts, Gabbros, and Ultramafic Rocks

303	Seafloor alteration of basaltic and gabbroic rocks can result in a significant enrichment of N,
304	accompanied by isotopic shifts from "mantle-like" $\delta^{15}N$ values of $-5 \pm 2\%$ to higher values
305	approaching +10‰. The more elevated δ^{15} N values of these altered mafic rocks, in general,
306	indicate the addition of a sedimentary-organic N component, presumably via pore fluids that
307	previously exchanged with seawater and nearby sediment sections (see Busigny et al., 2005b; Li
308	et al., 2007). Although a number of deep-sea basaltic sections sampled by drilling contain
309	evidence for microbial activity in palagonitized glass (see Staudigel et al., 2008; Cockell et al.,
310	2010), the effect of microbial processes on N enrichment is not understood (see Bebout et al.,
311	2013b, manuscript in review).
312	
313	The Metamorphic Devolatilization Pathway
314	Subduction-zone metamorphism: Retention of volatiles to great depths in subduction zones
315	(for N, see Fig. 3) is known to be highly dependent on the thermal structure of the subduction
316	margin. "Cool" margins allow volatile-rich rocks to transit through forearc regions with little or
317	no devolatilization (see Bebout and Fogel, 1992; Busigny et al., 2003; Bebout et al., 2013a;
318	Cook-Kollars et al., 2014; Collins et al., in press). A growing number of studies have
319	investigated the deep subduction of N in the sediment, oceanic crust, and the hydrated upper

- 320 mantle in down-going slabs.
- 321 Subducted sediments: Bebout and Fogel (1992) investigated N behavior during the well-
- 322 characterized devolatilization history of the Catalina Schist, California, which was
- 323 metamorphosed at 15-45 km depths in a paleoaccretionary complex (see Figs. 4c, d). It was
- 324 shown that isotopically fractionated N was lost from units of the Catalina Schist that experienced
- relatively "warm" prograde *P*-*T* paths (i.e., epidote-amphibolite, EA, and amphibolite, AM; Figs.

326	4c,d). Based on the direction and magnitude of the isotope shifts, Bebout and Fogel (1992)
327	proposed N_2 -NH ₄ ⁺ exchange accompanying Rayleigh-like N losses during the metamorphism. In
328	contrast, lower grade metamorphic units that experienced "cooler" prograde $P-T$ paths (labeled
329	LA, LBS, and EBS in Figs. 4c,d) apparently did not undergo significant devolatilization and
330	related N loss (Bebout et al., 1999b). These latter units resemble their seafloor sediment
331	protoliths in both whole-sediment $\delta^{15}N$ and the $\delta^{13}C$ values of reduced C (the latter representing
332	metamorphosed organic matter). Sadofsky and Bebout (2003) documented similar preservation
333	of protolithic C and N concentrations and isotopic compositions in low-grade metasedimentary
334	rocks of the Franciscan Complex, California.
335	In two separate studies, Busigny et al. (2003) and Bebout et al. (2013a) investigated N
336	behavior in the Schistes Lustres metasedimentary unit and associated UHP rocks at Lago di
337	Cignana, NW Italy. The results indicate little or no loss of N during prograde metamorphism
338	over a depth range of ~60 to 90 km (see Figs. 4a, b). The retention of N to ~90 km depth in
339	subducted sedimentary rocks would imply the availability of this N for delivery to arc magma
340	source regions or the deeper mantle. Bebout et al. (2013a) proposed some N loss, associated with
341	a modest isotopic shift of perhaps 1-2% (see Fig. 4a), resulting from $\sim 20\%$ dehydration of the
342	highest-grade metasedimentary rocks in this suite. Cartigny et al. (2001) analyzed N
343	concentrations and $\delta^{15}N$ of microdiamonds from the Kokchetav (Kazakhstan) ultra-high pressure
344	(UHP) marbles and "garnet-clinopyroxene rock," the latter presumably metabasaltic in
345	composiiton, in a continental subduction setting. They proposed a metasedimentary source for
346	the N in the diamond, based on the $\delta^{15}N$ values, implying retention of metasedimentary N to
347	depths greater than 100 km. Here, the N was released into fluids during devolatilization
348	reactions.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5363

349 In the Catalina Schist amphibolite-facies unit, muscovite in metasedimentary leucosomes and 350 sediment-sourced pegmatites has $\delta^{15}N$ values indistinguishable from those of muscovite in the 351 migmatized metasedimentary rocks. This led Bebout (1997) to suggest that partial melting can 352 occur without appreciable N isotope fractionation; however, further detailed work is required to 353 test this hypothesis. The only other study of the behavior of N and its isotopes during 354 migmatization is that of Palya et al. (2011), with Hall et al. (1996) presenting NH_4^+ concentration 355 data only for a migmatite complex in Spain. The work by Palya et al. (2011), on the low-pressure 356 migmatites at Mt. Stafford, Australia, is described in a later section. 357 Subducted metabasalts and metagabbros: Halama et al. (2010) and Busigny et al. (2011) 358 considered the record of deep N subduction in basaltic and gabbroic rocks, focusing on the N 359 concentrations and isotopic compositions in HP and UHP metamorphic suites. In the rocks 360 investigated by Halama et al. (2010), N concentrations correlate positively with concentrations of 361 K_2O , consistent with the proposal that N resides as NH_4^+ in phengite (no feldspar is present in 362 these rocks). These authors subdivided these rocks into two groups, namely (1) those that 363 retained significant amounts of N, with N concentrations overlapping those of seafloor basalts, 364 and showing no evidence for metasomatic additions during subduction zone metamorphism, and 365 (2) those that were enriched in N, and in many cases also the LILE and Pb (Bebout, 2007), from 366 fluid-rock interactions during subduction. For the Mariana subduction margin, Li et al. (2007) estimated a N input flux of 5.1 x 10⁶ g/km/yr N in oceanic crust, twice as large as the annual N 367 input of 2.5 x 10^6 g/km in seafloor sediments subducting at the same margin. 368 369 Subducted ultramafic rocks: Philippot et al. (2007) and Halama et al. (2012) published N 370 isotope analyses of subducted ultramafic rocks (from the Italian Alps and Spain) and, in general, 371 were able to demonstrate that N in such rocks is carried to and retained at great depths, but at low 372 concentrations (mostly in the range of 1 to 8 ppm). The latter authors considered the significance 373 of this flux for the overall subduction input of N₂, and concluded that it is minor (see the range of 374 estimated input flux for this rock type in **Fig. 3**). However, at this point, it is difficult to estimate 375 the volume and N concentration of hydrated-slab ultramafic sections entering trenches and the N 376 budget in hanging-wall ultramafic rocks is also poorly constrained. 377 Efficiency of the arc volcanic return of subducted nitrogen: Subduction-zone cycling of N 378 encompasses many of the processes and pathways discussed in this paper, that is, low-379 temperature surface incorporation of N into organic matter and volcanic glass, diagenetic 380 alteration, low- to high-grade metamorphism and devolatilization, and partial melting. The subduction input flux of N, mostly as NH_4^+ , can be compared with the output flux as molecular 381 382 N₂ in arc volcanic gases (see the discussion by Hilton et al., 2002). Several studies have 383 calculated the amount of N that is returned to Earth's surface via arc volcanism (Fig. 3; see 384 Hilton et al., 2002; Elkins et al., 2006; Fischer, 2008; Mitchell et al., 2010). In general, the 385 estimated "return efficiency" of N, that is, the arc volcanic N outputs compared to the trench N 386 inputs, ranges from ~ 15 to $\sim 40\%$, but with considerable uncertainty. Still uncertain are the exact 387 geochemical mechanism(s) by which this N is transferred from subducting slab sections to the 388 overlying mantle wedge. Presumably this transfer occurs via aqueous C-O-H-S-N fluid or N-389 bearing silicate melt, or some combination of these two types of fluids. It is unknown whether 390 this subarc release of N from slabs is accompanied by isotopic fractionation and the published 391 mixing models used to calculate arc-volcanic gas compositions do not consider this effect. In 392 general, it appears that the upper mantle experiences net N addition, largely through the 393 incorporation of NH_4^+ in various K-bearing mineral phases such as the micas (see the discussions 394 by Halama et al., 2010; Busigny and Bebout, 2013; Cartigny and Marty, 2013). Some studies of

395	the compositions of arc volcanic gases consider the possibility of shifts in the $\delta^{15}N$ values of
396	deeply subducted rocks through N loss during devolatilization in forearcs (see Elkins et al.,
397	2006). More recent isotopic work on arc volcanic gases has focused on individual, well-studied
398	subduction zone segments for which the overall geometry and dynamics of the margin are well
399	characterized (i.e., by geophysical studies) and where the subduction inputs are better
400	characterized. The subduction inputs can be constrained by analyzing the N in seafloor sediments
401	that are obtained by drilling outboard of the trenches (see Elkins et al., 2006; Mitchell et al.,
402	2010; discussions by Sadofsky and Bebout, 2004; Li et al., 2007).
403	Other "regional metamorphism": Research has been conducted on the N behavior in
404	regionally metamorphosed rock suites that are not observably related to subduction, where a
405	number of them are associated with continental collision. An early example is presented in a
406	series of papers on N mobility in metamorphic rocks from the Dome de L'Agout, France, an
407	extensional gneiss dome, in which the authors stressed the importance of NH_4^+ in micas (Kreulen
408	and Schuiling, 1982; Duit et al., 1986). It was proposed that the release of N was related to the
409	retrograde replacement of biotite by chlorite, where the latter layer silicate is unable to
410	incorporate significant amounts of NH_4^+ (Duit et al., 1986; cf. Visser, 1992). Sadofsky and
411	Bebout (2000) documented the retention of initially organic N in amphibolite-facies, medium-
412	P/T facies series rocks at the Townshend Dam exposure in Vermont. The work focused mostly
413	on analyses of mica separates (also see the study of very NH_4^+ -rich white mica in schists from
414	the Betic Cordillera by Ruiz Cruz and Sanz de Galdeano, 2008). Low-grade equivalents to the
415	Townshend Dam rocks were not available for comparison study; however, these rocks could well
416	have lost appreciable fractions of their initial N contents at grades lower than those now
417	represented at this exposure. Jia (2006) studied the N behavior for greenschist- to amphibolite-

418	facies metamorphism in the Cooma metasedimentary suite, Australia. Here, N loss at
419	temperatures from 350 to 600°C was accompanied by modest isotopic shifts that were consistent
420	with a Rayleigh or batch distillation process and speciation of N in the fluid as N_2 (see Fig. 2b).
421	In contrast, Jia invoked NH_3 - NH_4^+ exchange at temperatures of 650 to 730°C during the higher-
422	grade migmatization to account for far larger positive shifts in $\delta^{15}N$ in the high-grade rocks.
423	Plessen et al. (2010) examined N concentrations and N isotopic compositions for a suite of
424	greenschist- to amphibolite-grade metasedimentary rocks in western Maine, USA. They
425	documented moderate loss of N in the higher-grade rocks, accompanied by some shift in $\delta^{15}N$.
426	Plessen et al. analyzed both whole-rocks and biotite separates and discussed the effect of
427	changing redox conditions on N_2 - NH_4^+ and NH_3 - NH_4^+ exchange during the metamorphic
428	devolatilization. Mingram et al. (2005) investigated the N loss and associated isotopic shifts in a
429	Paleozoic sediment section presumed to be the source of natural gases in the North German
430	Basin containing up to ~90% N_2 (also see Krooss et al., 2005). The former authors suggested that
431	the bulk of the released N was dissolved as NH_3/NH_4^+ , in saline pore fluids, which was then
432	oxidized to produce N_2 in the natural gases. As a final example of a study of regionally
433	metamorphosed rocks in a collisional subduction setting, Li et al. (2014) proposed that
434	anomalously low $\delta^{15}N$ values in micas from UHP metaigneous rocks of the Sulu orogenic belt,
435	China, indicate abiotic N reduction arising from near-surface fluid-rock interactions during the
436	Neoproterozoic Era.
437	Contact metamorphism: Contact metamorphic aureoles can provide clear records of
438	mineral reaction history, with well-defined heat sources. However, the transient nature of the
439	heating can lead to significant kinetic effects that hinder the attainment of mineral equilibration

