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Abstract 7 

The flux theory of the chemical bond, which provides a physical description of chemical 8 

structure based on classical electrostatic theory, correctly predicts the angles between bonds, to 9 

the extent that they depend on the intrinsic properties of the bonded atoms.  It is based on the 10 

justifiable assumption that the charge density around the nucleus of an atom retains most of its 11 

spherical symmetry even when bonded.  A knowledge of these intrinsic bond angles permits the 12 

measurement and analysis of the steric angular strains that result from the mapping of the bond 13 

network into three dimensional space.  The work ends by pointing out that there are better ways 14 

of characterizing bonds than describing them as covalent or ionic. 15 
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Introduction 20 

 It is often said that ‘covalent bonds are directed but ionic bonds are not’.  This is 21 

presented as if it were a profound observation about the nature of chemical bonding, but it 22 
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depends on the questionable assumption that bonds can be neatly divided into two clearly 23 

distinguishable classes, covalent and ionic, even though it is widely accepted that bonds lie on a 24 

single continuum and such a distinction is difficult to make.  25 

 The purpose of this paper is to examine to what extent bonds can be said to be directed.  26 

Using the flux theory of the chemical bond, more fully described by Brown (2014a), it argues 27 

that bond directions are determined by the spherical symmetry of the atoms and no distinction 28 

needs to be made between bonds of different character.  The flux theory is first briefly reviewed 29 

as it involves few if any of the concepts commonly used to describe chemical bonding. 30 

The flux theory of the chemical bond 31 

 For many years it has been fashionable to discuss chemical bonding as a quantum 32 

phenomenon, but the idea of a chemical bond predates quantum mechanics by half a century; its 33 

properties are rooted in classical physics, yet in our search for a quantum explanation of bonding 34 

we have failed to appreciate the extent to which classical electrostatic theory gives a physically 35 

correct description of the chemical structures formed by the quantum atom.  While there is no 36 

doubt that quantum mechanics is essential for understanding atomic spectra, chemical structure 37 

generally involves only the ground state of the atom so that the greater part of structure theory is 38 

readily derived using only classical electrostatics.  The key is to recognize that the chemical 39 

bond and the electrostatic flux have the same properties.  Both depend only on the amount of 40 

charge (the valence) that is used to form the bond and neither depends on where that charge is 41 

located.  This contrasts with quantum mechanical descriptions, which supply exactly the 42 

information that the bond theory does not require.  Quantum mechanics accurately describes the 43 

location of the charge between the atoms, but is unable to identify how much charge is used to 44 
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form a given bond.  Quantum mechanics cannot be entirely ignored in such a classical approach, 45 

but in most cases the essential constraints that it describes can easily be introduced via a few 46 

plausible ad hoc rules and a small number of empirically determined atomic and bond 47 

parameters. This is not to say that quantum calculations do not properly describe chemical 48 

bonding, only that the flux picture provides a complementary, simpler, yet physically accurate 49 

picture that has many advantages in predicting structure and geometry. This section describes the 50 

features of the flux model that are necessary to understand how the flux can be used to 51 

determined bond angles. It is a particularly simple theory because it uses only concepts that are 52 

introduced early into the physics curriculum at about the same time that the chemical curriculum 53 

introduces the concept of the chemical bond. 54 

 An important heuristic that underlies the flux theory of the chemical bond is the principle 55 

of maximum symmetry which states that: 56 

A system in stable static equilibrium adopts the highest symmetry that is consistent with 57 

the constraints acting on it (Brown 2009).      (1) 58 

The justification for this principle is that the presence of a symmetry element in such a system is 59 

necessarily an energy minimum with respect to any deformation of the system that breaks this 60 

symmetry.  By definition, a system in stable static equilibrium is at an energy minimum, and 61 

displacing an atom in such a system from a mirror plane (for example) in either direction must 62 

result in an increase in the energy.  An equilibrium system with mirror symmetry has a lower 63 

energy than the same system in which this mirror plane is lost, unless there is some physical 64 

constraint that prevents the system from adopting the mirror symmetry.  A corollary of this 65 

principle is: 66 
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If a system lacks a potential symmetry element, a constraint that breaks that symmetry 67 

must be present.         (2)  68 

 The electrostatic flux that lies at the heart of the theory is the same as the number of 69 

Faraday lines of electric field that link two equal and opposite charges.  It is scaled so that the 70 

flux is equal in magnitude to each of these charges, and if each line of field represents one unit of 71 

charge, the flux is equal to the total number of lines linking the charges.  The unit in which the 72 

charge and flux are measured in this theory is the valence unit (vu) which is equal to the charge 73 

of one electron.  The valence of an atom is defined as the amount of charge the atom uses for 74 

bonding. 75 

 An atom consists of a nucleus surrounded by a cloud of negative charge whose density 76 

can be calculated from quantum mechanics.  Although the charge surrounding the nucleus is 77 

often described as being composed of discrete electrons, individual electrons can be neither 78 

identified nor located in the atom; the electron as an entity disappears as soon as it enters the 79 

atom, but it bequeaths its charge, spin and mass to the charge cloud of the atom.   For this 80 

reason the term ‘charge density’ is preferred to the more usual term ‘electron density’.   81 

 Because the flux does not depend on the location of the charge, details of the radial 82 

distribution of the charge density are irrelevant in the flux theory.   However, for the calculation 83 

of angles it is important that the flux have spherical symmetry.  For the free atom spherical 84 

symmetry follows from the principle of maximum symmetry, but the strong central force of the 85 

nucleus ensures that the charge density remains essentially spherical even when the atom is 86 

bonded .  Although on bond formation the charge density relaxes in important ways, the density 87 

typically changes by only a few percent.  While this results in significant changes to the energy, 88 
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the difference it makes to the flux description of the bond is small and unimportant.  The 89 

assumption of spherical symmetry, and a consideration of where this spherical symmetry might 90 

be violated, is central to the prediction of bond angles. 91 

    <Figure 1 > 92 

 For atoms with atomic numbers less than 18 (argon) the ionization energies identify a 93 

shell of charge (known as the valence shell) that is bound sufficiently weakly to be available to 94 

form chemical bonds.  This shell carries a negative charge which is linked to the positively 95 

charged core by an electrostatic flux equal to the amount of charge in the valence shell.  Fig. 1 96 

