1	Revision 1
2	
3	Jianshuiite in oceanic manganese nodules at the Paleocene-
4	Eocene Boundary
5	
6	Jeffrey E. Post ^{1*,} , Ellen Thomas ² , and Peter J. Heaney ³
7	
8	
9	¹ Department of Mineral Sciences, Smithsonian Institution, PO Box 37012, Washington, DC
10	20013-7012, United States
11	² Department of Geology and Geophysics, Yale University, PO Box 208109, New Haven CT 06520
12	United States and Department of Earth and Environmental Sciences, Wesleyan University, 265
13	Church Street, Middletown CT 06459
14	³ Department of Geosciences, Penn State University, University Park, PA 16802, United States
15	
16	
17	
18	*To whom correspondence should be addressed: postj@si.edu
19	
20	Keywords: Jianshuiite; Birnessite; Paleocene-Eocene Thermal Maximum (PETM); X-ray
21	diffraction
22	

ABSTRACT

24	Synchrotron powder X-ray diffraction and scanning electron microscopy examinations of
25	manganese oxide concretions/nodules (~0.3 - 1.0 mm diameter) from ODP Site 1262 on Walvis
26	Ridge in the Southeastern Atlantic Ocean revealed that they consist primarily of the layered Mn
27	oxide phase jianshuiite [(Mg,Mn,Ca)Mn ⁴⁺ $_{3}O_{7}\cdot 3H_{2}O$]. The nodules are from an interval with
28	severe carbonate dissolution that represents the Paleocene/Eocene (P/E) thermal maximum (\sim
29	55.8 Ma). Most nodules from the middle of the carbonate dissolution interval contain internal
30	open space, and consist almost entirely of euhedral plate-like jianshuiite crystals, 2-4 um in
31	diameter and ~0.1-0.5 um thick. Backscattered electron images and energy dispersive X-ray
32	analyses revealed stacks of interleaved Al-rich and Al-poor jianshuiite crystals in some nodules.
33	The crystals in other nodules contain predominantly Mg (with trace K and Al) in addition to Mn
34	and O, making them near "end-member" jianshuiite. Rietveld refinements in space group R-3
35	confirmed the isostructural relationship between jianshuiite and chalcophanite, with Mg
36	occupying the interlayer position above and below the vacant sites in the Mn/O octahedral sheet,
37	and coordinated to 3 octahedral layer O atoms (1.94 Å) and 3 interlayer water O atoms (2.13 Å).
38	Final refined occupancy factors suggest that small quantities of Ni and possibly Mn^{2+} are located
39	on the Mg site. The transient appearance of the Mg-rich birnessite-like phase jianshuiite,
40	probably abiotically produced, must indicate an exceptional transient change in the chemistry of
41	the pore fluids within deep ocean sediments directly following the P/E boundary, possibly as a
42	result of decreasing oxygen levels and pH, followed by a return to pre-event conditions.

43

Page 2

45

INTRODUCTION

46	Site 1262 was drilled on Ocean Drilling Program Leg 208 on the northwestern flank of
47	Walvis Ridge in the Southeastern Atlantic Ocean, west of South Africa (Zachos et al. 2004).
48	Lower Cenozoic sediments at Site 1262 consist mainly of foraminifera-bearing, carbonate-rich
49	nannofossil ooze with minor clay and volcanic ash. The Paleocene/Eocene (P/E) boundary
50	occurs at an abrupt contact between nannofossil ooze and a red clay (Zachos et al. 2005;
51	McCarren et al., 2008) (Fig. 1). This clay layer corresponds to a period of severe carbonate
52	dissolution at the onset of the most extreme global warming event in the Cenozoic, the
53	Paleocene/Eocene Thermal Maximum (PETM), dated at ~55.8 Mya (e.g., McInerney and Wing
54	2012; Dunkley-Jones et al. 2013). The warming was triggered by a massive injection of
55	isotopically light carbon into the ocean - atmosphere system (e.g., Dickens et al. 1995; Thomas
56	and Shackleton 1996). The source of the carbon, its nature (CH ₄ or CO ₂ or a mixture), and the
57	mechanisms and duration of release are still debated (McInerney and Wing 2012; Dickens 2011;
58	Dunkley-Jones et al., 2013). The strong increase in atmospheric pCO_2 caused by the release of
59	thousands of gigatons of carbon compounds over less than 10,000 yr caused global warming by
60	5-8 °C (Dunkley-Iones et al., 2013) and severe ocean acidification, and these events in turn led to
61	an abrupt shallowing of the carbonate compensation depth (Zachos et al. 2005; Ridgwell and
62	Schmidt, 2010; Hoenisch et al., 2012; Winguth et al. 2012).
63	The >38 um size fraction of the sediment in the carbonate-free section at Site 1262
64	(paleodepth ~3500 m; Zachos et al. 2005; Foster et al. 2013) consists primarily of Mn oxide
65	"nodules", along with fish detritus (Fig. 2a). The nodules measure \sim 1-5 mm or smaller in
66	diameter. They comprise only a minor fraction of the bulk sediment, with only <1 wt. % of the

bulk sediment in the > 38 um size fraction. The concentration of Mn in the bulk clay layer is ~ 20

68 μ mol/g⁻¹ (Chun et al. 2010).

69 For this study, we investigated the mineralogy of the Mn nodules in the sedimentary

record at Site 1262 as well as similar nodules at other sites on Walvis Ridge (e.g., Site 1265,

71 Zachos et al. 2004). Our analyses of the nodules from the PETM clay interval at Site 1262

revealed the predominance of jianshuiite, a Mg-rich phyllomanganate, with unusually high

73 crystallinity. For the first time, we present a full structure refinement and characterization of this

rare Mn oxide mineral. Since the PETM represents an extreme climatic anomaly in the

75 Cenozoic, unusual minerals within the sediments associated with this event, and their geographic

and bathymetric occurrence, may provide important clues to explain the origin of the warmingepisode.