440 and the growth of large crystals. Bebout et al. (1999a) investigated, as an example, the Skiddaw

18

441	Aureole (English Lake District), selected in part because of the very homogeneous whole-rock
442	compositions of the metapelitic wall-rocks. This homogeneity simplified the determination of the
443	fraction of N lost due to devolatilization that occurred during contact metamorphism. In the
444	Skiddaw Slate wall rocks, the K_2O concentration is very uniform and the measured decrease in N
445	concentration toward the igneous contact is associated with a loss of N from micas, which are the
446	most important mineral hosts for the N (as NH_4^+). Although the rocks metamorphosed near the
447	contact were variably overprinted by retrograde fluid-rock interactions, they show a clear shift to
448	higher δ^{15} N values that was associated with N loss at the higher grades.
449	In the Karoo Basin, South Africa, heating by a series of basaltic sills at depth metamorphosed
450	a sedimentary section, devolatilizing the sediments and producing explosive hydrothermal
451	venting (see Svensen et al. 2008). Abundant buddingtonite was produced by this hydrothermal
452	activity, where it acted as a cement. Study of metamorphosed rocks directly adjacent to one of
453	these sills showed changes in N concentrations and $\delta^{15}N$ values similar to those observed for the
454	Catalina Schist and Skiddaw Aureole. The $\delta^{15}N$ values of the N ₂ which was produced by
455	devolatilization of the Karoo Basin sediments (+1.75 to +6.0‰), are similar to those calculated
456	for buddingtonite that crystallized during the hydrothermal fluid venting.
457 458	Nitrogen Metasomatism and the Formation of Ore Deposits
459	An investigation of the metasomatic rocks of the Catalina Schist (Bebout and Barton, 1993;
460	Bebout, 1997) demonstrated the utility of N as a tracer of fluid-rock interactions and, in
461	particular, the fluid-mediated transfer of initially organic N at depth. Here, N of metasedimentary
462	origin is enriched in a variety of metasomatized rocks, for example, blueschist-facies-

463 metamorphosed conglomerate cobbles, veins and their envelopes, and pegmatites. In all of these

464 metasomatized rocks, N enrichments mirror those of K₂O, again demonstrating the ability of

19

NH₄⁺ to substitute for K⁺ in certain silicates. **Figure 5** shows this correlation for the blueschistgrade conglomerate cobbles (data from Bebout, 1997). Other LILE, specifically Cs, Rb, and Ba, show enrichments positively correlated with those of N and K₂O. The δ^{15} N values of these cobbles are very uniform and identical to those of other metasomatic rocks in this unit and the blueschist-facies metasedimentary rocks (Table 2 in Bebout, 1997), the latter presumed to be the source of the N.

471 Another example of the behavior of N and its isotopes during metasomatic processes is found

472 at an exposure of subduction-related metabasaltic rocks in the Tianshan, China. Figure 6 shows

473 variations in the concentrations of N and several other trace elements across a vein envelope in

474 which blueschist-grade metabasaltic rocks are transformed to eclogite toward the contact with

the vein (from Halama et al., manuscript in preparation; see description in Beinlich et al., 2010;

476 sketch from that paper in Fig. 6d). Samples collected along a traverse of this envelope show

477 correlated losses in N and the LILE (K, Rb, and Ba; see Figs. 6a-c), reflecting the

478 destabilization of phengite during eclogitization. The N loss during eclogitization occurred with

479 little or no change in δ^{15} N except in the vein itself. For the same traverse, John et al. (2012)

480 modeled the diffusion of Li and its isotopes and proposed a very short-duration fluid-rock event

481 to produce the observations.

482 In veins from various settings, the presence of NH_4^+ -bearing minerals (commonly micas) and

483 N₂ in fluid inclusions (Duit et al., 1986; Darimont et al., 1988; Ortega et al., 1991; Visser, 1992;

484 Andersen et al., 1993) indicate the mobility of N in fluids during metamorphism, in some cases

- 485 with the fluid producing ore deposits. Kerrich et al. (2006) measured N concentrations and
- 486 isotopic compositions of muscovite in hydrothermal veins containing appreciable Au. They
- 487 argued that the fluid flow that produced the veins originated from a sedimentary source (also see

488	Jia et al., 2003). Pitcairn et al. (2005) also investigated the mobilization of metasedimentary N
489	into ore-forming fluids, assessing fluid-rock fractionation behavior during devolatilization of the
490	sources. Krohn et al. (1993) examined enrichments of NH_4^+ (some of it in buddingtonite) in
491	shallow-crust hydrothermal systems utilizing near-infrared spectroscopy. Because of the high
492	$\mathrm{NH_4}^+$ content in these hydrothermal systems, their close association with Hg, and the small
493	crystal size of the NH_4^+ -bearing minerals, they proposed that NH_4^+ is transported by a late-stage
494	vapor phase or as an organic volatile. As a further example of NH_4^+ enrichment occurring during
495	magmatic hydrothermal processes, Bobos and Eberl (2013) described NH_4^+ -illite-rich altered
496	andesites associated with sub-volcanic diorite emplacement and crystallization.
497	As noted above, Bebout et al. (1999a) documented loss of N in the contact aureole developed
498	at the margins of the Skiddaw Granite and the addition of this N to the cooling intrusive, where it
499	was concentrated in a greisen (see another study of N in ore-deposit greisen by Junge et al.,
500	1989). The δ^{15} N values of the Skiddaw greisen, which is associated with the tin-tungsten deposits
501	at the Carrock Fell Mine, are consistent with an up-temperature flow of a N-bearing fluid from
502	the wall rocks undergoing devolatilization into the granite.
503	
504	Anatexis in the Continental Crust
505	Little work has been conducted on migmatites, leucosomes, and pegmatites aimed at

506 understanding the nature of mineral-melt partitioning and possible melting-related isotopic

507 fractionation of N. Palya et al. (2011) investigated the behavior of N for a series of partial

- 508 melting reactions in the Mt. Stafford migmatite suite and demonstrated strong retention of N in
- 509 these rocks despite extensive melting at ~2.0-4.0 GPa (Fig. 7). At lower metamorphic grades,
- 510 muscovite and biotite were presumed to be the dominant N reservoir. However, as the two micas

511	were destabilized during dehydration melting reactions, N was partitioned into K-feldspar and
512	significant amounts of N were retained in cordierite presumably as molecular N_2 (see the
513	discussion below). Cordierites in the higher-grade rocks at this locality (Zone 4) contain 118-351
514	ppm N (see Fig. 8 and Table 4 in Palya et al., 2011). The following outlines a series of reactions
515	experienced by these rocks (from Vernon et al., 1990, and White et al., 2003; with the likely N-
516	bearing minerals in italics):
517	Zone 1:
518	Ms + Bt (unmelted protolith/equivalent)
519	Zone 2:
520	$Ms + Qtz \rightarrow And + Kfs + H_2O$
521	$Kfs + Bt + Crd + Qtz + H_2O \rightarrow leucosome \pm (Qtz - Kfs - Bt)$
522	$Kfs + Qtz + Bt + H_2O \rightarrow And + leucosome \pm (Qtz - Bt - Kfs)$
523	Zone 3:
524	$Bt + Sil + Qtz \rightarrow Spl + Crd + leucosome \pm (Kfs - Qtz - H_2O)$
525	$Bt + Spl + Qtz \rightarrow Grt + Crd + Kfs + melt$
526	Zone 4:
527	$Grt + Bt + Qtz \rightarrow Opx + Crd + Kfs + melt$
528	Although some N loss from these rocks with increasing grade is evident (see Figs. 7a, b),
529	isotopic shifts associated with this loss appear modest (with a subset of the Zone 4 samples
530	having δ^{15} N values greater than +7‰), indicating only minor isotopic fractionation during the
531	partial melting.
532	

533 Buildup of the Nitrogen Reservoir in the Continental Crust during the Precambrian (and

534 its Present State)

535 Uptake of N via biological processes, and the gradual transfer of this N to the crust and 536 mantle, are thought to be important in the evolution of the early-Earth atmosphere (Boyd, 2001; 537 Goldblatt et al., 2009). Like the subduction pathway (Fig. 3), this avenue for incorporation into 538 and storage in the continental crust involves much of the process laid out in **Fig. 1**. This begins 539 with the biological uptake of N from the atmosphere/hydrosphere, proceeding through diagenesis 540 and then low- to high-grade metamorphism and ultimately deep-crustal partial melting. Goldblatt 541 et al. (2009) proposed that halving the amount of atmospheric N₂ reservoir by biological fixation, 542 through a net reaction of the type $N_2 + 3H_2O \rightarrow 2NH_3 + 1.5O_2$, would have resulted in the 543 production of large amounts of O_2 for addition to the atmosphere. The sequestering of biological 544 N into clays at or near Earth's surface, and with time further into deeper crustal rocks (where it 545 could be stored), would have prevented N return to the atmosphere. 546 A better understanding of the concentrations and δ^{15} N values of the continental crust will 547 require further investigation of the various volumetrically important crustal rocks (see the 548 discussion by Johnson and Goldblatt, 2015). Several observations can be made. The N 549 concentrations for crustal rocks at Mt. Stafford (Palya et al., 2011; see Figs. 7a, b), for example, 550 are generally considerably higher than the estimated average continental crust concentration of 551 56 ppm (see Rudnick and Gao, 2014). Bach et al. (1999) determined N concentrations, but no 552 isotopic compositions, for rocks from the KTB drill hole, in Oberpfalz, southern Germany, 553 which sampled a 7 km section of crystalline basement metamorphosed during the Variscan 554 orogeny. They noted a general positive correlation between whole-rock N concentration and 555 biotite modal abundance and, thus, higher concentrations of N in paragneisses compared to

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5363

556	metabasites. Nitrogen concentrations measured along the drilled section ranged from ~ 5 to 50
557	ppm, lower than the 56 ppm average for the bulk-continental crust (see Rudnick and Gao, 2014).
558	Based in part on a consideration of K/U ratios, Cartigny et al. (2013) suggested 2.5 to 5 times the
559	amount of N in upper continental crust estimated by Rudnick and Gao (2014) using the data
560	compilation by Wlotzka (1972; also see the larger estimate by Johnson and Goldblatt, 2015).
561	
562	THE MICROPOROUS SILICATES BERYL AND CORDIERITE: NEW RESULTS ON THEIR NITROGEN
563 564	CONCENTRATIONS AND ISOTOPIC BEHAVIOR
565	Up to now, most study of rock-forming minerals that can contain N has focused on layer
566	silicates and feldspar, where N occurs in the NH_4^+ ion. There is, however, another class of
567	minerals, namely microporous silicates that can contain charge-neutral molecules or gases, and
568	here specifically N_2 , in their structures (Armbruster, 1985). They may serve as another crustal
569	sink for N. In this section, we present new mass spectrometry results on the N concentrations and
570	isotopic compositions in microporous beryl and cordierite. In addition, in several cases, we
571	measured the N concentrations and isotopic compositions for coexisting muscovite and biotite in
572	order to better understand the fractionation behavior of N between microporous and layer
573	silicates (data are from Lazzeri, 2012).
574	Cordierite with the idealized composition (Mg,Fe) ₂ Al ₄ Si ₅ O ₁₈ ·[H ₂ O, CO ₂ , N ₂] is
575	commonly found in Al-rich metamorphic rocks such as metapelites (Schreyer, 1965; also see
576	Kalt et al., 1998) and also certain igneous rocks (Clarke, 1995), including pegmatites (Heinrich,
577	1950). Beryl with the ideal composition $(Al_2Be_3Si_6O_{18})$ ·[H ₂ O, CO ₂ , N ₂] is typically found in
578	granites or granite pegmatites (London and Evensen, 2002), but it can also occur in certain mafic
579	metamorphic rocks and low- to high-temperature hydrothermal veins. A few studies have