shows a schematic picture of two bonded atoms.  The valence shell (gray) of each atom is 97 

shown as separated from its respective core (light gray) so as to leave room to display the flux 98 

lines (arrows) that link the valence shell to the core.  This schematic separation is permitted, 99 

because although in the physical atom the core and valence shell overlap, the flux does not 100 

depend on where the charges are physically located.  101 

 When two atoms form a bond, their valences shells overlap as shown conceptually by the 102 

black region in Fig. 1, each atom retaining spherical symmetry and contributing equal amounts 103 

of charge to the bond. The flux that forms the bond is shown by the solid arrows linking the core 104 

of each atom to the valence charge that each atom contributes to the bond. 105 

 The overlap between the two valence shells occurs at some point along the line joining 106 

the two nuclei, but since the flux does not depend on where this point occurs we are free to 107 

imagine the overlapping bonding charge lying at any convenient point.  We can assume that it 108 

lies at the center of the bond, or if it proves more useful, we can assume that all the bonding 109 

charge lies within the boundary of either of the two bonded atoms.  Whichever choice we make, 110 
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the flux is the same, but the different choices lead to different bond models.  If we assume that 111 

the overlap occurs in the middle of the bond we have the neutral atom model in which we assign 112 

each portion of the bonding charge to its own atom.  This is the situation shown in Fig. 1.1  113 

Alternatively, if we assign all the bonding charge to the atom that we call the anion, we have 114 

created the ionic model in which the flux lines run from the cations to the anions.  Restricting 115 

bonds to those with integral valence leads to the VSEPR model discussed in Section 6 as well as 116 

the ball-and-stick model of organic chemistry.  Because the flux is independent of the actual 117 

location of the charge, all these models can be used to describe any bond, regardless of where the 118 

bonding charge might physically be located, subject only to any assumptions that restrict the 119 

scope of the model.  For example, the ionic model can be used to describe covalent structures 120 

such as the acetate ion (Brown 1980), subject only to the topological restriction that every bond 121 

must have an atom labelled ‘anion’ at one end and an atom labelled ‘cation’ at the other; the 122 

ionic model cannot be used to describe cation-cation or anion-anion bonds.  This restriction is 123 

mathematical not chemical, so the anion electronegativity need not be larger than that of the 124 

cation.  The neutral atom model can be used to describe any localized bond, but the ionic model 125 

leads to more useful theorems. 126 

 The closer two atoms are brought together, the greater the amount of charge in the bond 127 

overlap region and the greater the flux forming the bond.  The length of the bond thus correlates 128 

with the amount of flux in the bond, but it also depends on the sizes of the atoms.  The size does 129 

require a knowledge of the radial distribution of the charge of each atom and can only be 130 

                                                           
1  Fig. 1 shows only one bonded atom.  In crystals each atom is surrounded by other atoms so 
all the valence shell charge is used for bonding.  However, the presence of non-bonding charge 
(lone pairs) in the valence shell prevents the formation of bonds in some directions resulting in 
the creation of molecules (see Sections  6 and 7). 
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calculated using quantum mechanics, so in the flux theory the correlation between the length, Rij, 131 

and the flux, φij (or valence,2 sij) of the bond between atoms i and j is determined empirically 132 

from crystal structure determinations.  This correlation can be described for most bond types by 133 

the simple expression given in eqn (3), whose two empirical parameters, R0 and b, are tabulated 134 

for many bond types (Brown 2014b) and are robustly transferable among all bonds between the 135 

same pair of atoms. 136 

 sij = exp((R0-Rij)/b)        (3) 137 

 Since the valence of an atom is the total amount of charge it uses to form all its bonds, it 138 

follows that the sum of the fluxes, φij (or valences, sij) of all the bonds formed by atom i must be 139 

equal to its atomic valence, Vi.  The valence sum rule, eqn (4), is the central rule of the flux 140 

theory. 141 

 Vi = ∑jφij = ∑jsij        (4) 142 

 In the ionic version of the flux theory a chemical bond is an electric capacitor since it 143 

consists of two equal and opposite charges (on the cation and the anion) linked by electrostatic 144 

flux.  A bond network is therefore a capacitive electrical circuit.  It can be solved using the two 145 

Kirchhoff equations provided the capacitance of each bond is known.  The bond capacitance 146 

cannot be calculated from first principles, but in the absence of any constraint that might destroy 147 

the intrinsic equivalence of all the bonds, the principle of maximum symmetry implies that all 148 

bonds should have the same capacitance.  If the capacitances are all the same they cancel from 149 

                                                           
2 The bond flux and bond valence are two different names for the same concept.  The term 
‘bond flux’, φ, is normally used for the theoretically determined flux, ‘bond valence’, s, is used 
for the same quantity when determined experimentally.  The distinction is convenient when 
comparing theoretically predicted values with the experimentally determined values which are 
subject to experimental uncertainty. 
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the Kirchhoff equations, yielding the set of network equations (5) and (6) from which the bond 150 

fluxes can be predicted (Brown 2002).  151 

 Vi = ∑jφij          (5)  152 

 0 = ∑loopφij         (6)  153 

 Once the fluxes are known, bond lengths can be predicted using eqn (3) with φ 154 

substituted for s. In the absence of any constraint arising from electronic anisotropies (Sections 7 155 

and 8) or steric stresses (discussed in Section 9), the bond lengths predicted this way agree with 156 

experiment to within a few hundredths of an Ångström (Preiser et al. 1999).  These predictions 157 

of bond lengths can be made from a knowledge of only the bond topology; it is not necessary to 158 

know the spatial arrangement of the atoms in three-dimensions. 159 

 The ion, i, can be characterized by its bonding strength, Si, which is defined by eqn (7), 160 

where <N>i is a typical coordination number for atom i, conveniently taken as the average 161 

coordination number formed with oxygen (Brown, 1988). 162 

 Si = Vi/<N>i         (7) 163 

The bonding strengths given by Brown (2014a) are a measure of the flux of a typical bond 164 

formed by the atom.  It is convenient to distinguish between the bonding strength of a cation, SA 165 

