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ABSTRACT

We present a first-principles study (local density approximation) of the structural prop-
erties of forsterite under pressure. This highly anisotropic magnesium orthosilicate is the
most abundant phase of the Earth’s upper mantle, and its elastic properties determine the
rheology of this region. We perform full structural optimizations and investigate its com-
pressive behavior up to 25 GPa. We obtain a pressure dependence of lattice parameters
that agrees well with experiments to 17.2 GPa. We predict that the coordination polyhedra
compress essentially isotropically, and we explain the anisotropy of forsterite in terms of
the nonuniform distribution of coordination polyhedra having different but nearly uniform
compressibilities. In agreement with Brodholt et al. (1996), we do not find theoretical
evidence for sudden changes in compression mechanisms in this mineral as had been
suggested from experiments. Our results support the hypothesis that such compressive
anomalies are caused by solidification of the pressure medium.

INTRODUCTION

The magnesium orthosilicate polymorphs are the dom-
inant mineral phases of the top-most 660 km of Earth’s
mantle. The low-pressure phase olivine is the major phase
of the upper mantle, which represents nearly 20% of the
planet’s volume. The composition of olivine in the upper
mantle consists of ;90% forsterite, the Mg end-member.
The properties and behavior of forsterite have been in-
tensively studied because they determine the elasticity
and rheology of the asthenospheric mantle and, in turn,
plate-tectonic processes. An important observational con-
straint on the nature of flow in the sub-lithospheric mantle
comes from seismological observations of anisotropy,
which originate in the intrinsic elastic anisotropy of ol-
ivine. Moreover, the pressure-induced transformation of
forsterite to wadsleyite under equilibrium conditions is
largely responsible for the seismic discontinuity observed
at depths of 400 km within the Earth. Lower temperatures
suppress this transformation, however, and forsterite may
persist metastably to much higher pressures and may be
present in subducted lithospheric slabs to depths as great
as 660 km (24 GPa) (Sung and Burns 1976; Rubie and
Ross 1994).

The need to understand the structure and behavior of
the upper mantle and of subducted lithospheric slabs has
prompted numerous experimental investigations of the
properties of forsterite at high pressure. Experimental
X-ray diffraction and vibrational spectroscopy studies
have both found evidence for a sudden change in the
compressional behavior of forsterite near 9 GPa (Kudoh
and Takéuchi 1985; Chopelas 1990). However, the com-
pressional anomalies seen in single-crystal X-ray diffrac-

tion experiments have not been reproduced by more re-
cent experiments that used a more hydrostatic pressure
medium (Downs et al. 1996). An understanding of these
results is essential because rapid changes in compression
mechanism have important consequences for the elastic
constants, and therefore for the seismic wave velocities
of this geophysically important mineral.

In this paper we present a first-principles study of for-
sterite’s behavior under compression at zero temperature.
The aim is to elucidate the origin of the anisotropic be-
havior under pressure and to investigate the nature of the
compressional anomaly, if any, at the atomic scale.

COMPUTATIONAL METHOD

We use the plane-wave pseudopotential method (e.g.,
Cohen and Chelikowsky 1988) to solve the equations of
density functional theory (Kohn and Sham 1965) in the
local density approximation (LDA). An important issue
in computations of complex structures, such as that of
forsterite, is the efficient determination of the ground state
(equilibrium) arrangement of the atoms. To find the equi-
librium structure of forsterite at each pressure, we have
used a first-principles implementation (Wentzcovitch
1995) of a variable cell-shape molecular dynamics
(VCSMD) algorithm (Wentzcovitch 1991). This method
has been successfully used to determine the compressive
and elastic behavior of other minerals under compression
(Wentzcovitch et al. 1995a, 1995b). It is a quite conven-
tional implementation of first principles molecular dy-
namics (MD) in which forces and stresses are calculated
self-consistently (Wentzcovitch and Martins 1991) at ev-
ery time step by resorting of iterative diagonalization
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FIGURE 1. Views of the forsterite structure along (a) [100],
(b) [010], and (c) [001]. Dark and light circles represent M1 and
M2 cations, respectively.