- 78
- 79

EXPERIMENTAL DETAILS

80 Sample selection

81 All samples were taken from cores collected during Ocean Drilling Program Leg 208 82 (March-May 2003) (Zachos et al. 2004). Cores were treated following standard procedure on 83 Ocean Drilling expeditions, i.e., they were split, described and photographed on-board ship. The 84 Mn-nodules were noted during core description onboard ship (Zachos et al. 2004). The core 85 halves were designated as archive half and working half, and placed in plastic D-tubes, with the sediment kept moist by inserting a sponge before closing and taping the D-tube. Cores were kept 86 in cold storage space on the ship, during transport and in the core repository. Some samples were 87 88 taken onboard ship, others during sampling at the Bremen (Germany) core repository from the 89 working half of the core several months after the cruise. Samples were freeze-dried and wet-

90 sieved following standard paleoceanographic procedure (e.g., McCarren et al. 2008). The nodules were hand-picked from the >38 um sieve fraction using a binocular microscope. The 91 92 individual samples were small (slices 1 cm thick, McCarren et al. 2008), and all nodules were 93 picked from the samples. Twelve nodules were examined from the >38 um sieve fraction recovered from Site 1262 94 95 $(27^{\circ}11.15^{\circ}S, 01^{\circ}34.62^{\circ}E; \text{ water depth } 4755\text{m})$, Hole B, Core 15H, Section 3, from the ~30 cm 96 interval above the P/E contact (Fig. 1), ranging from the bottom to the top of that interval. We 97 also studied similar looking nodules, in size and shape, from older and younger sediments in

- ores from Site 1262 and nearby Site 1265 ($28^{\circ}50.10^{\circ}S$, $02^{\circ}38.35^{\circ}E$, depth 3060 m), including:
- 99 1262A-4H (Miocene), 1265A-27H (lower Eocene), 1265A-18H (lower Oligocene), and 1262A-
- 100 17H (mid-Paleocene). We looked for nodules at the shallowest site drilled on Walvis Ridge, Site
- 101 1263, which also contains an interval of severe carbonate dissolution across the PETM (Zachos
- et al. 2005), but the carbonate-free sediments do not contain Mn-oxide nodules. Mn may be
- 103 present as Mn-carbonate (Chun et al. 2010).
- 104

105 Sample characterization

- 106 Scanning electron microscopy. We performed analytical scanning electron microscopy (SEM)
- 107 using an FEI Nova NanoSEM 600 with a Thermo Ultradry Silicon drift energy dispersive X-ray
- 108 detector in the Department of Mineral Sciences, Smithsonian Institution. The nodules were
- 109 mounted onto carbon tape on a carbon stub; back-scattered electron imaging and energy
- 110 dispersive spectroscopy (EDS) analyses were carried out on uncoated samples using the low
- 111 vacuum mode and 15 keV accelerating voltage.

112	X-ray diffraction and crystallographic analysis. We used both conventional and synchrotron
113	powder X-ray diffraction to characterize the minerals in the Mn-oxide nodules from the PETM-
114	clay interval at Site 1262. Initial sample identification was performed using a Rigaku D-MAX
115	Rapid microdiffractometer with Mo $K\alpha$ radiation and an imaging plate detector. For these
116	experiments, a ~1 mm nodule (from ~11 cm above the P/E contact) was mounted with super glue
117	onto a glass fiber and rotated 1° per second during powder diffraction data collection. The
118	synchrotron X-ray diffraction data from the same nodule were collected at beamline 13-BM-C (λ
119	= 0.8265(8) Å; CCD detector radius = 95.165 mm) at the Advanced Photon Source (APS),
120	Argonne National Laboratory (ANL), using an exposure time of 30 s. The small, and uniform,
121	jianshuiite crystallite sizes and their "random" arrangement within the nodule provided for good
122	quality diffraction data. Although none was obvious, any possible preferred orientation of the
123	powder was eliminated by full intensity integration of the diffraction rings, as obtained using the
124	program Fit2D (Hammersley et al. 1996) with a polarization factor of 0.99.
125	Rietveld refinements were performed using the general structure analysis system (GSAS)
126	of Larson and Von Dreele (2006) and EXPGUI interface by Toby (2001). The starting jianshuiite
127	structural parameters were taken from the isostructural chalcophanite structure reported by Post
128	and Appleman (1988). Difference-Fourier maps were calculated using the MnO octahedral layers
129	in order to locate the Mg atoms and water molecules in the interlayer region. The diffraction
130	pattern backgrounds were fit using a linear interpolation function. Peak profiles were modeled by
131	a pseudo-Voigt profile function as parameterized by Thompson et al. (1987) with asymmetry
132	corrections by Finger et al. (1994) and microstrain anisotropic broadening terms by Stephens
133	(1999).

134 During the initial cycles of refinement, only the background, scale, peak profile, and unitcell parameters were allowed to vary. After convergence, all atom positions, displacement 135 136 factors, and appropriate occupancy factors (e.g. of the Mg and Mn sites) were refined. 137 Difference patterns revealed a small amount of quartz in the sample, consistent with SEM observations. Rietveld refinement that included quartz improved the fit and revealed its 138 139 abundance as less than 2 wt% of the sample. 140 141 RESULTS 142 Nodule characterization by microscopy 143 The Mn-rich nodules from the clay interval at Site 1262 typically were dark brown and ovoid, ranging in length from ~ 0.3 to ~ 1 mm along the longest axis. Most of the nodules 144 145 contained an internal open space (Fig. 2a) with walls measuring ~100 um in thickness. The sizes 146 and shapes of the hollow nodules were not obviously suggestive of pseudomorphism after a 147 precursor mineral or organism, such as foraminiferal tests (B. Huber, pers. comm.), but some 148 could have been pseudomorphs of fecal pellets. 149 Back-scattered electron images at high magnification revealed that the nodule walls 150 consist of euhedral crystals with apparently hexagonal symmetry, measuring 3-5 um across, with 151 a thickness of 0.1 to 1 um (Fig. 2b). Because of the small size of the crystals, it was not possible 152 to obtain quantitative electron microprobe analyses, but EDS analyses of the crystals showed 153 predominantly Mn and O, with Mg and various amounts of Al, and minor K, Ca, Ba, Si, Ni and 154 Co. These analyses led to an initial identification of the material composing the nodular walls as 155 the magnesian birnessite-like phase jianshuiite: $MgMn^{4+}_{3}O_{7} \cdot 2.80 H_{2}O$ (Guiyin et al. 1992). 156 Some of the jianshuiite crystals (Fig. 3a,b) appear to have separated into thin layers, reminiscent