580 investigated the presence of N_2 in cordierite and its concentration (e.g., Lepezin et al., 1999; 581 Geiger et al., in preparation), but very few data exist on its molecular isotopic compositions (see 582 the small dataset for beryl presented in Scalan, 1958). The results for cordierite, a rock-forming 583 mineral, have implications for the storage of N at shallow to mid-levels of the continental crust, 584 because metamorphosed pelites can occur in geologically large amounts. 585 Nearly all naturally occurring cordierites occur as the lower-temperature ordered 586 orthorhombic modification and not the hexagonal "high" form with its disordered Al-Si 587 distribution. Beryl is isostructural with "high" cordierite. The crystal structures of cordierite and 588 beryl are similar because both contain structural rings consisting of six corner-sharing (Si/Al)O4 589 tetrahedra that are cross-linked by octahedra and Al/BeO₄ tetrahedra, thereby forming a three-590 dimensional framework. These rings of corner-shared tetrahedra are stacked one over another 591 producing infinite one-dimensional channelways running parallel to the *c*-axis (**Fig. 9**). The rings 592 form 'bottlenecks' with a diameter of about 2.8 Å and, in their middle, alkali cations (Na and K 593 for cordierite and these elements as well as Cs for beryl) can be found at relatively low 594 concentrations (e.g., Armbruster, 1986). Single, free molecules such as H₂O, CO₂, N₂, CO, O₂, 595 and H₂S and neutral atoms like Ar and He can be located in structural cavities or pores located 596 between the bottlenecks (Damon and Kulp, 1958; Armbruster, 1985; Kolesov and Geiger, 2000). 597 The molecules can be incorporated during crystallization, but they can, to unknown extents, 598 move in or out with changing *P*-*T*-*X* conditions. The presence of alkali cations within the rings 599 can act to slow or block diffusion of the molecules in or out of the channels. The dominant 600 molecular channel constituents in cordierite are H₂O (up to 3.8 wt %) and CO₂ (up to 2.2 wt %) 601 and the former for beryl. Both molecules have received considerable attention and different types 602 of crystallographic, mineralogical, and geochemical study and, thus, their behavior is fairly well

603	understood. The concentrations and isotopic behavior (i.e., geochemical) of the less abundant
604	molecular species N ₂ , CO, O ₂ , H ₂ S, Ar and He are not well documented.
605	In the case of cordierite, degassing experiments reveal that N ₂ is probably the third-most
606	abundant species in many crystals, suggesting that N2 may play an important role in the fluids
607	from which they crystallized (Geiger et al., in preparation). Indeed, fluid inclusion studies of
608	granulites and eclogites confirm the presence of N2-bearing metamorphic fluids at elevated
609	temperatures and pressures (Andersen et al., 1990, 1993; Kreulen and Schuiling, 1982; Touret,
610	2001). In addition to N_2 , a couple of studies have proposed the presence of minor amounts of
611	$\mathrm{NH_4}^+$ and $\mathrm{NH_3}$ within the channels of both cordierite and beryl (Mashkovtsev and Solntsev,
612	2002; Bul'bak and Shvedenkov, 2005), but more work is needed in this direction.
613	The concentrations and isotopic compositions of N occluded in cordierite and beryl are
614	believed to depend on several factors (see Geiger et al., in preparation): (1) the temperature and
615	pressure during crystal growth, (2) crystal-chemical and molecular properties, (3) the
616	composition of the coexisting fluid present, and (4) fractionation effects of N within the fluid.
617	
618	Continuous Heating and Mass Spectrometry on Cordierites to Determine their Occluded
619	Molecular Species
620	Geiger et al. (in preparation) studied a number of cordierites from a wide range of petrologic
621	environments using continuous heating experiments from 25 to 1400 °C with a coupled
622	quadrupole mass spectrometer (see Supplementary Fig. 1). The aim of the study was to
623	determine all types of molecular species, both major and minor, that can be occluded in
624	cordierite, their temperature release behavior and, in some cases, their concentrations. The
625	experimental method discriminates between molecular species by their mass-to-charge ratios

626 (m/z). Both N₂ and CO are characterized by m/z = 28 and thus their peaks overlap in the mass 627 spectrometry profiles. N₂ can be discriminated from CO by elevated m/z 28:44 ratios, indicating 628 that a peak at m/z 28 cannot be solely explained by secondary CO⁺ fragments produced from 629 occluded CO₂ molecules. In order to test for the presence of a N₂ molecule, one can also use the 630 species m/z 14, which can be assigned to the fragment N⁺. 631 Based on a large number of degassing experiments of different cordierites, it was shown that 632 the most N₂-rich cordierites are those from the granulite facies. Cordierites from medium-grade 633 amphibolite-facies rocks contain less N₂, and pegmatite samples show the least amounts of N₂ of 634 all the samples studied. These observations are confirmed by the stable isotope extraction 635 measurements made on some of the samples, described below. The results also confirm the work 636 of Lepezin et al. (1999) and their conclusions, showing that the concentration of N₂ in cordierite 637 generally increases with increasing metamorphic grade (these authors did not measure N in 638 cordierite from pegmatites). Finally, these degassing experiments demonstrate that the heating 639 of cordierite (and beryl) to temperatures of 1100 °C, for three hours, should be sufficient to expel 640 all molecules from their structural channels (see the examples of the release spectra in 641 Supplementary Fig. 1).

642

643 Methods for Isotope Ratio Mass Spectrometry on Nitrogen in Cordierite and Beryl

Following upon the continuous heating measurements discussed above, heating experiments using the sealed-tube and mass spectrometry methods of Bebout et al. (2007) were undertaken to determine the N release characteristics for cordierite and beryl and the optimal heating regimen to obtain complete extraction of N for isotopic measurements. As a test, an inclusion-free beryl crystal, as examined by petrographic examination, was crushed and sieved to produce three

649 grain-size fractions: 0.125-0.25 mm, 0.25-0.50 mm, and 0.50-1.0 mm. Approximately 60 mg of 650 each size fraction were loaded into 6 mm o.d. quartz tubes together with 1 g of CuOx reagent and 651 evacuated for 24 hours, with intermittent heating to $\sim 100^{\circ}$ C with a heat gun before sealing. The 652 sealed tubes were heated in a furnace at a controlled rate to either 1050 or 1100°C and for 653 varying periods of time between 180 to 300 minutes. An analysis of the results for these 654 differently-sized separates showed no difference outside analytical uncertainties in their 655 N concentrations or δ^{15} N values of ~36 ppm and +5.3‰. A number of recent studies have 656 concluded that quantitative extraction of N is accomplished for a wide range of metasedimentary, 657 basaltic, and ultramafic rocks at temperatures of 1000°C (Bebout et al., 2007; Busigny et al., 658 2005b; Halama et al., 2010; Li et al., 2007). However, N extraction from some mineral separates 659 can require higher temperatures (e.g., biotite; see Sadofsky and Bebout, 2000). Following this 660 test experiment on beryl, all further extractions were undertaken by heating to 1100°C for 180 661 minutes, using the heating and cooling regimen of Bebout and Sadofsky (2004) and Bebout et al. 662 (2007). The extracted N₂ was purified in an all-metal extraction line. It was then transferred into 663 a Finnigan MAT 252 mass spectrometer via a Finnigan Gas Bench II and a U-trap interface 664 where small samples of N_2 (~50-200 nmoles) were entrained into a He stream. 665 Clear, gem-like beryl and cordierite crystals (Appendices A and B) were used in all 666 experiments in order to minimize the possibility of contamination from tiny mica inclusions potentially containing NH₄⁺. The lack of mica inclusions was also confirmed using petrographic 667 668 methods. A number of the cordierites were also characterized for their channel contents in the 669 degassing experiments of Geiger et al. (in preparation; see Supplementary Fig. 1). Samples 670 were crushed and sieved to reach a grain size of 0.25-1.0 mm and cleaned with purified water

28

- and an acetone solution. For these extractions, aliquots of cordierite and beryl (17-116 mg) or
 mica (10-40 mg) were loaded into the quartz tubes with 1 g of CuO_x reagent.
- 673

674 Nitrogen Concentrations and δ¹⁵N Values of Cordierite from Various Geological Settings

675 The N concentrations and δ^{15} N values for thirty cordierite samples, eight of these with

676 coexisting biotite, are listed in **Table 2**. The results are shown in **Figs. 8 and 9**. The cordierites

show a large range of N concentrations, from 5 to 4525 ppm, with most containing less than

678 1500 ppm N. $δ^{15}$ N values range from +1 to +17‰. Figure 8a shows that the N concentration

679 generally increases with increasing metamorphic grade. Cordierites from granulites, including

680 Mt. Stafford, tend to contain more N, and have lower δ^{15} N, than cordierites from medium-grade

681 metamorphic rocks. The simplest interpretation for this observation is that NH_4^+ held mostly in

682 mica (muscovite and biotite) at lower grades is liberated at higher metamorphic temperatures

through various dehydration reactions. Nitrogen is released into the fluid phase, speciated as N₂,

then incorporated into cordierite. The N released from the micas is expected to have δ^{15} N lower

than that of the NH₄⁺ in the micas (see **Fig. 2b**), thus explaining the lower δ^{15} N for N₂ in the

686 cordierite channels.

It should be noted that pegmatitic cordierites have N concentrations of less than 70 ppm,

688 which fall toward the lower end of the observed concentration range for all cordierites. Their

- δ^{15} N values are similar to those for cordierite in medium-grade metapelites. δ^{15} N values for the
- 690 various cordierite samples range from +1 to +12‰, overlapping the δ^{15} N range characteristic for

organic N, with the exception of sample CL-177-1 (+30‰) and Wards (+16‰; see **Table 2**).

692

693 Nitrogen Partitioning Behavior Between Coexisting Cordierite and Biotite

694	Biotite in pegmatites has N concentrations of 70 to 134 ppm higher than those of the
695	coexisting cordierites, but to varying degrees (see Fig. 9). In two of the three experiments, the
696	δ^{15} N values (+1.8 to +11‰) of the biotites are lower than the values for cordierite from the same
697	rock sample (Fig. 9). In the third case, the δ^{15} N values for the coexisting minerals are similar.
698	For two granulite facies rocks, biotite has N concentrations of 65 and 116 ppm and they are
699	lower than those of the coexisting cordierites with concentrations of 162 and 232 ppm N,
700	respectively. For three rock samples whose origins are uncertain ("uncategorized"), cordierites
701	have N concentrations and δ^{15} N values higher than those of coexisting biotite. Thus, the
702	partitioning and isotopic fractionation results for N in coexisting biotite and cordierite do not
703	show any consistent behavior and, thus, factors other than temperature must be considered.
704	The wide range of measured N concentrations and δ^{15} N values in cordierite could be
705	attributed to differences in the temperature of crystallization, compositional heterogeneity in the
706	protoliths (see the compilation of data for sediments in Kerrich et al., 2006), and differing
707	magnitudes of positive isotopic shifts in $\delta^{15}N$ resulting from lower-grade devolatilization (see
708	Bebout and Fogel, 1992; Jia, 2006; Palya et al., 2011). Three additional effects that could explain
709	the range of $\delta^{15}N$ values are (1) the presence of some NH_4^+ in cordierite, which could result in
710	decreased or no fractionation of N with NH_4^+ in coexisting biotite, (2) chemical disequilibrium
711	between biotite and cordierite that could affect the N concentrations and isotopic compositions,
712	or (3) post-crystallization or retrograde modification of the $\delta^{15}N$ values due to differential
713	diffusive loss (i.e., preferential loss of ¹⁴ N). Possibility (3) must be addressed in future studies of
714	microporous silicates and fluid-rock processes (see discussion of diffusive loss for H ₂ O and CO ₂
715	in cordierite by Vry et al., 1990). Regarding (1), we consider the presence of significant amounts

of NH_4^+ in cordierite as unlikely for crystal chemical reasons (the concentration of K, with very few exceptions, in cordierite is very low).