(Martins et al. 1991) and charge mixing (Broyden 1965)
to speed up the convergency process.

The equilibrium structure at arbitrary pressures can be
found by performing this dynamics in damped mode and
searching efficiently for the atomic configuration with
zero stresses and forces (Wentzcovitch et al. 1993). For
a structure with 14 degrees of freedom like forsterite, typ-
ically it takes 20–30 time steps to determine these param-
eters with three decimal digits. Care must be taken ini-
tially to choose a convenient fictitious cell mass that
produces strain oscillations with periods similar to those
of the atomic oscillations. The atomic masses can also be
freely chosen. Whenever possible it is convenient to set
all of them equal so we have a smaller range of frequen-
cies for phonon modes. In the present case this was not
the best approach. The Mg-O bonds are substantially
more compressible than the Si-O bonds (smaller force
constants), therefore Mg ions should be assigned smaller
masses. The final choice was MSi 5 MO 5 15 mp and MMg

5 10 mp (proton masses), and the fictitious cell mass W
5 0.001 mpa (ao is the Bohr radius). The MD time step24

o

is another free parameter in this algorithm, and it is cho-
sen to minimize the number of total steps during the min-
imization. It is related to the average frequency of normal
modes such that it takes 4–10 steps per average period.
Ideally it would be desirable to have all normal modes
with the same period and about two time steps per period;
however, it is difficult to ‘‘guess’’ suitable free parameters
to produce this situation, and practical experience usually
dictates the choice. Note that the final structure does not
depend on masses or time steps.

In this particular formulation of VCSMD the initial
space group symmetry of the structure (Pbnm) is con-
served if there are no thermal fluctuations, as it happens
in the damped dynamics minimization (Wentzcovitch
1991). This property can be exploited in first-principles
calculations by reducing k-point sampling to the irreduc-
ible wedge of the Brillouin zone (IBZ) and symmetrizing
the resulting charge densities, forces, and stresses. Our
results were obtained with one k point (¼, ¼, ¼) in the
IBZ, corresponding to a Monkhorst-Pack grid of 23232.
The plane-wave expansion energy cut off (Epw) have been
chosen as 70 and 280 Ry for the wave functions and
charge density-potentials, respectively (Calc. I). We have
used the same Troullier-Martins (1991) pseudopotentials
for Si, Mg, and O from previous studies of other silicates
of magnesium polymorphs (Wentzcovitch and Price
1996). The convergence of the present results have been
tested by performing completely similar calculations at
the same k point and Epw equal to 64 Ry for wave func-
tions, charge densities, and potential (Calc. II). This sec-
ond set of calculations provided a comparison of com-
pressibilities and structural parameters. A third series of
calculations (Calc. III) using eight k points and the same
Epw as Calculation I at the lowest pressure provided a
better estimate of the accuracy of the zero-pressure
parameters.

RESULTS

The crystal structure of forsterite is shown in Figure 1
as viewed along the three main crystallographic axes.
There are two crystallographically distinct octahedral
sites occupied by Mg ions (M1 and M2) represented by
spheres of different shades, one tetrahedral site occupied
by S, and three distinct O positions (O1, O2, and O3) at
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FIGURE 2. Theoretical equation of state (crosses and bold
line) compared with the equation of state inferred from the Bril-
louin measurements (light line) of Zha et al. (1996) and the re-
sults of X-ray diffraction experiments as indicated.