157 of a vermiculite crystal that swells and expands upon heating. EDS analyses of the expanded regions showed higher concentrations of Ca, K and Ba, and less Al and Ni, than did the more 158 159 compacted portions of the crystals (Fig. 3a). 160 Although micronodules that were apparently similar in shape, color and size were observed throughout the cores of several sites drilled on Walvis Ridge (Zachos et al., 2004), the 161 162 jianshuiite crystals were observed only in nodules from within the horizon immediately above 163 the P/E boundary, corresponding to the Core 1262A-15H-3 interval between \sim 73 and 40 cm, 164 where carbonate dissolution was greatest. We examined by SEM/EDS five nodules that spanned 165 this interval and observed variations in the proportions of carbonate nannofossils and Mn oxides, 166 and in the type of Mn oxide. A nodule from ~ 1 cm above the P/E contact contained numerous carbonate nannofossils 167 168 and other mineral grains, including clays, such as illite, quartz and barite. The jianshuiite crystals 169 in this nodule were subhedral to rarely euhedral in shape. A nodule from ~9 cm above the 170 contact was devoid of carbonates, and it consisted predominantly of euhedral jianshuiite, but 171 many of the crystals were exfoliated into thin layers that were more K- and Ca- rich than the bulk

172 jianshuiite (Fig. 3a, b). A nodule from ~11 cm above the contact was composed almost entirely

173 of euhedral jianshuiite crystals, with scattered grains of quartz and K- and Mg-rich silicates

174 (likely clays) and apatite. This nodule was used for our crystal structure refinement of

175 jianshuiite. In a nodule from 22 cm above the P/E boundary, carbonate nannofossils reappear,

176 and euhedral jianshuite crystals line vugs and the interior cavity wall. A nodule from 32 cm

above the contact contained abundant carbonate nannofossils with euhedral jianshuiite crystals in

178 small cavities and vugs (Fig. 4).

179	We also examined several nodules from other cores at Site 1262 and nearby Site 1265
180	that were recovered from sediments older and younger than the PETM. These nodules exhibited
181	comparable sizes and shapes as those from the PETM described above, but appeared to the eye
182	to be lighter colored. SEM images revealed that they consisted predominantly of carbonate
183	nannofossils, and minor Ca-rich Mn oxides, likely todorokite (Fig. 5). Jianshuiite was only
184	observed in the nodules from the PETM horizon in Core 1262B-15H-3.
185	
100	VDD identification of iteraturite

186 **XRD identification of jianshuiite**

187 **Chalcophanite and jianshuiite.** Powder X-ray diffraction patterns collected from individual 188 nodules in the carbonate dissolution interval associated with the PETM in Section 1262B-15H-3 revealed minor amounts of quartz, illite, and other clays, but the dominant mineral belonged to 189 the family of 7-Å birnessite-like phases with hexagonal symmetry. The chalcophanite 190 $(ZnMn^{4+}_{3}O_{7} \cdot 3H_{2}O)$ structure (Wadsley 1955; Post and Appleman 1988; Post and Heaney 2014) 191 192 offered a close match. However, the EDS analyses revealed that Mg rather than Zn was the most 193 abundant cation after Mn, confirming that the primary phase composing the nodules was nearly 194 end-member jianshuiite. 195 Chalcophanite originally was indexed to a triclinic cell (Wadsley 1955), and because the

powder X-ray diffraction pattern for jianshuiite closely resembles that of chalcophanite, Guiyin et al. (1992) first described jianshuiite as a triclinic structure with Mg as the dominant interlayer cation. Their wet chemical analyses yielded the following formulas for two samples: $(Mg_{0.51}Mn_{0.44} Ca_{0.08})Mn^{4+}{}_{3.03}O_{7.1}\cdot 2.90H_2O$ and $(Mg_{0.85}Mn_{0.05})Mn^{4+}{}_{3.15}O_7\cdot 2.80H_2O$. Our chemical

analyses of jianshuiite from the PETM cores are consistent with the near end-member jianshuiite
composition, but indexing of the powder diffraction pattern and subsequent structure refinement

202 has suggested a different symmetry for this mineral. We report here the first complete crystal

203	structure for	jianshuiite,	and in the	correct trigonal	unit cell.
-----	---------------	--------------	------------	------------------	------------

204 The parameters determined by our Rietveld refinement using the synchrotron X-ray

diffraction data for jianshuiite are listed in Table 1. Atom positions are reported in Table 2, and

selected bond distances are reported in Table 3. The final observed, calculated, and difference

207 patterns for the Rietveld refinement using the synchrotron data are plotted in Figure 6. The

standard deviations calculated by GSAS for the lattice parameters are likely smaller than the true

209 errors (Post and Bish 1989).

210 As with chalcophanite (Post and Appleman, 1988), we refined jianshuiite in space group

211 *R*-3. One out of every seven octahedral sites in the Mn-O sheet was vacant. The Mg (Zn in

212 chalcophanite) cations were located above and below the vacancies. The vacant Mn sites were

fully ordered. The Mn⁴⁺-O octahedra were distorted, with bond distances ranging from 1.85 to

214 2.00 Å in jianshuiite, caused by displacement of Mn toward the vacancy in the octahedral sheet;

in chalcophanite, the distances range from 1.86 to 1.97 Å (Post and Appleman, 1988). The mean

216 Mn-O distance for jianshuiite (Table 3) was 1.93 Å, slightly larger than the value of 1.91 Å

217 reported for chalcophanite, but still indicating that the Mn is tetravalent (Shannon 1976).