(A for Lewis acid) and the bonding strength of an anion, SB, (B for Lewis base), SA often being 166 

shown with a plus sign and SB with a minus sign.  For example, the bonding strength, SA, of the 167 

magnesium ion is +2/6 = +0.33 valence units (vu), while that for the sulfur ion is +6/4 = +1.50 168 

vu.  SB for oxygen is −2/4 = −0.50 vu.  Since the bonding strength is an estimate of the flux of a 169 

typical bond formed by an atom, one expects stable bonds to be formed only between atoms with 170 

similar bonding strengths.  The condition for bond formation is given by eqn (8), known as the 171 
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valence matching rule. 172 

 0.5 < |SA/SB| < 2          (8) 173 

In many cases eqn (8) is sufficient to determine the bond network from which bond lengths can 174 

be predicted.  This summary provides the essential background needed to understand how the 175 

flux theory can be used to determine the bond angles. 176 

Using the flux theory to predict bond directions 177 

 The following assumption is central to the use of the flux theory in the prediction of bond 178 

angles.  179 

Atoms are spherically symmetric even when they are bonded to other atoms. (9) 180 

The justification for this assumption is given in Section 2.  If the negative charge of an atom is 181 

distributed around the nucleus with spherical symmetry, the flux linking the core and the valence 182 

shell must also be spherically symmetric as shown in Fig. 1.  Although the flux of a bond does 183 

not depend on the radial distribution of the charge around the atom, its direction does depend on 184 

its angular distribution.  It follows from the assumption (9) that the solid angle subtended by a 185 

bond at the nucleus of a spherical atom is proportional to its flux as given by eqn (10):  186 

  Ωij = 4π(φij/Vi) = 4π(sij/Vi)       (10)  187 

where Ωij is the solid angle in steradians at atom i subtended by the bond of flux, φij, (or valence, 188 

sij).  4π is the solid angle of the whole sphere.  This is the relation that determines the bond 189 

angles. 190 

 Converting the solid angle subtended by a bond into the angle between two bonds is, 191 

however, not straightforward.  Complications arise on two accounts.  The geometric problem of 192 

converting solid angles into bond angles, and the presence of additional constraints, either 193 
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electronic or steric, that lower the symmetry in the coordination sphere of the central atom.  194 

Each of these problems is addressed below. 195 

High symmetry structures 196 

 The simplest cases are easy to deal with. If all the bonds formed by an atom have the 197 

same bond flux, the principle of maximum symmetry implies that, if possible, all these bonds 198 

will be related by symmetry.  Two bonds will be collinear, three will point to the corners of a 199 

triangle, four to the corners of a tetrahedron and six to the corners of an octahedron.  There is no 200 

reasonable coordination geometry in which five or seven bonds can all be related by symmetry.  201 

This explains the frequency with which tetrahedral and octahedral coordination are found while 202 

five and seven coordination are adopted only when constraints make four or six coordination 203 

impossible.  The high symmetry coordination spheres that make the bonds equivalent 204 

automatically determine the bond angles.  The principle of maximum symmetry, eqn (1), 205 

accounts for most of the observed coordination geometries without the need to distinguish 206 

between covalent and ionic bonds.  The hybrid orbitals that are often presumed to determine 207 

covalent bond directions merely reflect the possible high symmetry point groups with two, three 208 

and four-fold symmetry, but for light atoms, hybrid orbitals are unable to account for the six-fold 209 

coordination found around the cations in, e.g., Al2O3, PF6
- and SF6.3  The problem of 210 

hypervalency that arises in orbital models does not exist in the flux theory. 211 

Lowering the symmetry, the influence of the bond network  212 

 In some compounds the presence of additional constraints results in the breaking of the 213 

                                                           
3  There are many other problems with the hybridized orbital model.  The spherical harmonics 
used to describe the orbitals are not wave functions, just a mathematical tool rather than a 
physical concept.  A filled set of s-p orbitals in any hybridized form has, by definition, perfect 
spherical symmetry, favoring no particular directions.  
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high symmetries described in Section 4.  Three constraints can be identified.  A lower 214 

symmetry may be imposed either by the bond network (Section 5), the electronic structure of the 215 

atom (Sections 6-8), or by three dimensional space (Section 9).   216 

 If the bonded neighbors of an atom have different environments in the bond network they 217 

may have different fluxes, in which case the solid angles subtended by the bonds will not be 218 

equal.  Eqn (10) still applies: stronger bonds will subtend larger angles.  Consequently we 219 

expect the bond angles formed between stronger bonds to be larger than those between weaker 220 

bonds.  The difficulty arises in converting the solid angles into angles between the bonds.  A 221 

couple of techniques are available for making these predictions quantitative as illustrated by the 222 

following examples.   223 

 The X2O7 complexes (most of them anions), where X = Si4+, P5+, S6+ and Cl7+,  consist 224 

of two tetrahedra sharing a common bridging oxygen atom, Ob.  The remaining six oxygen 225 

atoms within the complex are terminal, Ot, but if the complex is an anion the terminal oxygen 226 

atoms will also form weak bonds to external cations.  The angles of interest are the Ot-X-Ot and 227 

Ot-X-Ob angles within the tetrahedron, and the X-Ob-X angle at the bridging oxygen that links 228 

the two tetrahedra.  The latter angle is of particular interest in the mineralogy of silicate 229 

minerals as they link the SiO4 tetrahedra into chain-, sheet- and framework-minerals (Gibbs et al. 230 

1972) .  These X-Ob-X angles are discussed in Section 7. 231 

 Since the behavior of the O-X-O angles of all these complexes is the same, the discussion 232 

here is limited to the case where X is S6+. The bond fluxes can be predicted using the network 233 

equations (5) and (6), but in the case where the S-Ot bonds are all equivalent the fluxes can be 234 

assigned by inspections. Since the valence sums at S and Ob must equal the atomic valence, the 235 
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flux of each of the two S-Ob bonds is 1.00 vu, hence that of the S-Ot bonds is 1.67 vu.  From eqn 236 