718 Nitrogen Partitioning Behavior Between Cordierite and its Rock Matrix for a Medium-

719 **<u>Grade Schist:</u>** Nitrogen concentrations and δ^{15} N values were measured for a gem-quality

- cordierite and its muscovite-rich matrix for one medium-grade metasedimentary schist from
- 721 Connecticut, USA (Fig. 8b). Here, quite interestingly, cordierite showed no measurable N within
- the experimental detection limits, whereas the muscovite-rich matrix contained 350 ppm N.

Essentially all N in the schist resides as NH₄⁺ in the micaceous matrix. This result is consistent

with the observation that N concentrations in cordierite are highest at the highest metamorphic

grades where muscovite is not present. The interpretation is that N residing in the muscovite,

after its breakdown with increasing temperature, is taken up in K-feldspar and cordierite (see

727 Palya et al., 2011).

728

729 Nitrogen Partitioning Behavior Between Coexisting Beryl and Muscovite

730 Figure 10 shows the N concentrations and δ^{15} N values for five beryl-muscovite pairs taken 731 from four pegmatites and one metasedimentary schist (see the data in **Table 2**). These results 732 show that muscovite always contains far greater amounts of N than coexisting beryl. A mean $\Delta^{15}N_{\text{musc-bervl}}$ ($\delta^{15}N_{\text{musc}} - \delta^{15}N_{\text{bervl}}$) value of +2.9 (1 σ = 1.1‰) was obtained for these pairs. The 733 734 direction and magnitude of this isotopic fractionation are similar to those measured for bioite-735 fluid inclusion pairs in a vein in metasedimentary rocks from Bastogne, Belgium (see discussion 736 above) and predicted by the fractionation factors calculated using spectroscopic data (see Fig. 737 **2a**). Apparently, based on the limited data, the partitioning behavior of N and its isotopes 738 between beryl and muscovite, compared to the case for cordierite-biotite pairs, is more

739	systematic (Fig. 9). This could, in part, reflect (1) the presence of N_2 as the single N species in
740	the beryl (i.e., not also NH_4^+) or (2) the more rapid cooling of pegmatites compared to most
741	granulites. Rapid cooling allows greater retention of N_2 incorporated during peak crystallization
742	conditions and thus better preservation of the peak-temperature partitioning behavior.
743	
744	Carbon Concentrations and δ^{13} C Values of Cordierite and Beryl
745	Figure 11a shows a plot of N and C concentrations for a number of cordierites and the single
746	beryl sample studied here (see also Table 2). The two elements show a rough positive
747	correlation. Figure 11b shows a plot of C concentrations and $\delta^{13}C_{VPDB}$ values. The various
748	samples have roughly similar δ^{13} C values with a mean = -9.8% (1 σ = 3.5%), with the exception
749	of two cordierites outliers from granulites having δ^{13} C values of -36.4‰ and -22.3‰. For the
750	range of rocks types studied here, pegmatite cordierites tend to have lower C concentrations.
751	Cordierites from granulites and medium-grade metapelites (and the uncategorized cordierites)
752	have, in general, similar concentrations of C, but the most C-rich samples (i.e., 990 to 1200 ppm
753	C) come from granulites (there is considerable overlap among the data for medium grade,
754	granulite, and uncategorized cordierites). These observations for C concentrations and $\delta^{13}C$
755	values are consistent with those made by Vry et al. (1990) in their isotopic investigation of
756	cordierite. Beryl, unlike cordierite, contains very little C, with only one sample containing
757	amounts sufficient for an analysis of δ^{13} C.
758	
759	How Important are Microporous Silicates and Tourmaline for Storage of Nitrogen in

760 Continental Crust?

32

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5363

761	Cordierite can be a volumetrically significant rock-forming mineral in metapelitic rocks. It is
762	stable over a wide range of temperatures and at low to moderate pressures corresponding to
763	upper to middle levels of the continental crust (e.g., Schreyer, 1965; Kalt et al., 1998; White et
764	al., 2003; Palya et al., 2011). Tourmaline, which may also contain appreciable amounts of N
765	(e.g., Wunder et al., 2015), occurs in metapelitic rocks over a broader range of P and T , even in
766	UHP rocks that experienced pressures of up to \sim 3.0 GPa (Bebout and Nakamura, 2003; see the
767	summary by Marschall et al., 2009; van Hinsberg et al., 2011). However, its modal abundance is
768	limited in both metamorphic and igneous rocks, therefore it is unlikely to play a role as a major
769	sink in the crust and for the deep-Earth N cycle. Tourmaline and beryl in larger amounts can
770	occur in pegmatites (London and Evensen, 2002), but pegmatites are unlikely to act as
771	significant N reservoirs due to their relative scarcity. Summarizing, cordierite could be a notable
772	sink for N in shallow- to mid-levels of the continental crust.
773 774	CONCLUSIONS AND OUTLOOK
775	Fluxes of N among the oceanic and continental crust, mantle, oceans, and atmosphere largely
776	determine the abundance and the isotopic composition of N in all of these reservoirs. Models of
777	modern and ancient volatile cycling on Earth are highly dependent on understanding the nature
778	of these fluxes (Javoy, 1997; Tolstikihn and Marty, 1998; Zhang and Zindler, 1993). Biological
779	processes play a key role in affecting the concentrations and behavior of N in the solid Earth.
780	Nitrogen in the oceans and atmosphere can be incorporated (via biological processes) into
781	mineral phases, some of which are carried into the deep Earth (via burial and subduction).
782	Nitrogen can thus be an effective tracer in the study of the transfer of sedimentary and organic
783	components into and within the crust and upper mantle. In this article, we present some

784	important observations regarding this hydrosphere-crust-upper mantle transfer, based on the
785	studies to date, and we suggest several areas needing attention.

786 $-NH_4^+$ can replace K⁺ via a solid solution mechanism in some K-bearing rock-forming

silicate minerals, especially layer silicates (clays and micas) and feldspar. This substitution is so

- prevalent that an estimate of N subduction-input fluxes can be based on knowledge of the rates
- of K subduction (see Busigny et al., 2003, 2011; Busigny and Bebout, 2013). Recent research
- suggests that cordierite and tourmaline can also serve as reservoirs for N, with concentrations
- roughly similar to those of coexisting micas. Cordierite could be a significant phase for the
- storage of molecular N_2 in shallow- to mid-levels of the continental crust.

793 — Low-temperature devolatilization of organic matter, and the concomitant crystallization of

clay minerals such as illite, permit the retention of this initially-organic N as NH_4^+ in these clay

minerals, apparently with little isotopic fractionation. Although whole-rock C/N ratios of very

196 low-grade metamorphosed sediments can retain biogeochemical information, kerogen itself (the

reduced C reservoir) contains very little N. Most of the initially-organic N is transferred into and

- housed in clays and low-grade metamorphic micas (and in some cases, authigenic feldspars;
- 799 Svensen et al., 2008).
- 800 Considerable loss of N from minerals to fluids can occur at low to medium metamorphic

grades, depending upon the prograde *P*-*T* path the rocks experience (see Bebout and Fogel, 1992;

802 Busigny et al., 2013; Li and Keppler, 2014). In many cases, the isotopic shifts associated with

- this loss point to a N_2 -NH₄⁺ exchange mechanism. Li et al. (2009) proposed, however, the
- 804 possibility of kinetically controlled NH₃-NH₄⁺ exchange. In relatively "cool" subduction zone
- settings, sedimentary rocks can retain a large fraction of their original N contents to great depths,
- perhaps even the depths beneath volcanic fronts (see Busigny et al., 2003; Bebout et al., 2013a).

807	Experimental phase equilibrium studies document the stability of mica (e.g., phengite), the key N
808	mineral reservoir, to great depths in most subduction zones (Schmidt and Poli, 2014).
809	- Further investigation of the concentrations, isotope compositions, and fluxes of N into and
810	within the continental crust is badly needed (see the discussion by Johnson and Goldblatt, 2015).
811	The estimated average concentration of 56 ppm for this reservoir is based on a very small
812	number of analyses (see Wedepohl, 1995; Bach et al., 1999; Palya et al., 2011; Rudnick and Gao,
813	2014). It goes without saying that further work on the concentrations and isotopic compositions
814	of N in the mantle is needed, as the mantle could contain $\sim 60\%$ of the Earth's N (Table 1; see
815	the discussions by Cartigny and Marty, 2013; cf. Johnson and Goldblatt, 2015).
816	— The rates and mechanisms by which N, or its components, diffuse in key minerals such as
817	the micas, alkali feldspars, clinopyroxenes, and microporous silicates are poorly understood (see
818	Watson and Cherniak, 2014). Closure temperatures for the retention of N in these phases are not
819	known, complicating the assessment of N isotope behavior at high geologic temperatures.
820	- All research done thus far on N in silicate systems has been on either whole-rock samples
821	or mineral separates. It will be important to develop microanalytical methods for analyzing N
822	concentrations and $\delta^{15}N$ at scales allowing consideration of intramineral heterogeneity (see the
823	first analyses on cordierite using the ion microprobe by Hervig et al., 2014).
824	- Finally, we stress the need for experimental calibration of N isotope fractionation in
825	silicate fluid-mineral systems. This is required to understand and resolve the differences among
826	the various calculated fractionation factors.
827	
828	ACKNOWLEDGMENTS
829	Funding from the National Science Foundation (most recently, EAR-0711355) supported the
830	N isotope work conducted at Lehigh University. CAG is supported by the Austrian Science Fund

831	(FWF) through grant P25597-N20. We thank George Harlow and Jamie Newman, at the
832	American Museum of Natural History (New York, NY), for assisting in the acquisition of some
833	specimens. The cordierite samples investigated in this and the degassing study (Geiger et al., in
834	preparation) were supplied by several colleagues and here Julie Vry (Victoria University of
835	Wellington, New Zealand) deserves special thanks. Thanks also go to Long Li, who prepared the
836	size splits of the beryl sample used in the tests of the release during heating. Comments by
837	Daniele Pinti and an anonymous reviewer improved the manuscript.
838 839 840	References Cited
841 842 843	Ader, M., Boudou, JP., Javoy, M., Goffe, B., and Daniels, E. (1998) Isotope study on organic nitrogen of Westphalian anthracites from the Western Middle field of Pennsylvania (U.S.A.) and from the Bramsche Massif (Germany). Organic Geochemistry, 29, 315-328.
844 845 846	Ader, M., Cartigny, P., Boudou, J. P., Oh, J. H., Petit, E., and Javoy, M. (2006) Nitrogen isotopic evolution of carbonaceous matter during metamorphism: Methodology and preliminary results. Chemical Geology, 232, 152-169.
847 848	Andersen, T., Austrheim, H., and Burke, E. A. J. (1990) Fluid inclusions in granulites and eclogites from the Bergen Arcs, Caledonides of Western Norway. Mineralogical Magazine, 54, 145–158.
849 850	Andersen, T., Austrheim, H., Burke, E. A., Elvevold, S. (1993) N ₂ and CO ₂ in deep crustal fluids: Evidence from the Caledonides of Norway. Chemical Geology, 108, 113-132.
851 852	Armbruster, T. (1985) Ar, N ₂ and CO ₂ in the structural cavities of cordierite, an optical and X-ray single crystal study. Physics and Chemistry of Minerals, 12, 233–245.
853 854	Armbruster, T. (1986) Role of Na in the structure of low-cordierite: A single-crystal X-ray study. American Mineralogist, 71, 746–757.
855 856 857	Bach, W., Naumann, D., and Erzinger, J. (1999) A helium, argon, and nitrogen record of the upper continental crust (KTB drill holes, Oberpfalz, Germany): implications for crustal degassing. Chemical Geology, 160, 81-101.
858 859 860	Bakker, R. M., and Jansen, J. B. H. (1993) Calculated fluid evolution path versus fluid inclusion data in the COHN system as exemplified by metamorphic rocks from Rogaland, southwest Norway. Journal of Metamorphic Geology, 11, 357-370.
861	Barker, D. S. (1964) Ammonium in alkali feldspar. Am Mineral 49, 851-858.
862 863	Bebout, G. E. (1997) Nitrogen isotope tracers of high-temperature fluid-rock interactions: case study of the Catalina Schist, California. Earth and Planetary Science Letters, 151, 77-90.
864 865	Bebout, G. E. (2007) Metamorphic chemical geodynamics of subduction zones. Earth and Planetary Science Letters, 260, 373-393.
866 867 868	Bebout, G. E., Agard, P., Kobayashi, K., Moriguti, T., and Nakamura, E. (2013a) Devolatilization history and trace element mobility in deeply subducted sedimentary rocks: Evidence from Western Alps HP/UHP suites. Chemical Geology, 342, 1-20.

