American Mineralogist contact Facebook Preprints

American Mineralogist: Journal of Earth and Planetary Science:

All our papers are special, so each month, the American Mineralogist editors will share highlights on each. We hope this information is enjoyable and useful.

The links below will take you to American Mineralogist on GSW -- if your access is via your institution you should seamlessly be able to access everything. If you are an MSA member, then first go to to authenticate in (pro tip use a different tab) then you should be able to click the links and see the full article. If you want paper-per-view or other options available from GSW, click the one of the full-text choices on that site and read the options carefully. Thank you!

For past volumes 98-103 (2013-2018) please click here.

American Mineralogist Volume 104

January 2019

The January issue of American Mineralogist starts with a “Highlights and Breakthroughs” by Su and Liu (page 1). In their short contribution, they discuss the importance of the study by Lai et al. (published in last October's issue of American Mineralogist) on the thermoelastic properties of Fe7C3, a candidate component for the Earth's inner core.

On page 2, Cambell et al. demonstrate that the combination of zeolitized proxy-glass signatures in alkaline-mafic pyroclastic deposits and Rhyolite-MELTS can provide new insights into the magmatic evolution of mafic alkaline systems. The predictive capability of the novel procedure is demonstrated in the case of a major caldera-forming eruption, the 355 ka Villa Senni event of the quiescent Colli Albani volcano, Rome, Italy, and its pervasively zeolitized Tufo Lionato deposit (>50 km3). The key finding is that a more-evolved residual melt fraction has been revealed, based on a reconstructed SiO2/Al2O3 ratio of 2.05 relative to that of the parent magma at 2.68, with implications for a reappraisal of pre-eruptive conditions and eruption mechanisms, and potentially for similar patterns across the volcanic stratigraphy and for other alkaline volcanoes.

Chapman et al. (page 17) used large-scale large-scale electron backscatter diffraction (EBSD) and microbeam analysis to investigate crystallographic orientation and mineral chemistry data and quantify the proportion of relict igneous and neoblastic minerals forming a variably deformed, Cretaceous orthogneiss from Fiordland, New Zealand. Distinct metamorphic stages can be identified by texture and chemistry and were at least partially controlled by strain magnitude. At the grain-scale, the coupling of metamorphism and crystal plastic deformation appears to have permitted efficient transformation of an originally igneous assemblage. The effective distinction between igneous and metamorphic paragenesis and their links to deformation history enables greater clarity in interpretations of the makeup of the crust and their causal influence on lithospheric scale processes.

Mosefelder et al. (page 31) investigate nitrogen incorporation in Earth materials by a combination of chemical (SIMS, EPMA, and laser-extraction mass spectrometry) and spectroscopic (FTIR) observations to study nitrogen contents and speciation mechanisms in silicate glasses, metal alloys, and an N-bearing silicate mineral (hyalophane). They demonstrate the general veracity of EPMA analysis of N in these samples and using SIMS show that the N content determined by EPMA (or laser extraction) are best fit with exponential functions rather than the linear regressions that are most commonly applied to SIMS data. They infer that under reducing conditions at high pressure and temperature N is dissolved in basaltic melts chiefly as NH−2 and NH2–, with N2 and/or nitride (X-N3–) complexes becoming increasingly important at low fO2, increasing N content, and decreasing H content. Our results have implications for future studies seeking to accurately measure N by SIMS and for studies of N partitioning at high pressure relevant to planetary accretion and differentiation.

Wang et al. (page 47) measured deformation mechanisms in anhydrous and hydrated (4-60 ppm H2O) olivine. The hydrated and dehydrated olivines were sheared in the [100] direction on the (001) plane at pressures of 2 to 5 GPa and temperatures of 1473 or 1573 K then observed by transmission electron microscopy on the (001) plane to determine whether the [100](001) slip system was activated or not. Only c-elongated [100] dislocations were observed for the anhydrous samples, while [100](001) dislocations dominated in the hydrous samples. These results support the idea that E-type fabrics can exist under hydrous conditions and that a transition to this fabric may be the cause of seismic anisotropy decrease with depth in the asthenosphere.