(10) it is clear that the Ot-S-Ot angle must be greater than 109 ̊ and that the Ot-S-Ob angle must be 237 

correspondingly smaller.  These estimates can be made quantitative in two different ways, the 238 

difficulty lies in how to convert the solid angles, which can cover the sphere in different ways, 239 

into the angles between bonds. 240 

                                        <Table 1 here> 241 

 The first approach to calculating these angles was proposed by Murray-Rust et al. (1975) 242 

and Brown (1980b).  A correlation between the bond angle and the average valence of the two 243 

bonds that defines the angle is found by interpolating between two limiting configurations in 244 

which the angles are defined by symmetry.  In the present case one of these is the regular SO4 245 

tetrahedron in which the four S-O bonds each have a flux of 1.50 vu and the angle between them 246 

is 109 ̊.  The other limiting configuration is the planar SO3 triangle that would be obtained by 247 

removing the bridging oxygen, Ob, to infinity.  In the latter case the bond fluxes are 2.00 vu for 248 

the three S-Ot bonds and 0 vu for the S-Ob bond, with an Ot-S-Ot angle of 120̊ and an Ot-S-Ob 249 

angle of 90̊.  A second order fit (eqn (11)) between the average fluxes of the bond pairs, s, and 250 

these three angles, θ, yields the predictions shown in column 2 of Table 1.   251 

 θ = 46(φ−1) −16(φ−1)2 + 90 ̊        (11) 252 

 An alternative approach, proposed independently by Harvey et al. (2006) and Zachara, 253 

(2007), makes use of the bond valence vector, sij: a vector parallel to the bond with a magnitude 254 

equal to the bond flux.  Harvey et al. and Zachara proposed that as long as an atom is expected 255 

to lie at the center of its coordination polyhedron, the sum of the bond valence vectors, Δsi in eqn 256 

(12), should be zero. 257 
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 Δsi  = ∑jsij          (12) 258 

In coordination spheres with sufficiently high symmetry such as a trigonally distorted 259 

tetrahedron, eqn (12) provides sufficient constraints to determine both the Ot-S-Ot and Ot-S-Ob 260 

angles.  These are shown in the third column of Table 1.  The fourth column in Table 1 shows 261 

the observed angles in K2S2O7.  As the disulfate ion always shows a small additional (as yet 262 

unexplained) systematic distortion that breaks the trigonal symmetry (Brown 1980b), the angles 263 

shown in Table 1 have been averaged to give trigonal symmetry; the reported Ot-S-Ot angles 264 

range from 112.9 to 115.7 ̊ and the Ot-S-Ob angles from 101.3 to 105.9 ̊.  In this example the 265 

differences between the two predictions and the observed angles is comparable to the 266 

experimental uncertainty of one or two degrees.  Like the prediction of bond lengths using eqns 267 

(5) and (6), the prediction of angles using eqn (11) or (12) does not depend on knowing the 268 

positions of the atoms in space, only on the way in which they are linked by bonds. 269 

 When Δsi is found by experiment to deviate from zero, it provides a direct measure of the 270 

deviation from the higher symmetry environment.  Using eqn (3) it is easily shown that Δsi 271 

points along the direction in which an atom is displaced from the center of its coordination 272 

sphere, a result that can be useful in analysing the nature of a distorting constraint, for example 273 

when predicting the S-Ob-S angle discussed in Section 7.  Before pursuing this calculation it is 274 

necessary to review the application of the flux theory to atoms with lone pairs.  275 

The flux theory of lone pairs (non-bonding valence-shell charge) 276 

 The assumption that the charge in the valence shell is spherically symmetric still applies 277 

to atoms with non-bonding charge (lone pairs)4 in its valence shell.  Even though the valence 278 

                                                           
4  All non-bonding charge in the valence shell is referred to here as ‘lone pairs’ as this 
terminology is simple and familiar.  It is not intended to imply that this charge consist of 
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shell retains its spherical symmetry, the bonding or non-bonding function of the charge in the 279 

valence shell can be distributed in different ways that do not necessarily observe this symmetry.  280 

In some compounds both the bonding charge and lone pairs are arranged within the valence shell 281 

with spherical symmetry allowing the bond angles to be calculated in the same way as for the 282 

high symmetry coordination environments described in Sections 4 and 5.  In this case the lone 283 

pair is said to be inactive.  In other compounds the bonding and non-bonding charge may appear 284 

on opposite sides of the valence shell, with the result that the bonding is asymmetric; one side of 285 

the atom forms one or more strong (primary) bonds and the other side forms only weak 286 

(secondary) bonds or no bonds at all.  In this case the lone pair is said to be stereoactive.  The 287 

bonding around the oxygen atoms in the sulfate ion is an example of this asymmetric bonding.  288 

In the sulfate ion the lone pair is said to be stereoactive, but this distortion is not an intrinsic 289 

property of the oxygen atom; it is driven by the environment in which the atom finds itself; an 290 

atom with lone pairs is able to form bonds that are much stronger than is permitted by the 291 

valence matching rule (eqn (8)) by concentrating its bonding charge in the portion of the valence 292 

shell used to form the primary bond(s).  In order to preserve the spherical symmetry of the 293 

valence shell charge, the non-bonding lone pairs must be moved away from the bond region.  294 

The result is the separation of the bonding and lone pair charge into separate sections of the 295 

valence shell. 296 

 Since all anions have lone pairs, whether they are stereoactive or not, it is convenient 297 

focus this discussion on anions, specifically on oxygen which forms the bridging bond in the 298 

X2O7 complexes.  The arguments, suitably adapted, apply to other anions besides oxygen, as 299 

                                                                                                                                                                                           
identifiable pairs of electrons.  The integral charge associated with the non-bonding charge is a 
consequence of the requirement that atomic valences must be integers. 
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well as to cations containing lone pairs. When the bonding around the anion is regular as found 300 

around the oxygen atom in MgO which has the NaCl structure, the bonding and non-bonding 301 

functions of the valence shell of oxygen are both spherically distributed, but in the presence of a 302 

cation such as S6+ that has a bonding strength (+1.5 vu) that is larger than that of the anion (−0.5 303 

vu), the bonding and non-bonding functions of oxygen are rearranged so as to ensure that the 304 

bonding region of the valence shell contains sufficient bonding charge to match that of the 305 

sulfur.  306 

 Most anions adopt an intermediate configuration between the extremes of having full 307 

spherical symmetry, and full stereoactivity with all the bonds appearing on one side of the atom.  308 

The Principle of Maximum Symmetry (eqn (1)) implies that the default configuration is the 309 

symmetric environment observed when the lone pair is not stereoactive.  This arrangement is 310 

found when the bonding strength, SA, of the cation is less than that of the anion, SB.  When SA is 311 

larger than SB this symmetry is broken, but breaking the symmetry implies the presence of an 312 

additional constraint (eqn (2)), namely the need to place more bonding charge (and less of the 313 

lone pair charge) in the region of the primary bond.  In MgO, where in eqn (8) the ratio |SA/SB| 314 