- Bebout, G. E., Banerjee, N. R., Izawa, M. R., Kobayashi, K., Lazzeri, K., Ranieri, L., and Nakamura, E.
 (in review) Nitrogen concentrations and isotopic compositions of altered terrestrial glass basaltic
- 871 rocks, and implications for astrobiology, submitted to Astrobiology.
- Bebout, G. E., and Barton, M. D. (1993) Metasomatism during subduction: products and possible paths in
 the Catalina Schist, California. Chemical Geology, 108, 61-92.
- Bebout, G. E., Cooper, D. C., Bradley, A. D., and Sadofsky, S. J. (1999a) Nitrogen-isotope record of fluid
 rock interactions in the Skiddaw Aureole and granite, English Lake District. American Mineralogist,
 876 84, 1495-1505.
- Bebout, G. E., and Fogel, M. L. (1992) Nitrogen-isotope compositions of metasedimentary rocks in the
 Catalina Schist, California Implications for metamorphic devolatilization history. Geochimica et
 Cosmochimica Acta, 56, 2839-2849.
- Bebout, G. E., Fogel, M. L., and Cartigny, P. (2013b) Nitrogen: Highly volatile yet surprisingly
 compatible. Elements, 9, 333-338.
- Bebout, G. E., Idleman, B. D., Li, L., and Hilkert, A. (2007) Isotope-ratio-monitoring gas
 chromatography methods for high-precision isotopic analysis of nanomole quantities of silicate
 nitrogen. Chemical Geology, 240, 1-10.
- Bebout, G. E., and Nakamura, E. (2003) Record in metamorphic tourmalines of subduction zone
 devolatilization and boron cycling. Geology, 31, 407-410.
- Bebout, G. E., Ryan, J. G., Leeman, W. P., and Bebout, A. E. (1999b) Fractionation of trace elements by
 subduction-zone metamorphism effect of convergent-margin thermal evolution. Earth and Planetary
 Science Letters, 171, 63-81.
- Bebout, G. E., and Sadofsky, S. J., 2004, δ¹⁵N analyses of ammonium-rich silicate minerals by sealed tube extractions and dual inlet, viscous-flow mass spectrometry, in Handbook of Stable Isotope
 Techniques (Pier de Groot, editor), p. 348-360.
- Beinlich, A., Klemd, R., John, T., and Gao, J. (2010) Trace-element mobilization during Cametasomatism along a major fluid conduit: Eclogitization of blueschist as a consequence of fluid-rock
 interaction Geochimica et Cosmochimica Acta, 74, 1892-1922.
- Bertoldi, C., Proyer, A., Garbe-Schonberg, D., Behrens, H., and Dachs, E. (2004) Comprehensive
 chemical analyses of natural cordierites: implications for exchange mechanisms. Lithos, 78, 389-409.
- Bobos, I., and Eberl, D. D. (2013) Thickness distributions and evolution of growth mechanisms of NH₄illite from the fossil hydrothermal system of Harghita Bãi, Eastern Carpathians, Romania. Clays and
 Clay Minerals, 61, 375-391.
- Bos A., Duit W., van Der Eerden M. J., and Jansen B. (1988) Nitrogen storage in biotite: An experimental
 study of the ammonium and potassium partitioning between 1 M-phlogopite and vapour at 2 kb.
 Geochimica et Cosmochimica Acta, 52, 1275–1283.
- Bottrell, S. H., Carr, L. P., and Dubessy, J. (1988) A nitrogen-rich metamorphic fluid and coexisting
 minerals in slates from North Wales. Mineralogical Magazine, 52, 451-457.
- Boudou, J.-P., Schimmelmann, A., Ader, M., Mastalerz, M., Sebilo, M., and Gengembre, L. (2008)
 Organic nitrogen chemistry during low-grade metamorphism. Geochimica et Cosmochimica Acta, 72, 1199-1221.
- Boyd, S. R. (1997) Determination of the ammonium content of potassic rocks by capacitance manometry:
 a prelude to the calibration of FTIR microscopes. Chemical Geology, 137, 57-66.
- 911 Boyd, S. R. (2001) Nitrogen in future biosphere studies. Chemical Geology, 176, 1-30.

- Boyd, S. R., Hall, A., and Pillinger, C. T. (1993) The measurement of δ¹⁵N in crustal rocks by static
 vacuum mass spectrometry: Application to the origin of the ammonium in the Cornubian batholith,
 southwest England. Geochimica et Cosmochimica Acta, 57, 1339-1347.
- Bräuer, K., and Hahne, K. (2005) Methodical aspects of the ¹⁵N-analysis of Precambrian and Palaeozoic
 sediments rich in organic matter. Chemical Geology, 218, 361-368.
- Bul'bak, T. A., and Shvedenkov, G. Y. (2005) Experimental study on incorporation of C-H-O-N fluid
 components in Mg-cordierite. European Journal of Mineralogy, 17, 829-838.
- Busigny, V., Ader, M., and Cartigny, P. (2005a) Quantification and isotopic analysis of nitrogen in rocks
 at the ppm level using tube combustion technique: A prelude to the study of altered oceanic crust.
 Chemical Geology, 223, 249–258.
- Busigny, V., and Bebout, G. E. (2013) Nitrogen in the silicate Earth: Speciation and isotopic behavior
 during mineral-fluid interactions. Elements, 9, 353-358.
- Busigny, V., Cartigny, P., and Philippot, P. (2011) Nitrogen isotopes in ophiolitic metagabbros: A
 reevaluation of modern nitrogen fluxes in subduction zones and implication for the early Earth
 atmosphere. Geochimica et Cosmochimica Acta, 75, 7502-7521.
- Busigny, V., Cartigny, P., Philippot, P., Ader, M., and Javoy, M. (2003) Massive recycling of nitrogen
 and other fluid-mobile elements (K, Rb, Cs, H) in a cold slab environment: evidence from HP to UHP
 oceanic metasediments of the Schistes Lustres nappe (western Alps, Europe). Earth and Planetary
 Science Letters, 215, 27-42.
- Busigny, V., Cartigny, P., Philippot, P., and Javoy, M. (2004) Quantitative analysis of ammonium in
 biotite using infrared spectroscopy. American Mineralogist, 89, 1625-1630.
- Busigny, V., Laverne, C., and Bonifacie, M. (2005b) Nitrogen content and isotopic composition of
 oceanic crust at a superfast spreading ridge: A profile in altered basalts from ODP Site 1256, Leg 206.
 Geochemistry Geophysics Geosystems, 6, doi:10.1029/2005GC001020.
- 936 Cartigny, P. (2005) Stable isotopes and the origin of diamond. Elements, 1, 79-84.
- 937 Cartigny, P., Busigny, V., and Rudnick, R. (2013) Re-investigating the nitrogen budget in the upper
 938 continental crust. Goldschmidt Conference abstracts, p. 835.
- Cartigny, P., De Corte, K., Shatsky, V. S., Ader, M., De Paepe, P., Sobolev, N. V., and Javoy, M. (2001)
 The origin and formation of metamorphic microdiamonds from the Kokchetav massif, Kazakhstan: a
 nitrogen and carbon isotopic study. Chemical Geology, 176, 265-281.
- 942 Cartigny, P., and Marty, B. (2013) Nitrogen isotopes and mantle geodynamics: The emergence of life and
 943 the atmosphere-crust-mantle connection. Elements, 9, 359-366.
- 944 Clarke, D. B. (1995) Cordierite in felsic igneous rocks: A synthesis. Mineralogical Magazine, 59, 311 945 325.
- 946 Cockell, C. S., van Calsteren, P., Mosselmans, J. F. W., Franchi, I. A., Gilmour, I., Kelly, L., Olsson947 Francis, K., Johnson, D., and the JC24 Shipboard scientific party (2010) Microbial endolithic
 948 colonization and the geochemical environment in young seafloor basalts. Chemical Geology, 279, 17949 30.
- Collins, N. C., Bebout, G. E., Angiboust, S., Agard, P., Scambelluri, M., Crispini, L., John, T. (in press)
 Subduction zone metamorphic pathway for deep carbon cycling: II. Evidence from HP/UHP
 metabasaltic rocks and ophicarbonates. Chemical Geology.
- Cook-Kollars, J., Bebout, G. E., Collins, N. C., Angiboust, S., and Agard, P. (2014) Subduction zone
 metamorphic pathway for deep carbon cycling: I. Evidence from HP/UHP metasedimentary rocks,

- 955 Italian Alps. Chemical Geology, 386, 31-48.
- Damon, P. E., and Kulp, J. L. (1958) Excess helium and argon in beryl and other minerals. American
 Mineralogist, 43, 433-459.
- Darimont, A., Burke, E., and Touret, J. (1988) Nitrogen-rich metamorphic fluids in Devonian
 metasediments from Bastogne, Belgium. Bulletin Mineralogie, 111, 321-330.
- Dobrzhinetskaya, L. F., Wirth, R., Yang, J., Hutcheon, I. D., Weber, P. K., and Green, H. W. (2009) High
 pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proceedings of the
 National Academy of Sciences, 106, 19233–19238.
- Duit, W., Jansen, J. B. H., van Breeman, A., and Bos, A. (1986) Ammonium micas in metamorphic rocks
 as exemplified by Dome de L'Agout (France). American Journal of Science, 286, 702-732.
- Belkins, L. J., Fischer, T. P., Hilton, D. R., Sharp, Z. D., McKnight, S., and Walker, J. (2006) Tracing
 nitrogen in volcanic and geothermal volatiles from the Nicaraguan volcanic front. Geochimica et
 Cosmochimica Acta, 70, 5215-5235.
- Erd, R. C., White, D. E., Fahey, J. J., and Lee, D. E. (1964) Buddingtonite, an ammonium feldspar with
 zeolitic water. American Mineralogist, 49, 831-850.
- Eugster, H. P., and Munoz, J. (1966) Ammonium micas: possible sources of atmospheric ammonia and nitrogen. Science, 151, 683-686.
- Facq, S., Daniel, I., Montagnac, G., Cardon, H., and Sverjensky, D. A. (2014) *In situ* Raman study and
 thermodynamic model of aqueous carbonate speciation in equilibrium with aragonite under
 subduction zone conditions. Geochimica et Cosmochimica Acta, 132, 375-390.
- Fischer, T. (2008) Fluxes of volatiles (H₂O, CO₂, N₂, Cl, F) from arc volcanoes. Geochemical Journal, 42, 21-38.
- Galloway, J. N. (2003) 8.12. The global nitrogen cycle. Treatise on Geochemistry, Elsevier, 557-583.
- Geiger, C. A., Rahmoun, N.-S., and Heide, K. (in preparation) Cordierite V: A high-temperature
 microporous silicate with occluded molecular species.
- Goldblatt, C., Claire, M. W., Lenton, T. M., Matthews, A. J., Watson, A. J., and Zahnle, K. J. (2009)
 Nitrogen enhanced greenhouse warming on early Earth. Nature Geoscience, 2, 891-896.
- Grove, M., and Bebout, G. E. (1995) Cretaceous tectonic evolution of coastal southern California:
 insights from the Catalina Schist. Tectonics, 14, 1290-1308.
- Haendel, D., Mühle, K., Nitzsche, H., Stiehl, G., and Wand, U. (1986) Isotopic variations of the fixed nitrogen in metamorphic rocks. Geochimica et Cosmochimica Acta, 50, 749-758.
- Halama, R., Bebout, G. E., John, T., and Marschall, H. (in review) Evidence for subduction-zone mobility
 of nitrogen in lithological traverses of HP/UHP-metamorphosed sedimentary, basaltic, and ultramafic
 rocks. Earth and Planetary Science Letters.
- Halama, R., Bebout, G. E., John, T., and Scambelluri, M. (2012) Nitrogen recycling in subducted mantle
 rocks and implications for the global nitrogen cycle. International Journal of Earth Sciences,
 doi:10.1007/s00531-012-0782-3.
- Halama, R., Bebout, G. E., John, T., and Schenk, V. (2010) Nitrogen recycling in subducted oceanic
 lithosphere: the record in high- and ultrahigh-pressure metabasaltic rocks. Geochimica et
 Cosmochimica Acta, 74, 1636-1652.
- Hall, A. (1999) Ammonium in granites and its petrogenetic significance. Earth-Science Reviews, 45, 145 165.