TABLE 1. Computed structural parameters at different pressures (Calc. I unless otherwise noted)

P
(GPa) a (Å) b (Å) c (Å)

Si

x y

Mg2

x y

O1

x y

O2

x y

O3

x y z

0
0*
0†
Exp‡
HCP§
3.1
4.7
5.3
7.9
8.6

11.1
14.9
16.5
19.0
22.0
25.0

4.682
4.649
4.678
4.750

4.660
4.649
4.646
4.630
4.626
4.613
4.593
4.585
4.574
4.561
4.547

9.953
9.971
9.952

10.187

9.858
9.818
9.804
9.738
9.722
9.665
9.586
9.553
9.505
9.452
9.402

5.837
5.846
5.840
5.977

5.794
5.775
5.765
5.734
5.725
5.697
5.658
5.642
5.619
5.592
5.567

0.4227
0.4279
0.4270
0.4276
5/12

0.4275
0.4275
0.4276
0.4275
0.4275
0.4275
0.4274
0.4274
0.4274
0.4272
0.4275

0.0938
0.0953
0.0931
0.0941
1/12

0.0941
0.0942
0.0943
0.0945
0.0945
0.0945
0.0950
0.0951
0.0951
0.0955
0.0955

0.9913
0.9915
0.9909
0.9916

3/4
0.9907
0.9904
0.9904
0.9901
0.9900
0.9900
0.9894
0.9892
0.9889
0.9887
0.9892

0.2756
0.2759
0.2749
0.2775
1/12

0.2753
0.2751
0.2750
0.2747
0.2746
0.2746
0.2741
0.2740
0.2739
0.2737
0.2733

0.7719
0.7736
0.7710
0.766

3/4
0.7723
0.7725
0.7726
0.7729
0.7729
0.7729
0.7735
0.7736
0.7736
0.7737
0.7741

0.0913
0.0923
0.0907
0.0914
1/12

0.0913
0.0913
0.0913
0.0913
0.0913
0.0913
0.0911
0.0911
0.0910
0.0908
0.0906

0.2238
0.2218
0.2243
0.2215

1/4
0.2244
0.2244
0.2244
0.2247
0.2248
0.2251
0.2254
0.2256
0.2260
0.2263
0.2263

0.4438
0.4448
0.4429
0.4472
1/12

0.4430
0.4426
0.4425
0.4419
0.4418
0.4413
0.4407
0.4404
0.4400
0.4396
0.4392

0.2731
0.2722
0.2726
0.2778

1/4
0.2718
0.2711
0.2708
0.2698
0.2696
0.2687
0.2674
0.2669
0.2660
0.2650
0.2643

0.1639
0.1662
0.1638
0.1631

1/6
0.1645
0.1648
0.1649
0.1653
0.1655
0.1658
0.1664
0.1666
0.167
0.1673
0.1677

0.0287
0.0296
0.0281
0.0332
0.0
0.0279
0.0273
0.0271
0.0264
0.0263
0.0257
0.0248
0.0245
0.0245
0.0234
0.0231

Note: Atomic coordinates: Mg1: (0, 0, 0), (0, 0, ½), (½, ½, 0), and (½, ½, ½). Mg2: 6(Mg2x, Mg2y, ¼; Mg2x 1 ½, ½ 2 Mg2y, ¾). Si: 6(Six, Siy, ¼; Six
1 ½, ½ 2 Siy, ¾). O1: 6(O1x, O1y, ¼; O1x 1 ½, ½ 2 O1y, ¼). O2: 6(O2x, O2y ¼; O2x 1 ½, ½ 2 O2y, ¼). O3: 6(O3x, O3y, O3z; O3x, O3y, ½ 2 O3z;
O3x 1 ½, ½ 2 O3y, 2O3z; ½ 1 O3x, ½ 2 O3y, ½ 1 O3z).

* Calculation II.
† Calculation III.
‡ Kudoh and Takéuchi (1985).
§ Ideal hcp structure.