0.33/0.50 = 0.67) is less than 1.0, oxygen adopts regular octahedral coordination, but in the 315 

sulfate ion, SO4
2-, where |SA/SB| (1.50/0.50 = 3.0) is greater than 1.0, the S-O bond can only be 316 

formed if three quarters of the oxygen bonding charge (1.50 vu) resides in the region of the bond.  317 

The remaining one quarter (0.5 vu) then shares the rest of the valence shell with the lone pairs, 318 

and the secondary bonds formed by the oxygen atom must have bond valences (fluxes) of less 319 

than 0.5 vu. 320 

                                        <Table 2 here> 321 
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 The influence of the lone pair on the geometry can be made quantitative by considering 322 

the relative bonding strengths of the cation and anion, as illustrated by the oxides of the cations 323 

from the third row of the Periodic Table shown in Table 2.  The fifth column of this table shows 324 

the ratio, |SA/SB|, between the bonding strength of the cation and the bonding strength, −0.50 vu, 325 

of oxygen. The valence matching rule (eqn (8)) is not obeyed by Na2O which is why Na2O is 326 

unstable, but it is obeyed by Mg2+, Al3+ and Si4+ all of whose oxides are stable.  The remaining 327 

elements, P5+, S6+ and Cl7+ do not satisfy the valence matching rule, but they can form a stable 328 

bond with oxygen if the oxygen lone pairs become stereoactive.  These cations use as much of 329 

the valence-shell charge of the oxygen as needed to form the primary bond by matching the 330 

bonding strength of the cation (SA in column 4 of Table 2).  The rest of the valence shell of the 331 

oxygen atom comprises most of the non-bonding lone-pair charge together with the remaining 332 

bonding charge which is sufficient to form only weak secondary bonds.  The number of primary 333 

and secondary bonds is shown in column 7. 334 

 The degree to which the lone pair can be described as stereoactive increases as the 335 

bonding strength of the cation increases.  No stereoactivity is seen as long as the cation bonding 336 

strength is less than that of oxygen, but once that boundary has been passed, the anion moves 337 

off-center in its coordination sphere, producing progressively stronger primary bonds and weaker 338 

secondary bonds.  The oxygen atom in Al2O3 (corundum) is four coordinate, but since the 339 

bonding strength of aluminum is 0.57 vu, two primary bonds are formed with bond fluxes of 340 

0.57 vu (1.86 Å) leaving the two secondary bonds with only 0.43 vu of flux (1.97 Å).  The 341 

degree of stereoactivity increases as the bonding strength of the cation increases.  Once the ratio 342 

of the bonding strengths exceeds 2.0 the oxides become unstable and oxyanions are formed 343 
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instead.   In all cases the lone pair is not fully stereoactive and some weak (secondary) bonds 344 

are formed in the region primarily occupied by the lone pairs. 345 

 Where the lone pairs are fully stereoactive no secondary bonds are formed and in cases 346 

where there is only one primary bond the anion necessarily terminates the bond network leading 347 

to the formation of molecules such as CO2 and CF4.  Molecules are therefore associated with 348 

strong bonds, often regarded as covalent, while crystals are associated with weaker bonds, 349 

usually described as ionic. 350 

 The popular Valence Shell Electron Pair Repulsion (VSEPR) model described by 351 

Gillespie and Hargittai, (1991) can be derived by replacing the flux with the corresponding 352 

number of valence-shell electron-pairs.  By defining bonds in terms of electron pairs the VSEPR 353 

model restricts its scope to molecules in which the lone pairs are fully stereoactive, though the 354 

model also works for partially stereoactive lone pairs if one ignores the secondary bonds.  The 355 

flux theory is, however, more general, allowing the degree of stereoactivity to be explored and in 356 

many cases predicted as described in Section 7.  357 

Predicting bond angles around atoms with lone pairs 358 

 The angles around atoms with lone pairs depend on several factors, namely: the bonding 359 

strength of the primary ligands, the atomic valence of the ligand and the steric constraints 360 

imposed by the surrounding structure.  The degree of stereoactivity can be determined from the 361 

value of Δsi in eqn (12).  If the valence shell is spherically symmetric and the lone pairs are fully 362 

stereoactive, the vector sum of the fluxes linking the core to the lone pairs should be equal and 363 

opposite to the sum of the valence vectors of the bonds, −Δsi.  In the case of a single lone pair 364 

this would be 2.00 vu, but both Harvey et al. (2006) and Zachara (2007) found that Δsi was 365 
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typically somewhat less, indicating that the lone pairs were only partially stereoactive.  366 

Bickmore et al. (2013) have shown that the principal determinant of the degree of stereoactivity 367 

is the bonding strength of the primary bonds, approximated in Fig. 2 (taken from their paper) by 368 

the bond valence of the strongest bond plotted along the horizontal axis.  This shows that as 369 

long as the valence of the primary bond is less than the bonding strength of oxygen (−0.50 vu), 370 

the lone pair is not stereoactive, but if it is larger than this, the lone pair becomes increasingly 371 

stereoactive with Δsi, plotted along the vertical axis, following eqn (13), reaching a value of 2.0 372 

vu when the cation bonding strength is equal to 2.0 vu.   373 

 |Δsi|  = 0  for SA<0.5 vu 374 

 |Δsi| = 1.33(SA−0.5)    for SA>0.5 vu      (13) 375 

Eqn (13) places restrictions on the possible bond angles but it is not always possible to 376 

predict individual angles exactly.  When the lone pairs on oxygen are not stereoactive, the 377 

coordination is symmetric and the angles can be derived from the symmetry, but when the lone 378 

pairs are stereoactive, the number and directions of the secondary bonds are determined in large 379 

measure by the bonding strengths and packing requirements of the remaining atoms in the 380 

structure.  Fig. 2 shows that when the primary bond has a flux greater than 1.0 vu, eqn (13) 381 

gives a reasonable prediction of Δsi.  In this region only one primary bond is possible and the 382 

bond angles will depend on how the secondary bonds are disposed.  If the primary bond has a 383 

flux between 0.5 and 1.0 vu, there may be more than one primary bond, and we expect the bond 384 

angle between them to be determined by their relative bond fluxes.  However, the solid line in 385 