218

219 Interlayer structure. Our refinements indicated that Mg cations (and minor Ca and possible

 Mn^{2+} cations) occupy sites above and below the vacancies in the octahedral sheets and are

coordinated to three O atoms and three water oxygen atoms. The mean Mg-O distance was 2.03

A; as is the case for Zn in chalcophanite, the Mg-O bonds to the water oxygen atoms were longer

223 (2.13 Å) than those to the O atoms in the octahedral layer (1.94 Å). By analogy with

ernienickelite – the Ni-rich structural analog to chalcophanite (Grice et al. 1994) – the trace Ni

Page 10

- 225 cations revealed by EDS likely are located on the Mg site, perhaps accounting for the
- observation that the refined occupancy factor for Mg exceeded unity $[Mg_{occ} = 1.07(1)]$; Co,
- however, likely substitutes for some of the octahedral Mn^{4+} (Manceau et al. 1992).
- 228 Unfortunately, the limitations in our chemical analyses, the small quantities of minor elements,
- 229 and the similarity of X-ray scattering factors among Mn, Ni and Co make definitive site
- assignments impossible. Because Ba is significantly larger than Mg [crystal radii of 1.49 vs. 0.86
- Å (Shannon 1976)], it is likely that any Ba is located closer to the center of the interlayer region,
- as is the case in synthetic Ba-rich birnessite-like phases (Lopano et al. 2007).
- 233
- 234

DISCUSSION

235 Other occurrences of jianshuiite

236 Guivin et al. (1992) named jianshuiite after its locality (Lu Village, Janshui County, Yunnan 237 Province, China), where they observed it as a hypogene phase associated with terrestrial manganese ores. Another reported occurrence is in the Ojos Negros iron mines near Aragón 238 239 Spain (Calvo 2008). As part of a paleomagnetic study of upper Paleocene silty red sediments in 240 Baja California, Larson and Walker (1975) characterized locally abundant Mn-rich concretions 241 with major concentrations of Mg and Ba, and minor Fe, Al, Ca, and Ti. Their low analytical 242 totals suggested that the phase contained a significant amount of water. The mineral was 243 informally named "hydropsilomelane". Potter and Rossman (1979) analyzed this material using 244 X-ray powder diffraction and infrared spectroscopy, and they concluded that the Mn oxide phase 245 had the chalcophanite structure. Using Larson and Walker's (1975) analytical data, they 246 calculated the chemical formula as (Mg_{0.6}Ba_{0.1}Fe_{0.1}) (Mn_{3.0}Al_{0.1}) ·2H₂O, and proposed that

Page 11

9/16

"hydropsilomelane" is, in fact, a Mg analogue of chalcophanite. Although they did not formally

248	recognize it as a new mineral, this work first reported the Mn oxide phase later described as
249	jianshuiite. In addition, Jianshuiite was identified by XRD as a minor phase in ferromanganese
250	nodules in Miocene carbonate-mud mounds in the Gulf of Cadiz (Gonzalez et al. 2009, 2012).
251	The authors argue that ferromanganese minerals including siderite-rhodochrosite grew
252	diagenetically, fueled by anaerobic oxidation of thermogenic hydrocarbons, and were replaced
253	by Fe-Mn oxyhydroxides when seawaters became more oxygen-rich, possibly microbially
254	induced.
255 256	Jianshuiite formation and implications for changes in Eh and/or pH in PETM pore waters
257	The jianshuiite nodules observed within the PETM clay layer differ fundamentally from
258	superficially similar micronodules in older and younger sediments, which contain mainly
259	carbonate material and some minor Mn oxide phases, likely todorokite. The ocean and/or pore
260	water conditions during the PETM at Site 1262 differed from those during other time periods,
261	specifically in a lower pH (i.e., lower carbonate saturation, Ω , leading to the dissolution of
262	CaCO ₃ ; Zachos et al. 2005; Foster et al., 2013) and higher temperatures (McCarren et al. 2008).
263	Before and shortly after the PETM, the bottom waters at the depth of Site 1262 were generally
264	well-oxygenated, but at the PETM itself, oxygen levels might have decreased (Chun et al.,
265	2010). Climate modeling generally agrees with the geochemical data, indicating lowered oxygen
266	in the SE Atlantic due to temperature rise and circulation changes (e.g., Winguth et al. 2012). It
267	is not clear whether a decreased delivery of organic matter to the sea floor, and thus decreased
268	oxidation of organic matter, could have counteracted the tendency toward lower oxygen levels
269	(Ma et al. 2014).
270	The behavior of Mn in pore waters in Pleistocene-Recent sediments at a Walvis Ridge
271	location close to that from which the present PETM cores were taken, was studied by Gingele

272	and Kasten (1994). In general, dissolved Mn ²⁺ migrates upward in sediment pore waters to the
273	oxic/suboxic boundary, where it oxidizes and precipitates, unless the supply of organic matter
274	atop the seafloor is sufficiently high that the bottom ocean waters are reduced (Mangini et al.
275	2001). Chun et al. (2010) argued that reducing conditions characterized the onset of the PETM,
276	and could have mobilized Mn as Mn^{2+} . The Mn in jianshuiite is in the 4+ oxidation state. Thus,
277	the precipitation of jianshuiite may represent a diagenetic event that occurred once oxidizing
278	conditions returned later - either during or after the main part of the PETM, possibly similar to
279	the sequence of events reported by Gonzalez et al. (2012). Mn oxide nodules are absent at
280	shallower Site 1263, because conditions there were less oxidizing than at Site 1262 before,
281	during and after the PETM (Chun et al. 2010). The formation of chalcophanite may provide an
282	analogous genetic pathway, since it forms in Zn-rich oxidized zones of terrestrial Mn-rich
283	deposits. Mn oxidation can also occur at constant solution Eh through a rise in pH (e.g., Takeno
284	2005), and therefore, the transition from dissolved Mn^{2+} to Mn^{4+} might have resulted from an
285	increase in pH of pore waters after the acidification event at the P/E boundary ended.
286	Any carbonate phases in the Walvis Ridge sediments (derived from the pelagic calcifyers
287	in the surface waters) would have dissolved early in the PETM, potentially leaving sediment
288	pore space and voids. The nodule morphology might be attributed to the growth of jianshuiite
289	crystals on cavity walls, as Mn in the pore fluid was oxidized, forming a hollow shell such as that
290	in Figure 2a. Alternatively, the jianshuiite might have crystallized on the walls of burrows, or
291	on the outside of fecal pellets, or of calcareous tests that later dissolved. Previous studies (Chun
292	et al. 2010; Paelike et al. 2014) suggest that carbonate dissolution preceded the reoxidation, so
293	calcareous tests dissolved long before oxic fluids would have precipitated dissolved Mn. This

294 consideration might support the hypothesis that increases in pore water pH induced the

295 precipitation of jianshuiite during a later diagenetic event.