tetrahedral corners. The O substructure forms a signifi-
cantly distorted hexagonal close-packed arrangement be-
cause of the presence of non-uniform occupation of in-
terstitial sites by Mg and S. This non-uniform occupation
also gives rise to highly anisotropic behavior under com-
pression, which has been the subject of several previous
investigations (Hazen 1976; Kudoh and Takéuchi 1985)
including one previous first-principles calculation (Brod-

holt et al. 1996). The origin of this anisotropic behavior
has been addressed experimentally mostly by compara-
tive crystal chemistry (Hazen 1976; Kudoh and Takéuchi
1985; Kudoh and Takeda 1986; Sharp et al. 1987; Hazen
et al. 1996). Besides anisotropy, another issue related
with its behavior under compression has been raised: a
possible change in compression mechanism at high pres-
sures, or a second-order phase transition (Kudoh and Tak-
éuchi 1985). The experimental determination of structural
parameters that led to the proposed anomalous compress-
ibility was recently questioned by another experimental
study that related the anomaly in the X-ray data to the
freezing of the hydrostatic medium (4:1 ethanol to meth-
anol mixture or Ar) between 9–10 GPa (Downs et al.
1996). This would also provide a possible explanation for
the anomalies observed in Raman and infrared spectro-
scopic studies at similar pressures (Chopelas 1990; Wang
et al. 1993; Durben et al. 1993; Liu and Mernagh 1994).

First-principles calculations provide an independent
means to investigate details of the structural behavior un-
der compression at the atomic level. The equation of state
obtained in our calculations (Calc. I) is shown in Figure
2. The agreement with experimental data over the pres-
sure range of our study is good. The theoretical zero-
pressure lattice parameters are 1.5, 2.3, and 2.3% smaller
for a, b, and c, respectively, than the experimental values
(see Table 1).

This difference is due to the fundamental approxima-
tion (LDA) upon which our calculations are based
(Lundqvist and March 1987). The theoretical equation of
state yields a compressibility slightly less than the exper-
imental one. The zero-pressure bulk modulus obtained by
fitting a third-order Birch-Murnaghan finite-strain expan-
sion to our theoretical results is 135 GPa (K 5 4.9), 6%′

0
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FIGURE 3. Lattice parameters as a function of pressure (bold
lines) compared with those inferred from the Brillouin measure-
ments (light lines) of Zha et al. (1996) and the results of X-ray
diffraction experiments as indicated.

larger than the experimental value of 127 GPa (Zha et al.
1996).

The pressure dependence of the lattice parameters ob-
tained theoretically also agrees well with experiment: We
find that the a axis compresses the least, while the b axis
is most compressible, as observed experimentally (Fig. 3,
Table 1). We compare our results with X-ray diffraction
experiments and with recent determinations of the elastic
constants of forsterite to 16 GPa (Zha et al. 1996). We
obtain the pressure dependence of the lattice parameters
implied by the elastic constant measurements by
integrating

P

a(P)/a 5 exp 2 K (P9)dP9 (1)0 E a[ ]
0

where a 5 a, b, and c, the lattice parameters at pressure
P are a(P), and a0 are the lattice parameters at zero pres-
sure. The linear bulk moduli are defined by Ka 5 (]P/]
lna)T and are given in terms of the measured elastic con-
stants, Cij, by (Nye 1985)

D
K 5 (2)a (C 2 C )(C 2 C ) 2 (C 2 C )(C 2 C )33 13 22 12 23 12 23 13

D
K 5 (3)b (C 2 C )(C 2 C ) 2 (C 2 C )(C 2 C )33 23 11 12 13 12 13 23

D
K 5 (4)c (C 2 C )(C 2 C ) 2 (C 2 C )(C 2 C )22 23 11 13 12 13 12 23

2 2D 5 C C C 1 2C C C 2 C C 2 C C11 22 33 12 13 23 11 23 22 13

22 C C . (5)33 12

Our theoretical values of a/a0 agree within 0.3% with
those experimentally inferred from elastic constant mea-
surements and with the results of most previous X-ray
diffraction measurements (Fig. 3). The agreement be-
tween theory and the X-ray diffraction results of Will et
al. (1986) and Andrault et al. (1995) is significantly
worse, possibly due to non-hydrostaticity in these
experiments.