Liu et al. (page 53) collected in-situ high-temperature Raman and Fourier transform infrared (FTIR) spectra for both a synthetic [Mg9Si4O16(OH)2] and a natural, F-bearing, [Mg7.84Fe0.58Mn0.01Ti0.25(SiO4)4O0.5(OH)1.30F0.20], clinohumite sample up to 1243 K. Three OH bands above 3450 cm–1 are detected for both the natural and synthetic samples with negative temperature dependence, due to neighboring H-H repulsion in the crystal structure. Additional OH peaks are detected for the natural sample below 3450 cm–1 with positive temperature dependence, indicating that F- substitution significantly changes the high-temperature behavior of hydrogen bonds in the humite-group minerals. The mode Grüneisen parameters (γiP, γiT), as well as the intrinsic anharmonic parameters (ai) for clinohumite, chondrodite, and phase A, the dense hydrous magnesium silicate (DHMS) phases along the brucite–forsterite join were also evaluated. The averaged anharmonic parameters for the DHMS phases are systematically smaller (no more than 2% at 2000 K) than those of olivine and suggest that quasi-harmonic approximations are valid for clinohumite at subduction zone temperatures. Hence, the classic Debye model can reasonably simulate the thermodynamic properties (e.g., heat capacity) of these DHMS phases in subduction zones.

Liu et al. (page 64) experimentally investigated the stability of hydrous phases in mafic oceanic crust under deep subduction conditions by high-pressure and high-temperature experiments at 17–26 GPa and 800–1200 °C. In contrast to previous studies, three hydrous phases, including Fe-Ti oxyhydroxide, Al-rich phase D and Al-rich phase H, were present at the investigated P-T conditions. These results, in combination with published data on the stability of hydrous phases at lower pressures, suggest that a continuous chain of hydrous phases may exist in subducting, cold, oceanic crust (≤1000 °C): lawsonite (0–8 GPa), Fe-Ti oxyhydroxide (8–17 GPa), Al-rich phase D (18–23 GPa), and Al-rich phase H (>23 GPa). Therefore, in cold subduction zones, mafic oceanic crust, in addition to peridotite, may also carry a substantial amount of water into the mantle transition zone and the lower mantle.

Diego Gatta et al. (page 73) investigated ettringite, (Ca6Al2(SO4)3(OH)12·26H2O), a secondary-alteration mineral with more than 40 wt.% H2O and an important crystalline constituent of Portland cements. The crystal structure and crystal chemistry of ettringite were investigated by electron microprobe analysis, infrared spectroscopy, and single-crystal neutron diffraction at 20 K. Anisotropic neutron structure refinement allowed the location of (22+2) independent H sites, the description of their anisotropic vibrational regime and the complex hydrogen-bonding schemes. Analysis of the difference-Fourier maps of the nuclear density showed a disordered distribution of the inter-column (“free”) H2O molecules of the ettringite structure. Because disorder is still preserved down to 20 K, the authors are inclined to consider that as a “static disorder.” The structure of ettringite is largely held together by hydrogen bonding: the building units (i.e., SO4 tetrahedra, Al(OH)6 octahedra, and Ca(OH)4(H2O)4 polyhedra) are interconnected through an extensive network of hydrogen bonds. The effect of the low-temperature stability of ettringite and thaumasite on the pronounced “Sulfate Attack” of Portland cements, observed in cold regions, is discussed.

Yang et al. (page 79) Investigated the behavior of hydrogen defects in 10 natural clinopyroxene crystals at temperatures up to 1000 °C using in situ and quenched experiments. The in situ high-T Fourier transform infrared (FTIR) spectra indicate no proton transfer between point defects, but the local environments of hydrogen defects vary. Dehydration rates at 1000 °C of the six samples are not only slightly site-specific but also increase with Fe and tetrahedrally coordinated Al contents. Near-FTIR spectra suggest that the dehydration of the studied samples involves oxidation of Fe2+. For two diopsides with a mantle affinity, the diffusivity is about 10–12 m2/s at 1000 °C. The results imply that the different local environments of hydrogen defects between high T and low T may be responsible for the different mechanism of water impact on electrical conductivity between high and low T experiments; and because hydrogen diffusivities are positively related to Fe and IVAl contents, more care is required for interpretation of measured water concentrations in clinopyroxenes with high Fe and IVAl contents. Based upon the hydrogen diffusivities of olivine, orthopyroxene, and clinopyroxene in mantle peridotite, clinopyroxene should be the most reliable recorder of water from a given depth.

Komabayashi et al. (page 94) examined the phase transition between a face-centered cubic (fcc) and hexagonal close-packed (hcp) structures in Fe-4wt% Si and Fe-6.5wt% Si alloys to 71 GPa and 2000 K by in situ synchrotron X-ray diffraction. The fcc-hcp phase boundaries in the Fe-Si alloys are located at higher temperatures than that in pure Fe, indicating that the addition of Si expands the hcp stability field. The dP/dT slope of the boundary of the fcc phase in Fe-4wt% Si is similar to that of pure Fe, but the two-phase region is observed over a temperature range that widens with increasing pressure, from 50 K at 15 GPa to 150 K at 40 GPa. The triple point, where the fcc, hcp, and liquid phases coexist in Fe-4wt% Si, is placed at 90–105 GPa and 3300–3600 K with the assumption that the melting curve is same as Fe. These results support the hypothesis that the hcp phase is stable at Earth's inner core conditions. The core of Mercury (well below the triple point), containing an Fe-Si alloy with a Si content up to 6.5 wt% would likely crystallize an inner core with an fcc structure. Both cores from Venus and Mars are currently believed to be totally molten. Upon secular cooling, Venus is expected to crystallize an inner core with an hcp structure, as the pressures are similar to those of the Earth's core (far higher than the triple point), whereas the Martian inner core will take an hcp or fcc structure depending on the actual Si content and temperature.