296

297 Jianshuiite formation and implications for high Mg/Ca ratios in PETM pore waters

298	One of the most intriguing aspects of the PETM Mn nodules is that they are composed of
299	well-formed microcrystals of the rare Mn oxide mineral jianshuiite. In contrast, the macroscopic
300	Mn nodules that cover broad expanses of the ocean floor (and occur in core samples at Walvis
301	Ridge in older and younger sediments than the PETM) contain phases such as todorokite
302	$[(Na,Ca,K)_2 (Mn^{4+},Mn^{3+})_6 O_{12} \cdot 3-4.5H_2O],$ "buserite" $(Na_4Mn_{14}O_{27} \cdot 21H_2O),$ and vernadite
303	$[(Mn^{4+}, Fe^{3+}, Ca, Na)(O, OH)_2 \cdot nH_2O]$ (Burns and Burns 1977). Moreover, most researchers have
304	concluded that the precipitation of Mn oxides in seafloor nodules is biologically mediated (e.g.,
305	Moffett and Ho 1996; Tebo et al. 2004), and these biogenic Mn oxides invariably are fine-
306	grained and poorly crystalline, as is the jianshuiite in the nodules described by Gonzalez et al.
307	(2009, 2012). The strongly euhedral nature and relatively large sizes of the jianshuiite crystals in
308	the PETM nodules are atypical of known synthetic or natural biogenic Mn oxides.
309	Consequently, we infer that the PETM nodules formed abiotically, possibly induced by the
310	unusually severe changes in oxygenation and pH during the PETM, although organisms or other
311	organic material in the sediments might have contributed to the particular chemical conditions
312	that resulted in the formation of the jianshuiite crystals.
313	The high concentration of Mg relative to Ca in jianshuiite would seem to reflect pore
314	water chemistries in PETM sediments that contained anomalously high Mg/Ca ratios, especially
315	because Mg/Ca values in seawater at the time of the PETM may have been much lower than
316	today (e.g., Stanley and Hardie 1998; Farkas et al. 2007). The transient nature of this high-

317 magnesian pulse is evidenced by the return of organisms with Ca carbonate tests, such as

318 foraminifera and nannofossils, higher in the section.

319 Intriguingly, the jianshuiite crystals themselves might record changes in the Mg/Ca 320 compositions of fluids through cation-exchange textures that are observable in some crystals. We have documented previously that Cs exchange within the interlayer of Na-birnessite occurs 321 322 through a delamination-relamination ("delam-relam") mechanism rather than through classic 323 dissolution-reprecipitation pathways (Lopano et al. 2009; Fleeger et al. 2013). The expanded, 324 accordion-like jianshuiite crystals seen in Figure 3 provide strong textural evidence for delam-325 relam alteration resulting from cation exchange. In the delam-relam process, cation exchange 326 between the aqueous phase and the Mn oxide interlayer occurs via the separation of individual layers followed by the wholesale substitution of the interlayer cations, in contrast to traditional 327 328 exchange processes that occur by diffusion of substitutional cations from the surface of a crystal 329 to its interior. It seems especially significant that spot EDS analyses of these accordion-like crystals reveal a consistently higher concentration of Ca to Mg in the expanded portions of the 330 331 crystals than in the compressed regions. The crystals showing possible exchange textures were 332 most obvious in the nodule from ~9 cm above the P/E contact, and above the last appearance of 333 calcareous nannofossils (which are still visible in the nodule 1 cm above the contact). Perhaps 334 the dissolution of carbonates resulted in a rise in Ca concentrations in pore waters (Foster et al. 335 2013) that deposited the jianshuiite, and these now Ca-rich solutions reacted with the jianshuiite 336 crystals, leading to partial cation exchange.

- 337
- 338
- 339

Page 15

IMPLICATIONS

341	As described by models of mineral evolution (Hazen et al. 2008), the appearance of new
342	minerals within the rock record can signify fundamental changes in events that govern Earth
343	processes. Surveys of Mn oxides within modern near-surface environments have uniformly
344	indicated the predominance of poorly crystalline, biogically precipitated Ca-rich Mn oxides, such
345	as buserite and/or rancieite ((Ca,Mn)Mn ₄ O ₉ \cdot 3H ₂ O), vernadite, and todorokite. The transient
346	appearance of the Mg-rich birnessite-like phase jianshuiite must indicate an exceptional change
347	in the chemistry of the pore fluids within deep ocean sediments at the P/E boundary. As is
348	consistent with other transitions during this global warming event, we infer that pulses of fluids
349	with high Mg/Ca values deposited the jianshuiite within cavities formed by the prior dissolution
350	of carbonate micronodules. The tetravalent oxidation state of the Mn suggests that these
351	depositional fluids were less acidic than those that led to the abrupt carbonate dissolution event
352	at the onset of the PETM. We speculate that jianshuiite might have been mistaken for other Mn
353	oxides at other sites, and it might serve as a marker mineral for climate change events, such as
354	these recorded by Gonzalez et al. (2012).
355	Birnessite-like phases are challenging to investigate because they tend to occur as fine-
356	grained, poorly crystalline masses. Chalcophanite, and now jianshuiite, are unusual in the
357	birnessite family because they are exceptionally well-crystallized, sometimes forming crystals up
358	to several millimeters in diameter, as in the case of chalcophanite. Consequently, these phases
359	serve as excellent crystallographic proxies for the structures and chemical behaviors of the

360 broader group of birnessite-like minerals.

340

361	
362	ACKNOWLEDGEMENTS
363	Funding for this research was provided by NSF grants EAR07-45374 and EAR11-47728
364	to Heaney and Post, and NSF grant OCE 1232413 to Thomas. Thanks go to Peter Eng and
365	Joanne Stubbs at APS beamline 13-BM-C for their assistance with the X-ray diffraction
366	experiment, to Joop Varekamp at Wesleyan University for first noticing the crystalline Mn
367	oxides using the electron microscope facilities at the University of Oregon (Eugene, OR), and to
368	Isabella Raffi at the Universita degli Studi G_dAnnunzio, Chieti e Pescara (Italy) for
369	identification of calcareous nannofossils. This research was carried out at the Advanced Photon
370	Source, Argonne National Laboratory, which is supported by the U.S. Department of Energy,
371	Division of Materials Sciences and Division of Chemical Sciences, under Contract No. DE-
372	AC02-98CH10886. Samples were provided by the International Ocean Discovery Program.