Our theoretical results confirm the anisotropic com-
pression of olivine seen experimentally and show that this
anisotropy persists throughout its stability field. To show
this, we determined the linear bulk moduli from our the-
oretical calculations by fitting our determinations of the
lattice parameters as a function of pressure to linear finite-
strain expansions (Davies 1974; Weaver 1976; Meade and
Jeanloz 1990)

Fa 5 Ka 1 ma fa (6)

where fa is the Eulerian finite strain
21 a

f 5 2 1 (7)a 1 2[ ]2 a0

P
F 5 (8)a f (1 1 2 f )(1 1 2 f )a a y

f y is the volume Eulerian finite strain
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FIGURE 4. Linear moduli as a function of pressure. Theoret-
ical results are shown as bold lines, and the results of Zha et al.
(1996) as light lines. For a material that compresses isotropically,
the linear modulus is three times the bulk modulus.

22/31 V0f 5 2 1 (9)y 1 2[ ]2 V

and ma is related to the pressure dependence of Ka. The
results are compared with the linear moduli as determined
from the measured elastic constants (Zha et al. 1996)
through Equations 2–5. Figure 4 shows that the theoret-
ical linear moduli are larger than those experimentally
measured by 13% at most. Both theory and experiment
show that the compressional anisotropy persists to at least
25 GPa. The magnitude of the anisotropy changes little
with pressure over the range investigated: The ratio Ka/
Kb changes from 1.93 at 0 GPa to 1.97 at 25 GPa. The
change in Ka/Kc is more substantial: from 1.53 at 0 GPa
to 1.74 at 25 GPa.

The dependence of the volume and lattice parameters
on pressure (Figs. 2 and 3) is smooth and shows no rapid
changes in slope over the pressure range investigated.
These results support the conclusions of Brodholt et al.
(1996), based on their pseudopotential calculations, that
no rapid change in bulk or linear compressibility occurs
in olivine over the pressure range 0–25 GPa. The smooth
variation of lattice parameters with pressure found here
does not support the conclusions of Kudoh and Takéuchi
(1985) that there is a change in the linear and volume
compressibilites of forsterite near 9 GPa. Previous studies
suggested that more subtle pressure-induced changes in
compression may exist. A change in compression mech-
anism might not necessarily be reflected in the equation
of state or linear compressibilites. Chopelas (1990), Wang
et al. (1993), and Durben et al. (1993) found anomalous
pressure dependencies of vibrational modes, which may
be caused by such a change in compression mechanism.

An examination of pressure-induced changes in internal
structural parameters allows us to test this picture.

The SiO4 tetrahedron in forsterite has three unique
bond lengths. Theoretically predicted Si-O bond lengths
are within 0.3% of experimental values at zero pressure
(Fig. 5). In agreement with the experimental zero-pres-
sure structure, we find that Si-O2 is the longest, Si-O1 is
the shortest, and that these differ by 2.5%. Predicted bond
lengths in the M1 and M2 octahedra are somewhat small-
er than experimentally observed (by 2.5%). This discrep-
ancy, also found by Brodholt et al. (1996) and in LDA
calculations of enstatite (Wentzcovitch et al. 1995b), ac-
counts for the smaller zero-pressure volume and larger
bulk modulus of our theoretical results compared with
experiment. Its origin is most likely related to the use of
the LDA. As a result, our calculations find the correct
ordering and dispersion of Mg-O bond lengths: In the M1
octahedron, M1-O3 (longest) and M1-O2 ø M1-O1
(shortest) differ by 3%; whereas in the M2 octahedron,
M2-O3 (longest) and M2-O2 (shortest) differ by 7%. This
is important because the relative lengths of bonds are ex-
pected to control compressional anisotropy and compres-
sion mechanisms.