- Hall, A., Pereira, M. D., and Bea, F. (1996) The abundance of ammonium in the granites of central Spain,
 and the behaviour of the ammonium ion during anatexis and fractional crystallization. Mineralogy
 and Petrology, 56, 105-123.
- Hashizume, K., and Marty, B. (2005) Nitrogen isotopic analyses at the sub-picomole level using an ultralow blank laser extraction technique, in: de Groot, P. (Ed.), Handbook of stable isotope analytical
 techniques. Elsevier, Amsterdam.
- Hanschmann, G. (1981) Berechnung von isotopieeffekten auf quantenchmischer grundlage am beispiel
 stickstoff fhaltiger moleküle. ZFI-Mitteilungen, 41, 19-39.
- Heinrich, E. W. (1950) Cordierite in pegmatite near Micanite, Colorado. Americal Mineralogist, 35, 173 184.
- Hervig, R. L., Fudge, C., and Navrotsky, A. (2014) Analyzing nitrogen in cordierites and other phases by
 SIMS. Goldschmidt Conference abstract 982.
- 1009 Higashi, S. (1982) Tobelite, a new ammonium dioctahedral mica. Mineralogical Journal, 11, 138-146.
- Hilton, D. R., Fischer, T. P., and Marty, B. (2002) Noble gases and volatile recycling at subduction zones.
 Reviews in Mineralogy and Geochemistry, 47, 319-370.
- Holloway, J. M., and Dahlgren, R. A. (2002) Nitrogen in rock: Occurrences and biogeochemical
 implications. Global Biogeochemical Cycles, 16, doi:10.1029/2002GB001862.
- Honma, H., and Itihara, Y. (1981) Distribution of ammonium in minerals of metamorphic and granitic
 rocks. Geochimica et Cosmochimica Acta, 45, 983-988.
- Javoy, M. (1997) The major volatile elements of the Earth: their origin, behavior, and fate. Geophysical
 Research Letters, 24, 177-180.
- Jenden, P. D., Kaplan, I. R., Poreda, R. J., and Craig, H. (1988) Origin of nitrogen-rich natural gases in
 the California Great Valley: Evidence from helium, carbon, and nitrogen isotope ratios. Geochimica
 et Cosmochimica Acta, 52, 851-861.
- Jia, Y. F. (2006) Nitrogen isotope fractionations during progressive metamorphism: A case study from the
 Paleozoic Cooma metasedimentary complex, southeastern Australia. Geochimica et Cosmochimica
 Acta, 70, 5201-5214.
- Jia, Y., Kerrich, R., and Goldfarb, R. (2003) Metamorphic origin of ore-forming fluids for orogenic gold bearing quartz vein systems in the North American Cordillera: Constraints from a reconnaissance
 study of δ¹⁵N, δD, and δ¹⁸O. Economic Geology, 98, 109-123.
- John, T., Gussone, N., Podladchikov, Y. Y., Bebout, G. E., Dohmen, R., Halama, R., Klemd, R., Magna,
 T., and Seitz, M. (2012) Pulsed long-distance fluid flow through subducting slabs feeds volcanic arcs.
 Nature Geoscience, doi: 10.1038/NGEO1482.
- Johnson, B., and Goldblatt, C. (2015) The nitrogen budget of Earth, Earth Science Reviews, doi:
 10.1016/j.earscirev.2015.05.006
- Junge, F., Seltmann, R., and Stiehl, G. (1989) Nitrogen isotope characteristics of breccias, granitoids, and
 greisens from eastern Erzgebirge tin ore deposits (Sadisdorf: Altenberg), GDR. Proc. 5th Working
 Mtg., Isotopes in Nature, Leipzig, September, 1989, pp. 321-332.
- Kalt, A., Altherr, R., and Ludwig, T. (1998) Contact metamorphism in pelitic rocks on the island of Kos
 (Greece, Eastern Aegean Sea): a Test for the Na-in-cordierite thermometer. Journal of Petrology, 39,
 663-688.
- Kerrich, R., Jia, Y., Manikyamba, C., and Naqvi, S. M. (2006) Secular variations of N-isotopes in
 terrestrial reservoirs and ore deposits. <u>in</u> S. E. Kesler and H. Ohmoto (Editors), Evolution of Early

Earth's Atmosphere, Hydrosphere, and Biosphere-Constraints from Ore Deposits. Geological

1041	Society of America Memoir, 198, 81–104.
1042 1043	Kolesov, B. A., and Geiger, C. A. (2000) Cordierite II: The role of CO ₂ and H ₂ O. American Mineralogist, 85, 1265-1274.
1044 1045	Kreulen, R., and Schuiling, R. D. (1982) N ₂ -CH ₄ -CO ₂ fluids during formation of the Dome de l'Agout, France. Geochimica et Cosmochimica Acta, 46, 193-203.
1046 1047 1048	Kreulen, R., van Breeman, A., and Duit, W. (1982) Nitrogen and carbon isotopes in metamorphic fluids from the Dome de L'Agout, France. Proceedings of the 5th International Conference for Geochronology, Cosmochronology, and Isotope Geology, p. 191.
1049 1050 1051	Krohn, M. D., Kendall, C., Evans, J. R., and Fries, T. L. (1993) Relations of ammonium minerals at several hydrothermal systems in the western U.S. Journal of Volcanology and Geothermal Research, 4, 401-413.
1052 1053 1054	Krooss, B. M., Friberg, L., Gensterblum, Y., Hollenstein, J., Prinz, D., and Littke, R. (2005) Investigation of the pyrolytic liberation of molecular nitrogen form Paleeozoic sedimentary rocks. International Journal of Earth Sciences, 94, 1023-1038.
1055 1056	Lazzeri, K. E. (2012) Storage of Nitrogen in Silicate Minerals and Glasses. M.S. thesis, Lehigh University, 76 pp.
1057 1058 1059	Lepezin, G. G., Bul'bak, T. A., Sokol, E. V., and Shvedenkov, G. Yu. (1999) Fluid components in cordierites and their significance for metamorphic petrology. Russian Geology and Geophysics, 40, 99-116.
1060 1061 1062	Li, L., Bebout, G. E., and Idleman, B. D. (2007) Nitrogen concentration and δ ¹⁵ N of altered oceanic crust obtained on ODP Legs 129 and 185: Insights into alteration-related nitrogen enrichment and the nitrogen subduction budget. Geochimica et Cosmochimica Acta, 71, 2344-2360.
1063 1064 1065	Li, L., Cartigny, P., and Ader, M. (2009) Kinetic nitrogen isotope fractionation associated with thermal decomposition of NH ₃ : Experimental results and potential applications to trace the origin of N ₂ in natural gas and hydrothermal systems. Geochimica et Cosmochimica Acta, 73, 6282-6297.
1066 1067 1068	Li, L., Zheng, YF., Cartigny, P., and Li, J. (2014) Anomalous nitrogen isotopes in ultrahigh-pressure metamorphic rocks from the Sulu orogenic belt: Effect of abiotic nitrogen reduction during fluid-rock interaction. Earth and Planetary Science Letters, 403, 67-78.
1069 1070	Li, Y., and Keppler, H. (2014) Nitrogen speciation in mantle and crustal fluids. Geochimica et Cosmochimica Acta, 129, 13-32.
1071 1072	Libourel, G., Marty, B., and Humbert, F. (2003) Nitrogen solubility in basaltic melt. Part I. Effect of oxygen fugacity. Geochimica et Cosmochimica Acta, 67, 4123-4135.
1073 1074	London, D., and Evensen, J. M. (2002) Beryllium in silicic magmas and the origin of beryl-bearing pegmatites. Reviews in Mineralogy and Geochemistry, 50, 445-486.
1075 1076	Mariotti, A. (1984) Natural ¹⁵ N abundance measurements and atmospheric nitrogen standard calibration. Nature, 311, 251-252.
1077 1078 1079	Marschall, H. R., Korsakov, A. V., Luvizotto, G. L., Nasdala, L., and Ludwig, T. (2009) On the occurrence and boron isotopic composition of tourmaline in (ultra)high-pressure metamorphic rocks. Journal of the Geological Society, London, 177, 811-823.
1080 1081	Mashkovtsev, R. I., and Solntsev, V. P. (2002) Channel constituents in synthetic beryl: ammonium. Physics and Chemistry of Minerals, 29, 65-71.
1082	Mikhail, S., and Sverjensky, D. A. (2014) Nitrogen speciation in upper mantle fluids and the origin of