Fig. 2 shows that while eqn (13) is approximately followed in this region there is a wide scatter 386 

which suggest that the bond flux is not the only determinant of the bond angle.  387 
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                                       <Table 3 here>  388 

 The nature of these other factors can be seen by examining the X-Ob-X angles in the 389 

X2O7 complexes with X = Si4+, P5+, S6+ or Cl7+.  Since the fluxes of the X-Ob bonds are all the 390 

same in these complexes (1.00 vu), the variations in the bridging bond angles ranging from 114 ̊ 391 

to 180 ̊ (column 5 in Table 3) cannot be explained by the variation in the strength of the primary 392 

bond.  The X-O-X angle is found to vary systematically with X, suggesting that the valence of 393 

the bonded atom, X, is also responsible for determining the degree of lone pair stereoactivity on 394 

the bridging oxygen. 395 

 Because Ob forms only two bonds, each with a flux of 1.00 vu, there is a simple 396 

relationship between the X-O-X bond angle, θ, and the magnitude of the bond valence vector 397 

sum, ΔsO, around Ob given by eqn (14). 398 

 |ΔsO| = 2sxo cos(θ/2)          (14) 399 

Since sxo = 1.00 vu, if θ is known Δsi can be calculated and vice versa.  Fig. 2 shows that when 400 

sxo = 1.0 vu, Δsi has a range that extends from zero to 1.0 vu corresponding to θ varying from 401 

180̊ to 120 ̊ which, as expected, covers the range of bridging angles shown by the X2O7 402 

complexes in Table 3. 403 

 The most obvious factor that correlates with these angles is the valence of the X atom 404 

which measures the total charge in the valence shell of X, and hence determines the density of 405 

the flux around X.  Even though the X-O bond flux does not change, increasing the valence of X 406 

concentrates this flux into a smaller solid angle at X, and since the flux lines linking the X and O 407 

atoms are continuous, the solid angle of the X-O bond at O must also be reduced.  Increasing the 408 

density of the bonding charge in the valence shell of O can only be achieved by displacing more 409 
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of the non-bonding charge from the bond region by making the lone pairs more stereoactive.  410 

Silicon has a valence of 4.0 vu so a bond of valence 1.0 vu subtends a solid angle of 4π/4 = 3.14 411 

steradians at the silicon nucleus, where 4π is the solid angle of the whole sphere.  Chlorine on 412 

the other hand has a valence of 7.0 vu so a bond of 1.0 vu occupies a solid angle of just 4π/7 = 413 

1.79 steradians at the chlorine nucleus.  The smaller the angle at X, the greater the density of the 414 

flux in the bond and the smaller the angle at O.  Increasing the valence of X thus increases the 415 

density of the bonding flux at O leaving less space for the lone pair in the bond region; the lone 416 

pair is forced to become more stereoactive and the X-Ob-X angle becomes smaller.  If the 417 

degree of stereoactivity is given by |Δsi|/√2, where the denominator is the value of |Δsi| when the 418 

two lone pairs are fully stereoactive, then the degree of stereoactivity shown by the complexes in 419 

Table 3 ranges from zero to 77%. 420 

This can be made semi-quantitative (Brown 2014a).  The bond flux occupies a volume 421 

that can be approximated by two outward pointing cones sharing a common base of area A, one 422 

with its apex at the X atom subtending an angle ΩX , the other with its apex at O subtending an 423 

angle ΩO.  Since the base area of a cone with height r and apical solid angle Ω is given 424 

approximately by eqn (15): 425 

 A = r2Ω          (15) 426 

and since the area A is common to both cones, we can write: 427 

 rX
2ΩX = rO

2ΩO 428 

where rX and rO are the distances from X and O respectively to the common area A, 429 

or ΩO = ΩX (rX/rO)2            (16) 430 

From eqn (10) 431 
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  ΩX = 4πφ/VX 432 

and since φ, the flux of the X-O bond, is 1.0 vu it follows that: 433 

 ΩO = 4π(rX/rO)2/VX         (17) 434 

The ratio (rX/rO)2 is not known, but if the common base of the cones lies at the point where the 435 

space occupied by the bond is widest, the ratio is likely to be of the order of 1.0.  The value of 436 

2.0 gives reasonable agreement with the observed angles.  If this value is assumed, the angle 437 

subtended by the X-O bond at the oxygen atom is given by eqn (18). 438 

 ΩO = 4π(2.0/VX)          (18) 439 

The relationship between θ and the solid angle, Ω, requires a calibration that can be fixed by 440 

three high symmetry points; the two extreme cases where the lone pairs are inactive and fully 441 

active, and one intermediate point.  If the lone pairs are inactive, θ = 180 ̊, ΩO = 4π×0.5 442 

steradians.  If the lone pair is fully stereoactive the bond flux of 1.0 vu occupies 1/6 of the total 443 

oxygen valence shell and the oxygen atom’s six valence units will be arranged at the corners of 444 

an octahedron, in this case θ = 90 ̊, ΩO = 4π×0.17 steradians.  The intermediate case has 445 

triangular symmetry: a lone pair flux of 2 vu points to one corner of the triangle and a 446 

combination of 1.0 vu of bonding and 1.0 vu of non-bonding (lone pair) flux each point to the 447 

other two corners.  For this case θ = 120 ̊ and ΩO is 4π×0.33 steradians.  The correlation 448 

between θ (in degrees) and VX, eqn (19), is found by converting ΩO to VX using eqn (18). 449 

 θ = 90 − 90/VX + 540/VX
2        (19) 450 

The angles, θ, predicted by eqn (19) are compared with the observed ranges in the last two 451 

columns of Table 3.  These angles are used to calculate the values of Δsi shown in columns 2 452 

and 3 using eqn (14).  Given the assumptions made in the above analysis, the agreement 453 
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between the predicted and observed angles is sufficient to suggest that the difference in flux 454 

density is the cause of the narrowing of the X-Ob-X angles in going between X = Si4+ and Cl7+.   455 