We find that SiO4 and MgO6 polyhedra compress nearly
isotropically (Fig. 5). The ordering of Si-O bond lengths
remains unchanged up to 25 GPa, while the difference
between longest and shortest increases only slightly with
compression. Except for an increase in the difference be-
tween Mg1-O1 and Mg1-O2 bond lengths, the ordering
of Mg-O bond lengths is also unchanged by compression.
The nearly isotropic compression of the coordination
polyhedra can also be characterized by the quadratic elon-
gation (Robinson et al. 1971). We find that the Mg oc-
tahedra become slightly more ideal (smaller quadratic
elongation) with increasing pressure, whereas the tetra-
hedron becomes slightly more distorted (larger quadratic
elongation) with increasing pressure. The pressure-in-
duced changes in quadratic elongations are small: Elon-
gations of the Si, M1, and M2 polyhedra change by 0.3,
0.6, and 0.6%, respectively, between 0 and 25 GPa. Al-
though these are significant differences in terms of the
precision of our calculations, they are small compared
with the decrease in bond lengths experienced by these
polyhedra over the same pressure range.

Our calculations show that the SiO4 polyhedra com-
press much less than the Mg polyhedra, as expected on
the basis of the greater strength of the Si-O bond and
experimental studies of other silicates (Hazen and Finger
1982). The total change in volume of the Si, M1, and M2
polyhedra between 0 and 25 GPa is 6, 13, and 16%, re-
spectively. The zero-pressure polyhedral bulk moduli
(Hazen and Finger 1979) span the bulk modulus of the
crystal (Table 2).

The theoretical calculations show important similarities
to the high-pressure crystal structure refinements of Ku-
doh and Takéuchi (1985). Though the scatter in the data
is substantial, the tendency of the polyhedra to compress
approximately isotropically is evident in some cases (Fig.
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FIGURE 5. Internal bond lengths of var-
ious polyhedra vs. pressure. (a) and (b) cor-
respond to SiO4 tetrahedra, (c) and (d) to
Mg1O6 octahedra, and (e) and (f) to Mg2O6

octahedra. (a), (c), and (e) correspond to our
results and (b), (d), and (f) correspond to
Kudoh and Takéuchi’s (1985) results.

FIGURE 6. Polyhedral volumes vs. pressure. Open circles
with error bars were obtained from parameters given by Kudoh
and Takéuchi (1985). Our calculated results are given by full
circles.

TABLE 2. Crystal and polyhedral bulk moduli

Calc. I Calc. II Exp.

Forsterite K0

K ′
0

135

4.9

134

5.5

123*
120†

5.6*
SiO4 K0 407 367 190*

550‡
M1O6 K0 158 181 140*

120‡
M2O6 K0 118 128 130*

100‡

Note: Polyhedral bulk moduli obtained from second-order Eulerian finite-
strain fits (K 5 4.0); third-order fits were not significantly better.′

0

* Kudoh and Takéuchi (1985).
† Olinger (1977).
‡ Hazen (1976).

5). As in our calculations, M1-O1 remains the shortest
bond in the M1 octahedron, and M1-O3 the longest over
the experimental pressure range (Fig. 5). In the M2 oc-
tahedron, except for the highest experimental refinement,
where uncertainties are substantial, the M2-O3 bond re-
mains the longest, and M2-O2 the shortest. In the Si tet-
rahedron, Si-O3 remains longer than Si-O1, but Si-O2
compresses much more in the experiments than in our
calculations.

There are also significant differences between experi-
ment and theory. The experimental data show that the
SiO4 tetrahedron is as compressible as the Mg octahedra,
in disagreement with our results and with the behavior of
essentially all other high-pressure silicate crystal structure
refinements (Fig. 6). In comparison with our results, the
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FIGURE 7. Pressure dependence of the ratios of real cell vol-
ume, V, to ideal calculated cell volume, Vhcp, for three arbitrary
definitions of Vhcp in terms of lattice parameters a, b, and c. See
text.