373	REFERENCES
374	Burns, R. G. and Burns, V. M. (1977) in Marine Manganese Nodules, ed. Glasby, G.P. (Elsevier,
375	Amsterdam), pp. 185-248.
376	Calvo, M. (2008) Minerales de Aragón. Prames, Zaragoza. 463 pp.
377	Chun, C. O. J., M. L. Delaney, and J. C. Zachos (2010), Paleoredox changes across the
378	Paleocene-Eocene thermal maximum, Walvis Ridge (ODP Sites 1262, 1263, and 1266):
379	Evidence from Mn and U enrichment factors, Paleoceanography, 25 (4), PA 4202.
380	Dickens, G. R., O'Neil, J. R., Rea, D. K., and Owen, R. M. (1995) Dissociation of oceanic
381	methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene,
382	Paleoceanography, 19, 965–971.
383	Dickens, G. R. (2011) Down the rabbit hole: towards appropriate discussion of methane release
384	from gas hydrate systens during the Paleocene-Eocene thermal maximum and other past
385	hyperthermal events, Climate of the Past, 7, 831-846.
386	Dunkley Jones, T., D. J. Lunt, D. N. Schmidt, A. Ridgwell, A. Sluijs, P. J. Valdes, and M.
387	Maslin (2013), Climate model and proxy data constraints on ocean warming across the
388	Paleocene–Eocene Thermal Maximum, Earth-Science Reviews, 125, 123-145.
389	Fleeger, C. R., Heaney, P. J., & Post, J. E. (2013). A time-resolved X-ray diffraction study of Cs
390	exchange into hexagonal H-birnessite. American Mineralogist, 98, 671-679.
391	Foster, L. C., Schmidt, D. N., Thomas, E., Arndt, S., and Ridgwell, A. (2013) Surviving rapid
392	climate change in the deep-sea during the Paleogene hyperthermals. Proc. Nat. Acad.
393	<i>Sci.</i> , 110: 9273-9276.
394	Gingele, F. X., and Kasten, S. (1994) Solid-phase manganese in Southeast Atlantic sediments:
395	implications for paleoenvironments. Marine Geology, 121, 317-332.

396	Golden, D.C., Dixon, J.B., and Chen, C.C. (1986) Ion exchange, thermal transformations, and
397	oxidizing properties of birnessite. Clays and Clay Minerals, 34, 511-520.González, F.J.,
398	Somoza, L., Lunar, R., Martínez-Frías, J., Martín Rubí, J.A., Torres, T., Ortiz, J.E., Díaz
399	del Río, V., Pinheiro, L.M., Magalhães, V.H., 2009. Hydrocarbon-derived
400	ferromanganese nodules in carbonate-mud mounds from the Gulf of Cadiz: mudbreccia
401	sediments and clasts as nucleation sites. Marine Geology, 261, 64-81.
402	González, F.J., Somoza, L., Leon, R., Mdialdea, T., Torres, T., Ortiz, J. E., Lunar, R., Martinez-
403	Frias, J., and Merinero, R., 2012. Ferromanganese nodules and micro-hardgrounds
404	associated with the Cadiz Contourite Channel (NE Atlantic):
405	Palaeoenvironmental records of fluid venting and bottom currents, Chemical
406	Geology, 310-311, 56-78.
407	Grice, J.D. Gartrell, B., Gault, R.A. & Van Velthuizen, J. (1994): Ernienickelite,
408	NiMn3O7·3H2O, a new mineral species from the Siberia complex, Western Australia:
409	comments on the crystallography of the calcophanite group. Canadian Mineralogist 32,
410	333-337.
411	Guiyin, Y., Shanghua, Z., Mingkai, Z., Jianping, D. and, Deyu, L. (1992): Jianshuiite - A new
412	magnesic mineral of chalcophanite group. Acta Mineralogica Sinica 12(1), 69-77. (in
413	Chinese with English abstract)
414	Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., and Hausermann, D. (1996) Two-
415	dimensional detector software: From real detector to idealized image or two-theta scan.
416	High Pressure Research, 14, 235–248.
417	Hazen, R. M., Papineau, D., Bleeker, W., Downs, R. T., Ferry, J. M., McCoy, T. J., Sverjensky,
418	D.M., and Yang, H. (2008). Mineral evolution. American Mineralogist, 93, 1693-1720.

419 Johnsor	E.A. and Post,	J.E. (2006) Water in th	e interlayer	region c	of birnessite:	importance in
-------------	----------------	------------	---------------	--------------	----------	----------------	---------------

- 420 cation exchange and structural stability. American Mineralogist, 91, 609-619.
- 421 Jones, L.H.P. and Milne, A.A. (1956) Birnessite, a new manganese oxide mineral from
- 422 Aberdeenshire, Scotland. Mineralogical Magazine, 31(235), 283-288.
- 423 Kwon, K.D., Refson, K. and Sposito, G. (2009) Zinc surface complexes on birnessite: A density
- 424 functional theory study. Geochimica et Cosmochimica Acta, 73, 1273-1284.
- 425 Larson, A.C., and Von Dreele, R.B. (2006) GSAS-General Structure Analysis System. Los
- 426 Alamos National Laboratory Report, LAUR 86-748.
- 427 Lopano, C.L., Heaney, P.J., Post, J.E., Hanson, J., and Komarneni, S. (2007) Time-resolved
- 428 structural analysis of K- and Ba-exchanged reactions with synthetic Na-birnessite using

429 synchrotron X-ray diffraction. American Mineralogist, 92, 380-387.

- 430 Lopano, C.L., Heaney, P.J., and Post, J.E. (2009) Cs-exchange in birnessite: Reaction
- 431 mechanisms inferred from time-resolved X-ray diffraction and transmission electron
- 432 microscopy. American Mineralogist, 94, 816-826.Ma, Z., Gray, E., Thomas, E., Murphy,
- 433 B., Zachos, J. C., and Paytan, A. (2014) Carbon sequestration during the Paleocene-
- 434 Eocene Thermal maximum by an efficient biological pump. Nature Geoscience 7: 382-
- **435 388**.
- 436 Manceau, A., Gorshkov, A. I., and Drits, V. A. (1992) Structural chemistry of Mn, Fe, Co, and
- 437 Ni in manganese hydrous oxides: Part II. Information from EXAFS spectroscopy and
- 438 electron and X-ray diffraction. American Mineralogist, 77, 1144-1157.
- 439 Mangini, A., Jung, M., and Luakenmann, S., 2001. What do we learn from peaks of uranium and
- 440 of manganese in deep-sea sediments? Marine Geology, 177, 63-78.