 The wide range of observed angles for a given X, up to 40̊ in the case of Si2O7
6-, suggests 456 

that the angles are affected by other non-intrinsic factors, factors that depend on the context in 457 

which the complex is found.  These include the steric and packing requirement and must be 458 

analyzed separately for each compound.  The range of observed bridging angles is largest for 459 

the disilicate ion for several reasons, the angle is particularly sensitive to the choice of (rX/rO)2 in 460 

deriving eqn (19), the flux has a lower density making the bond soft, and the disilicate group, 461 

being more tightly bonded to the external structure, is more responsive to the external stresses.  462 

As VX increases, the angles become stiffer and the linkages to the rest of the structure weaker. 463 

 The above discussion shows that three separate effects affect the angles between the 464 

primary bonds formed by atoms with lone pairs.  The first is the size of the flux of the X-O 465 

bond, the second is the density of this flux and the third is the stress induced by the structure of 466 

adjacent atoms. 467 

Bond angles in transition metal complexes 468 

 As the concept of a valence shell is not well defined in the transition metals, we must 469 

define the valence shell as containing just the bonding charge, relegating any non-bonding 470 

charge to the core, even though the core and valence shell may have similar energies.   471 

 As most transition metals are either four- or six-coordinate, their bond angles can be 472 

derived from their tetrahedral or octahedral geometries in the same way as main group cations. 473 

There are, however, a few exceptions in which intrinsic electronic instabilities result in bonding 474 

geometries in which the expected high symmetry is broken. 475 
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 The largest of these distortions is found around early transition metals in their d0 and d1 476 

states.  When they are in an environment with a center of symmetry they are unstable.  477 

Tetrahedral coordination is unaffected as it has no center of symmetry, but when these atoms are 478 

six-coordinated, they show a tendency to move away from the center of their coordination 479 

sphere, a distortion that becomes larger as one moves across the Periodic Table.  It is absent for 480 

Sc3+; small displacements are found in some compounds of Ti4+ as for example in BaTiO3, but it 481 

may also appear as a disordered displacement in compounds where the titanium atom nominally 482 

occupies a site with a crystallographic center of symmetry as in SrTiO3  (Abramov et al. 1995).  483 

Around V5+ the distortion is much larger and is always present, while six-coordinated Cr6+ is 484 

unknown, even though the chromium atom could easily surround itself with six oxygen atoms at 485 

the expected bond distance.  The environment of V5+ in V2O5 provides a useful case study.  The 486 

vanadium atom is displaced towards one of the six ligands, giving it a tetragonally distorted 487 

octahedral environment of oxygen atoms with the two axial bonds having lengths of 1.59 Å (1.80 488 

vu) and 2.80 Å (0.06 vu) and four equatorial bonds of length 1.89 Å (0.80 vu).  The large flux of 489 

the short bond causes the equatorial bonds to be bent by 14 ̊ towards the longer axial bond 490 

(Shklover et al. 1996).  One can describe this distortion as a displacement of the vanadium atom 491 

away from the center of a rigid octahedron of oxygen atoms, but as the discussion in Section 5 492 

points out, displacing the atom in a rigid octahedron of ligands will always result in a non-zero 493 

valence vector sum pointing in the direction of the displacement.  Bending the equatorial bonds 494 

away from the shortest bond helps to reduce this sum, but it is not sufficient to keep the sum at 495 

zero.  Any distortion shown by d0 and d1 transition metal cations moving off-center in an 496 

octahedral environment implies a polarization of the charge in the valence shell in the direction 497 
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of the displacement of the vanadium atom.  In V2O5 the bond valence vector sum is 0.97 vu, 498 

indicating a significant polarization, but this appears to be compensated by a corresponding 499 

opposite polarization of the core so as to retain a total charge density that is as close as possible 500 

to spherical (Gillespie et al. 1996).  One could consider the polarization of the valence shell to 501 

be an artifact of the way the valence shell has been defined, since a definition that included the 502 

polarized non-bonding charge would be closer to maintaining spherical symmetry.  Kunz and 503 

Brown (1995) were able to predict the variation in the bond lengths in d0 transition metals by 504 

assigning specific capacitances to the bonds in the network equations (eqns (5) and (6)) but so 505 

far there has been no attempt to explore either the bond angles or the properties of Δsi in these 506 

complexes. 507 

 A centrosymmetric tetragonal distortion of octahedral coordination is found around Cu2+ 508 

and Mn3+, with both axial bonds becoming longer and the equatorial bonds shorter.  This is 509 

usually called the ‘Jahn-Teller’ distortion, though the Jahn-Teller theorem is more general, 510 

stating that any system will distort if such a distortion can remove a degeneracy in the ground 511 

state (Dunitz and Orgel 1960).  Since this distortion is centrosymmetric, all the bond angles are 512 

fixed at 90 ̊ by symmetry.  A similar distortion is found around Ni2+ and Pt2+ where it is 513 

sufficiently large that the axial bonds have disappeared and only the four equatorial bonds 514 

remain. 515 

 The late transition metals show a number of unusual bonding features associated with 516 

Pearson (1973) softness, but though unusual environments are sometimes found, the bond angles 517 

generally remain close to those expected for high symmetry coordination. 518 

Steric strains 519 
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 The prediction of bond lengths and angles in the flux theory depends only on a 520 

knowledge of the bond topology — that is, a knowledge of the way in which the atoms are 521 

linked by bonds.  There is no guarantee that this geometry can be sustained when the atoms are 522 

mapped into three-dimensional space.  Some bonds may need to be stretched and others 523 

compressed and the bond angles may also have to be strained.  Table 3 shows that the Si-Ob-Si 524 

angles can be strained by as much as 20 or 30 ̊.  Such strains depend on the way in which all the 525 

atoms in the structure are packed, making it impossible to predict how the angles will change 526 

without a detailed knowledge of the crystal structure.  However, the predictions of the bond 527 

lengths and angles using the flux theory constitute a reference geometry from which the size of 528 

the steric strain can be measured, and a knowledge of this strain allows one to analyse the 529 

stresses that occur within a given crystal structure.  Further study is needed to reveal how much 530 

steric strain the angles can absorb before the structure becomes unstable. 531 

Implications 532 

 The electrostatic flux theory provides a physically correct explanation of the bonding that 533 

occurs between two atoms with overlapping valence shells.  Both the electrostatic flux and the 534 

chemical bond depend on the size of the valence charge that forms the bond, but neither of them 535 

depends on how that charge is distributed.  The result is a physical theory of the bond that is as 536 

simple and intuitive as the empirical chemical bond model, while avoiding the traditional 537 

language of chemistry that is often more confusing than enlightening.  ‘Resonance’ is made 538 

redundant by the principle of maximum symmetry (eqn (1)), the distinction between ‘covalent’ 539 

and ‘ionic’ bonds vanishes before an electrostatic flux that treats all localized bonds equally, and 540 