Hong et al. (page 100) studied distinctive quartz-rich unidirectional solidification textures (USTs) in apical carapaces of the Sn-mineralized Heemskirk Granite in western Tasmania (SE Australia). Individual UST layers consist dominantly of hexagonal quartz (>95%) with minor K-feldspar, plagioclase, biotite, muscovite, and magnetite. Multiple UST-quartz layers are intercalated with aplitic layers, and can locally extend for hundreds of meters. The Ti-in-quartz geothermometer yields temperatures of 545 ± 40 and 580 ± 20 °C (at 130 MPa) for the UST and aplitic quartz, respectively. The UST-quartz have higher Al/Ti values and Ge/Ti values than quartz phenocrysts in aplite layers, which is consistent with crystallization from a highly evolved fluid. LA-ICP-MS analyses show that UST-quartz has lower Ti, Li, and Sn than aplitic quartz, but higher Al, Li, Na, K, Mn, Fe, Ge, Rb, and Cs concentrations. The O-isotopic compositions (+5.1 to +10.2‰) of UST and aplitic quartz are consistent with magmatic source circulated by minor meteoric and/or formation waters. Scanning electron microscope-cathodoluminescence (SEM-CL) reveals that aplitic quartz is homogeneous and CL-bright with minor CL-dark patches. The bases of the UST quartz crystals are homogeneous and CL-bright with minor thin CL-dark fractures, whereas the trigonal apexes of the UST-quartz display CL-oscillatory growth zones. The results show that the UST layers in the Heemskirk Granite precipitated from magmatic-hydrothermal aqueous fluid exsolved from granitic melt during emplacement into the shallow crust (6–10 km). Such UST layers are characteristics of mineralized intrusions, and therefore provide significant indications for mineral exploration.

Cheng et al. (page 118) evaluate controls on cassiterite crystallization under hydrothermal conditions based upon the texture and geochemistry of cassiterite from a traverse from close to the host granitic pluton out into the mineralized country rock (Gejiu tin district, southwest China). The cassiterite samples feature diverse internal textures, as revealed by cathodoluminescence (CL) imaging, and contain a range of trivalent (Ga, Sc, Fe, Sb), quadrivalent (W, U, Ti, Zr, Hf), and pentavalent (Nb, Ta, V) trace elements, with Fe, Ti, and W being the most abundant trace elements. Cassiterite Ti/Zr ratios tend to decrease with distance away from the granite intrusion, and potentially can be used as a tool for vectoring toward a mineralized intrusive system. Elemental mapping of cassiterite grains reveals that trace-element concentration variations correspond closely to CL zoning patterns. The exceptions are distinct irregular domains that sharply cut across the primary oscillatory zoning, as defined by the concentrations of W, U, Sb, and Fe. Zones with low W and U (and Sb) and high Fe are interpreted to have formed during interaction with relatively oxidized fluids in which W and U are stripped from cassiterite due to cation exchange with Fe3+. Systematics of W, U, Sb, and Fe partitioning into cassiterite can, therefore, be used as a monitor of the relative oxidation state of the hydrothermal fluid from which cassiterite precipitates. Cassiterite U-Pb ages determined on zones of dissolution-reprecipitation are similar to ages for primary cassiterite growth and demonstrate a short (<3 m.y.) timespan of hydrothermal activity, indicating the potential of U-Pb dating of cassiterite for constraining the timing of Sn deposition.

Mookherjee et al. (page 130) performed high-pressure, high-temperature experiments on lithological compositions resembling hydrated sedimentary layers in subducting slabs and found that the phase egg, AlSiO3(OH), is stable to pressures of 20–30 GPa or depths equivalent to the transition zone to lower mantle. Thus, phase egg is a potential candidate for transporting water into the Earth's mantle transition zone. First-principles simulations based on density functional theory explored the pressure dependence of crystal structure and its influence on energetics and elasticity. The phase egg exhibits anomalous behavior of the pressure dependence of the elasticity at mantle transition zone depths (~15 GPa). The anomalous behavior is related to changes in the hydrogen bonding O-H···O configurations, which were delineated as a transition from a low-pressure to a high-pressure structure of phase egg. Full elastic constant tensors indicate that phase egg is anisotropic, resulting in a maximum anisotropy of compressional wave velocity, AvP ≈ 30% and of shear wave velocity, AvS ≈ 17% at zero pressure. Results indicate that the phase egg has one of the fastest bulk sound velocities (vP and vS) compared to other hydrous aluminous phases in the Al2O3-SiO2-H2O ternary, which include topaz-OH, phase Pi, and δ-AlOOH. At depths corresponding to the base of the mantle transition zone, phase egg decomposes to a mixture of δ-AlOOH and stishovite. The changes in compressional ΔvP and shear ΔvS velocity associated with the decomposition is ~0.42% and –1.23%, respectively. Although phase egg may be limited to subducted sediments, it could hold several weight percentages of water along a normal mantle geotherm.