441	McCarren,	Н.,	Thomas.	Е.,	Hasegawa.	Т.,	Roehl.	U	and Zachos	J. C.	(2008)) Depth-
				,	11000 500000	· · ·	,,	· · · ·	,	$, \dots \dots$	(=000	/ 2

- 442 dependency of the Paleocene-Eocene Carbon Isotope Excursion: paired benthic and
- 443 terrestrial biomarker records (ODP Leg 208, Walvis Ridge). Geochemistry, Geophysics,

444 Geosystems, **9** (10): Q10008, doi: 10.1029/2008GC002116

- 445 McInerney, F. A., and Wing, S. L. (2011), The Paleocene-Eocene Thermal Maximum: A
- 446 Perturbation of Carbon Cycle, Climate, and Biosphere with Implications for the Future,
- 447 Annual Review of Earth and Planetary Sciences, Vol. 39, edited by R. Jeanloz and K. H.

448 Freeman, pp. 489-516.

- 449 McKenzie, R.M. (1976) The manganese oxides in soils. In I.M. Varentsov, and G. Grasselly,
- Eds. Proceedings of the 2nd International Symposium on Geology and Geochemistry of
 Manganese, 1, p. 259-269. Schweizerbart, Stuttgart.
- 452 McKenzie, R.M. (1977) Manganese oxides and hydroxides. In J.B. Dixon, and S.B. Weed, Eds.

453 Minerals in Soil Environments, p. 181-193. Soil Science Society of America, Madison,
454 Wisconsin.

- 455 Moffett, J. W., and Ho, J. (1996) Oxidation of cobalt and manganese in seawater via a common
- 456 microbially mediated pathway. Geochimica et Cosmochimica Acta 60 (18): 3415-3424.
- 457 Post, J.E. and Appleman, D.E. (1988) Chalcophanite, ZnMn₃O₇·3H₂O: New crystal-structure
- determinations. American Mineralogist, 73, 1401-1404.
- 459 Post, J.E., and Bish, D.L. (1989) Rietveld refinement of crystal structures using powder X-ray
- 460 diffraction data. In D.L. Bish and J.E. Post, Eds., Modern Powder Diffraction, 20, p. 277-
- 461 308. Reviews in Mineralogy, Mineralogical Society of America, Chantilly, Virginia.
- 462 Post, J.E. (1999) Manganese oxide minerals: Crystal structures and economic and environmental
- significance. Proceedings of the National Academy of Sciences, 96, 3447-3454.

Page 21

Post, J.E. and Heaney, P.J. (2014) Time-resolved synchrotron X-ray diffraction study of the

dehydration behavior of chalcophanite. American Mineralogist, 99, 1956-1961.

464

465

466	Post, J.E., Heaney, P.J., and Ertl, A. (2008) Rietveld refinement of the ranciéite structure using
467	synchrotron powder diffraction data. Powder Diffraction, 23, 10-14.
468	Potter, R.M. and Rossman, G.R. (1979) Mineralogy of manganese dendrites and coatings.
469	American Mineralogist, 64, 1219-1226.
470	Ridgwell, A., and Schmidt, D. N., (2010) Past constraints on the vulnerability of marine
471	calcifiers to massive carbon dioxide release. Nature Geoscience, 3, 196-200.
472	Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic
473	distances in halides and chalcogenides. Acta Crystallographica, A32, 751-767.
474	Silvester, E., Manceau, A., and Drits, V. (1997) Structure of synthetic monoclinic Na-rich
475	birnessite and hexagonal birnessite: II. Results from chemical studies and EXAFS
476	spectroscopy. American Mineralogist, 82, 962-978.
477	Stephens, P.W. (1999) Phenomenological model of anisotropic peak broadening in powder
478	diffraction. Journal of Applied Crystallography, 32, 281-289.
479	Takeno, N. (2005) Atlas of Eh-pH diagrams. Geological Survey of Japan Open File Report #419,
480	102pp.
481	Tebo, B. M., Bargar, J. R., Clement, B. G., Dick, G. J., Murray, K. J., Parker, D., Verity, R., and
482	Webb, S. M., (2004) Biogenic Manganese oxides: properties and mechanisms of
483	formation, Annual Reviews of Earth and Planetary Sciences 32, 287-328.
484	Thomas, E., and Shackleton, N. J. (1996), The Paleocene-Eocene benthic foraminiferal
485	extinction and stable isotope anomalies, Geol. Soc. London, Spec. Publ., 101(1), 401-
486	441.

Page 22

- 487Thompson, P., Cox, D.E., and Hastings, J.B. (1987) Rietveld refinement of Debye- Scherrer
- 488 synchrotron X-ray data from Al₂O₃. Journal of Applied Crystallography, 20, 79–83.
- 489 Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied
- 490 Crystallography, 34, 210-213.
- 491 Wadsley, A.D. (1955) The crystal structure of chalcophanite, $ZnMn_3O_7 \cdot 3H_2O$. Acta
- 492 Crystallographica, 8, 165-172.
- 493 Winguth, A. M. E., Thomas, E., and Winguth, C. (2012), Global decline in ocean ventilation,
- 494 oxygenation, and productivity during the Paleocene-Eocene Thermal Maximum:
- 495 Implications for the benthic extinction, Geology, 40(3), 263–266.
- 496 Zachos et al. (2004) Leg 208: Early Cenozoic Extreme Climates: The Walvis Ridge Transect, 6
- 497 March–6 May 2003. Proc. ODP, Init. Repts., 208 [Online]. Available from World Wide
- 498 Web: <u>http://www-odp.tamu.edu/publications/208_IR/208ir.htm</u>, Texas A&M University,
- 499College Station TX 77845-9547
- 500 Zachos, J. C., Röhl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A., Kelly, D. C., Thomas, E.,
- 501 Nicolo, M., Raffi, I., Lourens, L. J., McCarren, H., and Kroon, D. (2005), Rapid
- 502acidification of the ocean during the Paleocene-Eocene thermal maximum.Science, 308
- 503 (5728), 1611–5.
- 504
- 505
- 506