- 1083 Earth's nitrogen-rich atmosphere. Nature Geoscience, 7, doi:10.1038/NGEO2271.
- Mingram, B., and Bräuer, K. (2001) Ammonium concentration and nitrogen isotope composition in metasedimentary rocks from different tectonometamorphic units of the European Variscan Belt. Geochimica et Cosmochimica Acta, 65, 273-287.
- Mingram, B., Hoth, P., Luders, V., and Harlov, D. (2005) The significance of fixed ammonium in
 Palaeozoic sediments for the generation of nitrogen-rich natural gases in the North German Basin.
 International Journal of Earth Sciences, 94, 1010-1022.
- Mitchell, E. C., Fischer, T. P., Hilton, D. R., Hauri, E. H., Shaw, A. M., de Moor, J. M., Sharp, Z. D., and
 Kazahaya, K. (2010) Nitrogen sources and recycling at subduction zones: insights from the Izu–
 Bonin–Mariana arc. Geochemistry, Geophysics, Geosystems, 11(2), doi.org/10.1029/2009GC002783.
- Moine, B., Guillot, C., and Gibert, F. (1994) Controls on the composition of nitrogen-rich fluids
 originating from reaction with graphite and ammonium-bearing biotite. Geochimica et Cosmochimica
 Acta, 58, 5503-5523.
- Müller, E. P., May, F., and Stiehl, G. (1976) Zur Isotopengeochemie des Stickstoffs und zur Genese stickstoffreicher Erdgase. Zeitschrift für Angewandte Geologie, 22, 319–324.
- Mysen, B., and Fogel, M. L. (2010). Nitrogen and hydrogen isotope compositions and solubility in
 silicate melts in equilibrium with reduced (N+H)-bearing fluids at high pressure and temperature:
 Effects of melt structure. American Mineralogist, 95, 987-999.
- Ortega, L., Vendel, E., and Beny, C. (1991) C-O-H-N fluid inclusions associated with gold-stibnite mineralization in low-grade metamorphic rocks, Mari Rosa mine, Caceras, Spain. Mineralogical Magazine, 55, 235-247.
- Palya, A. P., Buick, I. S., and Bebout, G. E. (2011) Storage and mobility of nitrogen in the continental crust: Evidence from partially melted metasedimentary rocks, Mt. Stafford, Australia. Chemical Geology, 281, 211-226.
- Pan, D., Spanu, L., Harrison, B., Sverjensky, D. A., and Galli, G. (2013) Dielectric properties of water
 under extreme conditions and transport of carbonates in the deep Earth. Proceedings of the National
 Academy of Sciences, 110, 6646-6650.
- Philippot, P., Busigny, V., Scambelluri, M., and Cartigny, P. (2007) Oxygen and nitrogen isotopes as
 tracers of fluid activities in serpentinites and metasediments during subduction. Mineralogy and
 Petrology, 91, 11-24.
- Pinti, D. L., Hashizume, K., Orberger, B., Gallien, J.-P., Cloquet, C., and Massault, M. (2007) Biogenic
 nitrogen and carbon in Fe-Mn-oxyhydroxides from an Archean chert, Marble Bar, Western Australia.
 Geochemistry, Geophysics, and Geosystems, 8, doi:10.1029/2006GC001394.
- Pitcairn, I. K., Teagle, D. A. H., Kerrich, R., Craw, D., and Brewer, T. S. (2005) The behavior of nitrogen and nitrogen isotopes during metamorphism and mineralization: Evidence from the Otago and Alpine Schists, New Zealand. Earth and Planetary Science Letters, 233, 229-246.
- Plessen, B., Harlov, D. E., Henry, D., and Guidotti, C. V. (2010) Ammonium loss and nitrogen isotopic
 fractionation in biotite as a function of metamorphic grade in metapelites from western Maine, USA.
 Geochimica et Cosmochimica Acta, 74, 4759-4771.
- Pöter, B., Gottschalk, M., and Heinrich, W. (2004) Experimental determination of the ammonium
 partitioning among muscovite, K-feldspar, and aqueous chloride solutions. Lithos, 74, 67-90.
- Richet, P., Bottinga, Y., and Javoy, M. (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulphur
 and chlorine stable isotope fractionation among gaseous molecules. Annual Review of Earth and
 Planetary Sciences, 5, 65-110.

1127 Roskosz, M., Bouhifd, M., Jephcoat, A., Marty, B., and Mysen, B. (2013) Nitrogen solubility in molten 1128 metal and silicate at high pressure and temperature. Geochimica et Cosmochimica Acta, 121, 15–28. 1129 Roskosz, M., Mysen, B., and Cody, G. D. (2006) Dual speciation of nitrogen in silicate melts at high 1130 pressure and temperature: An experimental study. Geochimica et Cosmochimica Acta, 70, 2902-1131 2918. 1132 Rudnick, R. L., and Gao, A. (2014) 4.1 Composition of the continental crust. In: Holland, H.D., Turekian, 1133 K.K. (Eds.), Treatise on Geochemistry, 4. Elsevier, Amsterdam, pp. 1–51. 1134 Ruiz Cruz, M. D., and Sanz de Galdeano, C. (2008) High-temperature ammonium white mica from the 1135 Betic Cordillera (Spain). American Mineralogist, 93, 977-987. 1136 Sadofsky, S. J., and Bebout, G. E. (2000) Ammonium partitioning and nitrogen-isotope fractionation 1137 among coexisting micas during high-temperature fluid-rock interactions: examples from the New 1138 England Appalachians. Geochimica et Cosmochimica Acta, 64, 2835-2849. 1139 Sadofsky, S. J., and Bebout, G. E. (2003) Record of forearc devolatilization in low-T, high-P/T 1140 metasedimentary suites: significance for models of convergent margin chemical cycling, 1141 Geochemistry, Geophysics, and Geosystems, doi:10.1029/2002GC000412. 1142 Sadofsky, S. J., and Bebout, G. E. (2004) Nitrogen geochemistry of subducting sediments: new results 1143 from the Izu-Bonin-Mariana margin and insights regarding global N subduction. Geochemistry, 1144 Geophysics, and Geosystems, doi:10.1029/2003GC000543. 1145 Sano, Y., Takahata, N., Nishio, Y., Fischer, T. P., and Williams, S. N. (2001) Volcanic flux of nitrogen 1146 from the Earth. Chemical Geology, 171, 263-271. 1147 Scalan, R. S. (1958) The isotopic composition, concentration, and chemical state of the nitrogen in 1148 igneous rocks. Ph.D. dissertation, University of Arkansas. 1149 Schmidt, M. W., and Poli, S. (2014) Devolatilization during subduction, in Rudnick, R. L., ed., 2nd Ed. 1150 Volume 3, Treatise on Geochemistry: The Crust, Elsevier, pp. 669-701. 1151 Schreyer, W. (1965) Synthetische und natürliche Cordierit II. Die chemischen Zusammensetzung 1152 natürlicher Cordierite und ihre Abhängigkeit von den PTX-Bedingungen bei der Gesteinsbildung. 1153 Neues Jahrbuch für Mineralogie - Abhandlung, 103, 35-79. 1154 Schroeder, P. A., and McLain, A. A. (1998) Illite-smectites and the influence of burial diagenesis on the 1155 geochemical cycling of nitrogen. Clay Minerals, 33, 539-546. 1156 Staudigel, H., Furnes, H., McLoughlin, N., Banerjee, N. R., Connell, L. B., and Templeton, A. (2008) 3.5 1157 billions years of glass bioalteration: Volcanic rocks as a basis for microbial life? Earth-Science 1158 Reviews, 89, 156-176. 1159 Svensen, H., Bebout, G. E., Kronz, A., Li, L., Planke, S., Chevallier, L., and Jamtveit, B. (2008) Nitrogen 1160 geochemistry as a tracer of fluid flow in a hydrothermal vent complex in the Karoo Basin, South 1161 Africa. Geochimica et Cosmochimica Acta, 72, 4929-4947. 1162 Sverjensky, D. A., Stagno, V., and Huang, F. (2014) Important role for organic carbon in subduction-zone 1163 fluids in the deep carbon cycle. Nature Geoscience, 7, 909-913. Thomazo, C., Ader, M., and Philippot, P. (2011) Extreme ¹⁵N-enrichments in 2.72-Gyr-old sediments: 1164 1165 Evidence for a turning point in the nitrogen cycle. Geobiology, 9, 107-120. 1166 Thomazo, C., and Papineau, D. (2013) Biogeochemical cycling of nitrogen on the early Earth. Elements, 1167 9.345-352. 1168 Tolstikihn, I. N., and Marty, B. (1998) The evolution of terrestrial volatiles: a view from helium, neon, 1169 argon and nitrogen isotope modeling. Chemical Geology, 147, 27-52.

- 1170 Touret, J. L. R. (2001) Fluids in metamorphic rocks. Lithos, 55, 1-25.
- van Hinsberg, V. J., Henry, D. J., and Dutrow, B. L. (2011) Tourmaline as a petrologic forensic mineral:
 A unique recorder of its geologic past. Elements, 7, 327-332.
- Vernon, R. H., Clarke, G. L., and Collins, W. J. (1990) Local, mid-crustal granulite facies metamorphism and melting: an example in the Mt. Stafford area, central Australia. <u>in</u>: Ashworth, J.R., Brown, M. (Eds.), High Temperature Metamorphism and Crustal Anatexis. Unwin Hyman, London, pp. 272–319.
- 1177 Visser, D. (1992) On ammonium in upper-amphibolite facies cordierite-orthoamphibole-bearing rocks
 1178 from Rod, Bamble Sector, south Norway. Norsk Geologisk Tiddskrift, 72, 385-388.
- 1179 Vry, K. J., Brown, P. E., and Valley, J. W. (1990) Cordierite volatile content and the role of CO₂ in high
 grade metamorphism. American Mineralogist, 75, 71-88.
- Watenphul, A., Wunder, B., Wirth, R., and Heinrich, W. (2010) Ammonium-bearing clinopyroxene: A
 potential nitrogen reservoir in the Earth's mantle. Chemical Geology, 270, 240-248.
- Watson, E. B., and Cherniak, D. J. (2014) Diffusion and solubility of nitrogen in olivine. Goldschmidt
 Conference abstract 2664.
- Wedepohl, H. (1995) The composition of the continental crust. Geochimica et Cosmochimica Acta, 59,
 1217–1239.
- White, R. W., Powell, R., and Clarke, G. I. (2003) Prograde metamorphic assemblage evolution during
 partial melting of metasedimentary rocks at low pressures: migmatites from Mt. Stafford, Central
 Australia. Journal of Petrology, 44, 1937-1960.
- Williams, L. B., Ferrell Jr., R. E., Chinn, E. W., and Sassen, R. (1989) Fixed-ammonium in clays
 associated with crude oils. Applied Geochemistry, 4, 605-616.
- Williams, L. B., Ferrell Jr., R. E., Hutcheon, I., Bakel, A. J., Walsh, M. M., and Krouse, H. R. (1995)
 Nitrogen isotope geochemistry of organic matter and minerals during diagenesis and hydrocarbon
 migration. Geochimica et Cosmochimica Acta, 59, 765-779.
- 1195 Wlotzka, F., 1972. Handbook of Geochemistry. volume II. Springer-Verlag.
- Wunder, B., Berryman, E., Plessen, B., Rhede, D., Koch-Müller, M., and Heinrich, W. (2015) Synthetic
 and natural ammonium-bearing tourmaline. American Mineralogist, 100, 250-256.
- Yokochi, R., Marty, B., Chazot, G., and Burnard, P. (2009) Nitrogen in peridotite xenoliths: Lithophile
 behavior and magmatic isotope fractionation. Geochimica et Cosmochimica Acta, 73, 4843-4861.
- Zhang, Y., and Zindler, A. (1993) Distribution and evolution of carbon and nitrogen in Earth. Earth and
 Planetary Science Letters, 117, 331–345.
- 1202

1203 1204	FIGURE CAPTIONS
1205	Figure 1. Flow-chart diagram illustrating the various N reservoirs on Earth and their
1206	interactions. Note especially those processes for the solid Earth involving the deposition,
1207	diagenesis, metamorphism, and melting of sediments, because they can carry surface N to
1208	deeper geologic levels (from Bebout et al., 2013b; modified after Boyd, 2001; also see
1209	Holloway and Dahlgren, 2002). W = weathering and E = erosion. The inset photograph
1210	shows a beryl–muscovite intergrowth that could contain organic-derived N as N_2 and NH_4^+
1211	in beryl and muscovite, respectively (Lazzeri, 2012; Busigny and Bebout, 2013; see Fig. 10).
1212	The photograph of the beryl+muscovite sample is courtesy of Desert Winds Gems and
1213	Minerals (WWW.DESERTWINDSGEMSANDMINERALS.COM).
1214	Figure 2. Nitrogen isotope fractionations and consequences for the evolution in the N isotope
1215	compositions of devolatilizing rocks. (A) Fractionation factors among N_2 , NH_3 , and NH_4^+ .
1216	$\mathrm{NH_4}^+$ is typically bound in silicates such as clays, micas, and feldspars through substitution of
1217	K^+ (from Busigny and Bebout, 2013). (B) Rayleigh (curves) and batch (straight lines)
1218	distillation behavior for N ₂ -NH ₄ ⁺ exchange at 300 and 600 $^{\circ}$ C, labeled by N ₂ -NH ₄ ⁺ 10 ³ ln α
1219	(modified after Svensen et al., 2008).
1220	Figure 3. Schematic ocean-continent subduction zone (modified after Cook-Kollars et al., 2014),
1221	showing key subducted lithologies. Shown are global-basis N fluxes in g/year for the
1222	subduction of sediment, oceanic crust, and hydrated mantle, and the estimate of Hilton et al.
1223	(2002) for the return of N (in g/year) to the atmosphere via arc volcanic degassing. Fischer
1224	(2008) estimated a much larger arc volcanic output of 9 x 10^{11} g/yr. Subduction zone cycling
1225	of N encompasses a number of pathways discussed in this paper, i.e., low-
1226	temperature/surface incorporation into organic matter and geologic glasses, diagenetic
1227	alteration, low- to high-grade metamorphic devolatilization, and partial melting. The upper
1228	mantle is believed do have δ^{15} N values around -5‰. Subduction delivers sediment, altered
1229	oceanic crust, and hydrated ultramafic rocks, all with higher, often positive $\delta^{15}N$ values
1230	influenced by surface/near-surface organic/sedimentary processes (see Busigny et al.,
1231	2005a,b; Li et al., 2007; Halama et al., 2012; Bebout et al., 2013b, in review).