‘orbitals’ used for calculating charge densities become irrelevant since the flux does not depend 541 
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on the distribution of the charge. 542 

 If one knows the chemical formula of a compound, the valence matching rule, eqn (8), is 543 

often sufficient to propose a reasonable bond network that can be used with eqns (5) and (6) to 544 

predict the lengths of the bonds, and with eqn (11) or (12) to predict the angles between them.  545 

In this way one can determine the ideal chemical geometry of the compound from a knowledge 546 

of just its formula.  The difficult part is mapping this network into three-dimensional space 547 

while preserving the ideal geometry.  If the network has a high enough symmetry, there are 548 

ways in which a matching crystal space group can be found (Brown, 2002), but preserving the 549 

chemical geometry during this mapping may not be possible, in which case the bond lengths and 550 

angles will be strained.  Knowing this strain helps us to understand the stresses involved in the 551 

mapping, and may suggest ways in which the strain might be relaxed, for example by lowering 552 

the symmetry of the crystal or redistributing the valence among the cations (charge transfer).  553 

This can lead to a fuller understanding of the phase diagram and such unusual physical 554 

properties as ferroelectricity, colossal magnetoresistance and superconductivity.  555 

 While the use of the bond valence model in the prediction and analysis of bond lengths is 556 

well established, the prediction of bond angles is a new application only now being explored.  In 557 

this paper I have presented a number of examples to show the potential of the flux theory.  It 558 

shows promise to extend the VSEPR model to the prediction of the bond angles formed by atoms 559 

with lone pairs, even though predicting bond angles around electronically distorted transition 560 

metals may prove to be more of a challenge. 561 

 This study shows that bond angles are determined by the angular distribution of charge 562 

densities that remain essentially spherical even when atoms are bonded. The spherical symmetry 563 
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of the electrostatic field around each atom is responsible for directing all bonds.  The presence 564 

of lone pairs allows anions to form bonds that are stronger than would otherwise be expected, by 565 

concentrating their bonding flux in the region of the strong bonds, leaving other parts of the 566 

valence shell with higher concentrations of non-bonding flux.  The result is an asymmetric 567 

bonding environment.  Spherical symmetry around an anion is found only when the bonds ae 568 

weak.  Despite this difference in geometry, all bonds have the same flux character, though this 569 

underlying unity is obscured when it is asserted that bonds in asymmetric environments are 570 

directed because they are covalent and those in symmetric environments are not directed 571 

because they are ionic.  The statement that ‘covalent bonds are directed and ionic bonds are not’ 572 

might more appropriately be inverted to read ‘the bonds we call ‘covalent’ are the strong primary 573 

bonds that are arranged asymmetrically around the anions, while those we call ‘ionic’ are weak 574 

and often arranged symmetrically.  Directionality has nothing to do with covalency or ionicity; 575 

it is more correct and informative to talk of ‘strong’ and ‘weak’ bonds according to the size of 576 

their flux, and to describe their coordination as ‘asymmetric’ or ‘symmetric’ rather than 577 

‘directed’ or ‘not directed’. 578 
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Captions 634 

Figure 1 The valence shells (gray) overlap (black) in the bonding region.  The flux is shown by 635 

the arrows linking the cores (light gray) to the valence shell.  The bond is formed by the flux 636 

(solid arrows) linking the cores to the overlapping bonding region. 637 

 638 

 Figure 2  The relation between the bond valence vector sum shown along the vertical axis 639 

labelled ||SO||, and the valence of the strongest primary bond, shown along the horizontal axis 640 

labelled Smax, for oxygen atoms.  The solid line follows eqn (13).  (Reproduced with permission 641 

of the American Mineralogical Society from Bickmore et al. 2013). 642 

 643 

644 
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Tables 645 

Table 1 Angles in degrees in the S2O7
2- ion. 646 

 Predicted by eqn (11) Predicted by eqn (12) Observed (average) 

Ot-S-Ot 115.2 116.1 114.1 

Ot-S-Ob 103.5 101.5 104.3 

Notes The observed angles are the trigonally averaged angles found in K2S2O7 (Lynton & Truter. 647 

1960).   648 

Table 2  Oxides of third row elements 649 

Compound VA <NA> SA vu |SA/SO| Stability NO
a Oxygen environment 

Na2O +1 6.4 +0.16 0.32 deliquescent 8 cubic (CaF2) 

MgO +2 3.98 +0.33 0.66 stable  6 octahedron (NaCl) 

Al2O3 +3 5.27 +0.57 1.14 stable 2+2 distorted tetrahedron   

SiO2 +4 4.02 +1 2 stable 2+0 lone pair active  

PO4
3- +5 4.01 +1.25 2.5 oxyanion 1+n lone pair active  

SO4
2- +6 4 +1.5 3 oxyanion 1+n lone pair active  

ClO4
- +7 4 +1.75 3.5 oxyanion 1+n lone pair active  

Notes 650 

a. Where two values are shown the first refers to the strong primary, the second to the weak 651 

secondary bonds.  The value of n depends on the nature of the counterion. 652 
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Col. 2: VA is the valence of the cation,  653 

Col. 3: <NA> is the average observed coordination number of the cation (Brown 1988)   654 

Col 4: SA is the cation bonding strength (Brown 2014a). 655 

Col 7: N0 is the coordination number of the oxygen. 656 

657 
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Table 3. Bridging bond angle in X2O7 complexes 658 

 Δsi predicted 

from angle (vu) 

Δsi observed 

 (vu) 

X-O-X Predicted  

Eqn 17 (degrees) 

X-O-X observed 

(degrees) 

Si2O7
4- 0.00 0.00-0.68 180 140-180 

P2O7
3- 0.68 0.42-0.97 140 122-156 

S2O7
2- 1.00 0.98-1.09 120 114-121 

Cl2O7
- 1.17 1.07 108 115 

 659 
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