507 508	Figure Captions
509	Figure 1 Section of Core 208-1262B-15H recovered during Ocean Drilling Leg 208 (Zachos et
510	al., 2004). The Eocene/Paleocene boundary is at the contact between the light colored
511	calcareous ooze and the dark clay, marking the beginning of the thermal maximum and
512	associated severe carbonate dissolution. The nodule used for the X-ray diffraction study was
513	recovered from the section of the core indicated by the arrow.
514	
515	Figure 2. Backscattered scanning electron microscope (BSE SEM) images of Mn nodules from
516	~11 cm above the Eocene/Paleocene boundary in Core 208-1262B-15H. a) Complete nodule
517	measuring \sim 1.2 mm x 0.6 mm, showing hollow interior; b) Higher magnification image of the
518	nodule wall reveals that the nodule consists almost entirely of \sim 5 um diameter euhedral, plate-
519	like jianshuiite crystals.
520	
521	Figure 3. a) Jianshuiite crystals from 9 cm above the P/E contact appear to have "exfoliated",
522	perhaps resulting from delamination caused by cation-exchange. EDS analyses (below image)
523	show that thick "caps" contain predominantly Mn, Mg and O with minor K and Ba (labelled as
524	Ti) (EDS spectrum on lower right), whereas the thin central sheet-like layers contain greater
525	amounts of K and Ca and some Ba (EDS spectrum on lower left). b) BSE image showing a range
526	of particle morphologies, all mainly Mn, O, and Mg, but darker areas are more Al-rich and
527	contain minor Ni and Co.
528	
529	Figure 4. BSE SEM image of jianshuiite crystals from 32 cm above the P/E contact with
530	calcareous nannofossils: #1: Coccolithus pelagicus (a solution-resistant taxon), #2: Prinsius sp,.

- 531 #3: possibly *Toweius* sp.. The other rings are probably remnants of more complex placoliths that
- 532 are partially dissolved (identification by I. Raffi).
- 533
- 534 Figure 5. BSE SEM image of a nodule from nearby Site 1265 (sample 1265A-18H-CC, earliest
- 535 Oligocene) composed primarily of calcareous nannofossils with clusters of needle-like crystals
- 536 of Mn oxide, presumably todorokite.

- 538 Figure 6. Final observed (black crosses), calculated (solid line), and difference (solid line
- 539 below) powder X-ray diffraction patterns from the Rietveld refinement for jianshuiite. The
- 540 Bragg reflections are marked by the set of small vertical lines

541

- 542 Figure 7. Structure drawing of jianshuiite. Mn-O octahedra are colored dark blue, and Mg
- 543 cations are shown as small yellow spheres. The water O atoms are indicated by larger light-blue
- spheres. a) the *c* axis is vertical and b) looking normal to the Mn-O octahedral sheets.

545

Page 25

547

548 Table 1. Final Rietveld refinement parameters for jianshuiite

549

Space Group	<i>R</i> -3	
Unit Cell		
<i>a</i> (Å)	7.5409(4)	
<i>b</i> (Å)	7.5409(4)	
c (Å)	20.8079(14)	
$V(Å^3)$	1024.73(14)	
Refinement		
No. of data points	1146	
No. of reflections	176	
Diffraction range (20°)	$13.5 - 47.3^{a}$	
No. of variables	41	
$R(F^2)$	0.128	
R _{wp}	0.0205	
χ^2	3.54	

550

551

552

553	Table 2. Atomic coordinates and isotropic displacement factors for jianshuiite
554	

x	У	Ζ	Site occupancy	Uiso
			Factor	
0.7201(6)	0.5793(5)	0.00019(22)	1.0	0.003
0	0	0.10011(34)	$1.073(12)^{a}$	0.003
0.5312(21)	0.6125(22)	0.0493(5)	1.0	0.005
0.2315(22)	0.1981(24)	0.0498(5)	1.0	0.005
0	0	0.7103(7)	1.0	0.005
0.1756(15)	0.9414(17)	0.1678(8)	1.0	0.02116(16)
	x 0.7201(6) 0 0.5312(21) 0.2315(22) 0 0.1756(15)	x y 0.7201(6) 0.5793(5) 0 0 0.5312(21) 0.6125(22) 0.2315(22) 0.1981(24) 0 0 0.1756(15) 0.9414(17)	x y z 0.7201(6) 0.5793(5) 0.00019(22) 0 0 0.10011(34) 0.5312(21) 0.6125(22) 0.0493(5) 0.2315(22) 0.1981(24) 0.0498(5) 0 0 0.7103(7) 0.1756(15) 0.9414(17) 0.1678(8)	x y z Site occupancy Factor 0.7201(6) 0.5793(5) 0.00019(22) 1.0 0 0 0.10011(34) 1.073(12) ^a 0.5312(21) 0.6125(22) 0.0493(5) 1.0 0.2315(22) 0.1981(24) 0.0498(5) 1.0 0 0 0.7103(7) 1.0 0.1756(15) 0.9414(17) 0.1678(8) 1.0

556 Note: U_{iso} for O1, O2, O3, Mg and Mn atoms were fixed to given values and not refined

^a Site also contains minor Ni, Co, and Ba, but was refined as Mg

558

559

561 Table 3. Selected bond lengths for jianshuiite	(Å)
--	-----

562 563

Mn-O(1)	1.869(10)
-O(1)	2.001(13)
- O(1)	1.994(13)
-O(2)	1.976(10)
-O(2)	1.849(14)
-O(3)	1.916(7)
<mn-o></mn-o>	1.93
Mg-O(2)	1.941(16) x 3
-O(4)	2.126(13)
<mg-o></mg-o>	2.03

564

565

570 Figure 1.

572 Figure 2a.

573

575 Figure 2b.

Page 32

- 580 Figure 3b.
- 581

- 582
- 583

- 584
- 585 Figure 4.
- 586

588 Figure 5

587

- 590
- 591 Figure 6.

592

- 593
- 594
- 595

596

- 597
- 598

Page 37