Kaminsky et al. (page 140) found polycrystalline diamond grains within the Valizhgen Peninsula in Koryakia, northern Kamchatka, Russia. One grain from the Aynyn River area studied by TEM contained diamond crystallites, 2–40 μm in size, that are twinned and have a high dislocation density. The crystallites are cemented by tilleyite Ca5(Si2O7)(CO3)2, SiC, Fe-Ni-Mn-Cr silicides, native silicon, graphite, calcite, and amorphous material. Three polymorphs of SiC were discriminated: hexagonal 4H and 6H and cubic C3 (β-SiC). Silicides have variable stoichiometry with (Fe,Ni,Mn,Cr)/Si = 0.505–1.925. Native silicon is an open-framework allotrope of silicon S24, which appears to be a new natural mineral phase. Three types of amorphous material were distinguished: a Ca-Si-C-O material, similar in composition to tilleyite; amorphous carbon and amorphous SiO2. Diamond crystallites and moissanite are intensively twinned, which is characteristic when these minerals formed by gas phase condensation or chemical vapor deposition (CVD) processes. The synthetic analogs of all other cementing compounds (β-SiC, silicides, and native silicon) are typical products of CVD processes. This confirms the earlier suggested CVD mechanism for the formation of Avacha diamond aggregates. Both Avacha and Aynyn diamond aggregates are not related to “classic” diamond locations within stable cratons, but to areas of active and Holocene volcanic belts. The studied diamond aggregates from Aynyn and Avacha, by their mineralogical features and by their origin during the course of volcanic eruptions via a gas phase condensation or CVD mechanism, may be considered a new variety of polycrystalline diamond and may be called “kamchatite.” Kamchatite extends the number of unusual diamond localities. It increases the potential sources of diamond and indicates the polygenetic character of diamond.

Zhang et al. (page 150) describe spherical (Mg,Fe)-oxides with a protrusion surface in a shock-induced melt pocket from the Martian meteorite Northwest Africa 7755. Transmission electron microscopic observations demonstrate that the (Mg,Fe)-oxides are structure-coherent intergrowth of ferropericlase and magnesioferrite. The magnesioferrite is mainly present adjacent to the interface between (Mg,Fe)-oxides spherules and surrounding silicate glass, but not in direct contact with the silicate glass. Thermodynamic and kinetic considerations suggest that development of the spherical (Mg,Fe)-oxides can be best interpreted with crystallization by particle attachment and subsequent Ostwald ripening. This indicates that crystallization by particle attachment (previously hypothesized to occur in low-temperature aqueous natural and synthetic systems) can take place in high-temperature melts and has potential implications for understanding the nucleation and growth of early-stage crystals in high-temperature melts, such as chondrules in the solar nebula, erupted volcanic melts, and probably even intrusive magmas.

Etschmann et al. (page 158) provide an experimental confirmation of the suggestion, based on thermodynamic simulations and extrapolations (Zhong et al. 2015), that Zn is transported in the form of chloride complexes in most acidic, shallow hydrothermal systems; while bisulfide complexes become increasingly important in deep, pH neutral to basic hydrothermal systems. We used in situ X-ray absorption spectroscopy (XAS) diamond-anvil cell experiments to determine Zn(II) speciation in a 1 m NaHS + 0.2 m HCl solution in contact with sphalerite. XANES data indicate that Zn coordinates to oxy/hydroxyl/chloride ligands from room temperature up to and including 200 °C, and then at higher temperatures (≥300 °C) and pressures (>200 MPa) it changes to complexing with sulfur. Our data confirm that bisulfide complexes become increasingly important in neutral-alkaline solutions at high pressure and temperature, due to an increase in sulfur solubility and to favorable entropy contributions for bisulfide vs. chloride complexes.

Elimi (page 162) reviews the book: Infrared and Raman Spectroscopies of Clay Minerals, Volume 8, Developments in Clay Science, 1st Edition, by Will Gates, J. Theo Kloprogge, Jana Madejova, and Faïza Bergaya. (2017) Elsevier, pp. 620.