1232 Figure 4. Whole-rock N concentrations and isotope compositions of the Schistes Lustres-1233 Cignana and the Catalina Schist metasedimentary suites that demonstrate N retention to great depths for these rocks for their respective prograde P-T paths. (A) Whole-rock $\delta^{15}N$ 1234 values of subduction-zone-metamorphosed metapelitic-metapsammitic rocks of the W. Alps, 1235 1236 namely the Schistes Lustres/Lago di Cignana suite exposed in NW Italy (figure from Bebout et al., 2013a). The dataset from Busigny et al. (2003) includes results for rocks believed to be 1237 1238 the protoliths of the Schistes Lustres-Cignana suite ("Lavagna" and "Lago Nero"). The data 1239 for the lower-grade units, in general, are similar to those of the same units determined in the earlier study; however, the δ^{15} N values for the Cignana samples presented by Bebout et al. 1240 (2013a) fall at the high end of the previously published range, perhaps reflecting some N 1241 1242 isotopic shift resulting from the minor devolatilization that these samples experienced. 1243 Numbers in brackets (blue type) indicate atomic-basis C/N ratios. (B) Whole-rock N and 1244 K₂O concentrations (Busigny et al. (2003; Bebout et al., 2013a) showing a positive 1245 correlation between N and K that is largely independent of metamorphic grade. The square 1246 boxes are for three samples from Lago di Cignana and the diamond-shaped box indicates one 1247 analysis of a Finestre sample from Bebout et al. (2013a). The thin gray lines parallel to the 1248 linear regression line for the Busigny data (R=0.971) indicate the limits of the envelope for 1249 the data from Busigny et al. (2003). (C) Whole-rock ratios of N, Cs, and B to K₂O as a 1250 function of metamorphic grade for metasedimentary rocks of the Catalina Schist (from Bebout et al., 1999b; LA = lawsonite-albite; LBS = lawsonite blueschist; EBS = epidote 1251 blueschist; EA = epidote amphibolite; AM = amphibolite). The mean value ($\pm 1\sigma$) of δ^{15} N at 1252 1253 each grade is also indicated. (**D**) Pressure-temperature diagram showing the estimated *P*-*T* paths of the tectonometamorphic units for which data are presented in C (figure is from 1254 1255 Grove and Bebout, 1995). 1256 Figure 5. Behavior of N and K₂O in metasomatized blueschist-facies metaconglomerate cobbles

1256Figure 5. Behavior of N and K_2O in metasomatized blueschist-factes metacongromerate coorders1257(data from Bebout, 1997). Inset photomicrograph shows the replacement of igneous1258hornblende by blue (sodic) amphibole and the nearly complete replacement of now-relict1259plagioclase by fine-grained phengite. Error bars for N ppm are ±5% error. Errors for the1260measurements of K_2O are smaller than the symbol sizes.

1261	Figure 6. Nitrogen and other trace element behavior across a vein envelope in the Tianshan
1262	investigated by Beinlich et al. (2010; N data are from Halama et al., in review). (A) Various
1263	trace element and $\delta^{15}N$ variation across the envelope (indicated as distance to the vein, the
1264	latter at 0 cm; see D); (B) and (C) Concentrations of N vs. those of K and Ba, respectively.
1265	There is a positive linear correlation in both cases; (D) Sketch illustrating the sampling
1266	profile and localities for the vein envelope showing a prograde blueschist-eclogite transition
1267	(JTS sequence; Beinlich et al., 2010).
1268	Figure 7. Nitrogen behavior for the Mt. Stafford migmatite suite, Australia (all figures from
1269	Palya et al., 2011). (A) N/Al ₂ O ₃ , Cs/Al ₂ O ₃ , Ba/Al ₂ O ₃ , and Rb/Al ₂ O ₃ as a function of
1270	increasing metamorphic grade (to the right side of the diagram; see the discussion in the
1271	text). (B) Nitrogen concentrations and $\delta^{15}N$ values of whole-rock samples. The curved lines
1272	represent calculated Rayleigh loss for various fluid/melt-NH ₄ ⁺ 10^{3} ln α values (from
1273	Hanschmann, 1981) corresponding to N_2 or NH_3 speciation in fluids/melts and over a range
1274	of temperatures (for both fluid species, labeled on the right side of the plot, temperatures for
1275	the calculations were 327°, 527°, and 727°C, from top to bottom for each species). (C)
1276	Outcrop photograph (camera lens cap for scale) for a typical Zone 4 Mt. Stafford exposure,
1277	where the dark layers are metapsammitic layers within lighter metapelitic layers.
1278	Figure 8. Nitrogen concentrations and isotopic compositions of various beryl and cordierite
1279	samples. (A) Data for cordierite from various petrologic environments (Table 2 and
1280	Appendices A and B; Lazzeri, 2012) and from the Mt. Stafford migmatites (Palya et al.
1281	(2011). The photomicrograph (horizontal dimension ~ 5 mm) is of a cordierite crystal in a
1282	Zone 4 Mt. Stafford sample containing sillimanite inclusions and within a K-feldspar-rich
1283	matrix containing no muscovite or biotite. Note that the granulitic cordierites tend to contain
1284	larger amounts of N and possibly have lower δ^{15} N values. (B) Photomicrograph showing
1285	inclusion-free gem-like cordierite and matrix muscovite in a medium-grade metapelitic rock
1286	from Connecticut, USA (horizontal length ~1 cm). The cordierite is N-free but the
1287	muscovite-rich matrix contains ~350 ppm N.
1288	Figure 9. Nitrogen isotopic compositions and concentrations for coexisting cordierite and biotite
1289	pairs from different petrologic environments (Table 2 and Appendices A and B; Lazzeri,

1290 2012). The inset shows the crystal structure of microporous cordierite, green = magnesium

1291	atoms, blue = oxygen atoms, yellow = silicon atoms, and brown or gray = aluminum atoms.
1292	Note the infinite channelways, formed by the Si/AlO ₄ tetrahedra in rings, which run parallel
1293	to the <i>c</i> -axis. N_2 and other molecules occur in these channelways.
1294	Figure 10. Nitrogen isotopic compositions and concentrations of coexisting beryl and muscovite
1295	from pegmatites and metamorphic schist (Table 2 and Appendix A; Lazzeri, 2012). The
1296	inset photograph of beryl in muscovite is from minddat.org (horizontal dimension ~8 cm).
1297	Figure 11. Carbon and N concentrations and δ^{13} C values for the cordierites and beryl analyzed
1298	in this study. (A) Nitrogen vs. C concentrations. Cordierites from the granulite facies tend to
1299	show the highest N concentrations and those from pegmatites the lowest, as is also the case
1300	for beryl. (B) Carbon concentration vs. δ^{13} C showing the relatively narrow range of isotopic
1301	compositions and the wide range in C concentrations.

Figure 2

Figure 4

Figure 5

Table 1. ESTIMATES OF THE MODERN-EARTH NITROGEN BUDGET, SHOWING THE VARIO	US
RESERVOIRS, THEIR SIZES, AND THEIR PERCENT OF NITROGEN	

	reservoir size	% in reservoir		reservoir size	% in reservoir	
	10 ²¹ g			10 ²¹ g		
Goldblatt et al. (2009)			Palya et al. (2011) ¹			
Atmosphere	4	27.0	Atmosphere	3.9	29.3	
Continental Crust	2.1	14.2	Continental Crust	1.1	8.3	
Oceanic Crust	0.32	2.2	Oceanic Crust	0.32	2.4	
Mantle	8.4	56.7	Upper Mantle	0.17	1.3	
TOTALS	14.82	100	Lower Mantle	7.8	58.7	
Galloway (2003; surfac	ce/near-surface	e only)	Deep ocean	0.0006	0.00451	
Atmosphere	3.95	79.5	Surface ocean	0.00006	0.00045	
Sedimentary rocks	1	20.1	Soils	0.0001	0.00075	
Ocean N ₂	0.02	0.4	Biomass	0.0000043	0.00003	
$Ocean NO_3^{-}$	0.00057	0.01147	Marine Biota	0.0000003	0.000002	
Soil organics	0.00019	0.00382	Terrestrial vegetation	0.000004	0.00003	
Land biota	0.00001	0.00020	TOTALS	13.29	100	
Marine biota 0.000005		0.00001	¹ Palya et al. (2011) and with estimates for oceanic crust			
TOTALS	4.97	100	from Li et al. (2007)			

		Beryl	Beryl	Muscovite	Muscovite		Beryl	Beryl
	Sample	$\delta^{15} N_{air}$	N (ppm)	$\delta^{15} N_{air}$	N (ppm)	$\Delta^{15}N_{mica-beryl}$	$\delta^{15}C_{\text{VPDB}}$	C (ppm)
	80192	7.9	17	9.4	80	1.5		31
	23215	5.9	11	8.1	273	2.2	-8.5	48
	40597	4.0	25	8.3	305	4.3		
	1	3.8	18	6.7	41	2.9		28
	80145	5.1	39	8.7	632	3.6		
		Cordierite	Cordierite	Biotite	Biotite		Cordierite	Cordierite
	Sample	$\delta^{15} N_{air}$	N (ppm)	$\delta^{15} N_{air}$	N (ppm)	$\Delta^{15}N_{mica-crd.}$	$\delta^{15}C_{\text{VPDB}}$	C (ppm)
<i>(</i>)	88593	12.0	5	8.6	134	-3.4		80
1elts	80537	10.5	6	11.0	103	0.5		31
al N	G-155a	5.1	17				-10.5	16
Parti	C006	9.0	29				-6.9	936
ite/F	TUB-1	4.3	33				-13.6	195
mat	26230	7.5	38	1.8	70	-5.7		
Pegi	C004	11.4	60				-8.8	600
	84264	7.4	67				-14.0	327
le hics	Wards	16.9	8				-6.5	345
grad orpl	25 Geco Mine	10.4	19					
lid-g tame	WYO-2	5.1	30				-10.8	590
Σ	118171	6.5	95				-8.4	694
	X-1	4.7	41				-4.0	277
	42/IA	0.9	55				-12.0	543
	CL-177-1	30.0	71				-36.4	1200
10	TA-5	7.0	101				-13.0	221
acies	129875	10.4	104					
ie Fa	13	4.8	162	7.8	116	3.0		
nulit	26539	9.9	232	0.5	65	-9.4	-9.4	1099
Grai	VS-1	5.9	273				-6.7	1039
0	7114	2.9	634				-22.3	991
	S. India 1	3.1	923				-16.3	408
	89 V	3.6	1342					
Uncategorized	NE86A-24b	8.6	4525				-16.5	445
	CTSiM	9.0	27				-6.7	976
	10398	5.5	56	5.2	48	-0.3		
	43090	8.3	89	2.7	86	-5.5	-8.3	820
	33294	7.5	154	4.4	25	-3.1	-9.3	614
	H06	2.0	446					
	106886	3.9	1457				-6.1	623

Table 2. Isotopic data for beryl and cordierite (and coexisting micas)