FIGURE 8. Pressure dependence of the axial ratios. The
dashed lines correspond to the ideal ratios in the hcp structure.
Open circles are data from Kudoh and Takéuchi (1985), and full
circles are from Downs et al. (1996). See text.

experimental data exhibit much more anisotropic and ir-
regular compression of the polyhedra as shown by the
measured polyhedral elongations as a function of pres-
sure. Kudoh and Takéuchi found that M1-O3, M1-O2,
M2-O1, and M2-O39 increase with pressure in disagree-
ment with our results and with experimental data for other
minerals. This pressure-induced increase in Mg-O bond
lengths is reflected in a sudden change in the compress-
ibility of the M1 octahedron near 9 GPa. This result is
inconsistent with our theoretical calculations. We find no
evidence in the pressure dependence of bond lengths and
polyhedral volumes for a sudden change in compress-
ibility of any structural element between 0 and 25 GPa.
Our theoretical results support those of Brodholt et al.
(1996) who analyzed variations in internal structural pa-
rameters only in terms of average bond lengths.

Another issue raised by Kudoh and Takéuchi’s analysis
of their data concerns the distortion of the O substructure.

The compressibility of the M1 octahedron decreases, and
at 16.5 GPa its volume becomes nearly equal to that of
the larger M2 octahedron. They noted that at this pressure
the primitive cell volume, Vobs, tends to that correspond-
ing to an ideal hexagonal close-packed structure Vhcp. For
the ideal lattice the axial ratios a:b:c are expected to be

with a perpendicular to the O layers, and the3 Ï31: : ,⁄ ⁄Ï2 2

volume would be given by Vhcp(a) 5 3Ï3a3/2. We note
that Vhcp could also be expressed in term of b and c as
Vhcp(b) 5 Ï2/3Ï3b3 and Vhcp(c) 5 Ï2c3. Therefore the
choice of a is arbitrary and this is shown in Figure 7,
where the pressure dependences of the volume ratios, Vobs/
Vhcp, for the three arbitrary choices are plotted. Although
Vobs/Vhcp (a) approaches 1.0 under pressure, Vobs/Vhcp (b)
departs from 1.0, so it is incorrect to conclude that the
structure becomes less distorted under pressure. Indeed,
if we compare the pressure dependence of the axial ratios,
as is done in Figure 8, we arrive at the opposite conclu-
sion: Only c/a approaches the ideal value Ï3/2, the other
ratios, b/a and b/c, depart from their respective values
(dashed lines in Fig. 8).

DISCUSSION

We find no anomalies in the compression of forsterite
to a pressure of 25 GPa. The volume and lattice param-
eters show no sudden changes in their compressibilites.
Moreover, bond lengths and polyhedral volumes also de-
crease smoothly with pressure. We therefore find that no
obvious changes occur in compression mechanism over
the pressure range studied. These results are inconsistent
with the existence of sudden changes in the compress-
ibility of lattice parameters or bond lengths (Kudoh and
Takéuchi 1985) or with sudden changes in mode Grüne-
isen parameters (Chopelas 1990) and support the results
of Brodholt et al. (1996). The theoretical calculations lend
support to the conclusions of Downs et al. (1996) that
previous evidence for compressional anomalies in for-
sterite are due to the sudden onset of non-hydrostaticity
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in the experiments, which is known to occur at approxi-
mately the same pressure at which the compressional
anomalies were seen (9 GPa).

The compression of forsterite is found to be signifi-
cantly anisotropic up to at least 25 GPa. The b axis is
nearly twice as compressible as the a axis over the entire
pressure range. The compressional anisotropy of olivine
is only weakly dependent on pressure. This result is of
seismological as well as crystal-chemical interest. The an-
isotropy of olivine plays a central role in the interpreta-
tion of seismological measurements of the radial and
transverse anisotropy of the upper mantle (Tanimoto and
Anderson 1984). We note however, that our theoretical
results provide only a partial description of P- and S-wave
anisotropies in this mineral, constraining only the three
combinations of elastic constants (Eq. 2–5). A complete
theoretical description of the anisotropy of forsterite and
its pressure dependence awaits a theoretical determination
of the full elastic constant tensor.

Despite the strongly anisotropic compression of the
forsterite structure, we find that the coordination poly-
hedra compress nearly isotropically. This seeming contra-
diction is resolved by recognizing that the forsterite struc-
ture is inherently anisotropic, with rows of relatively
compressible (Mg1 octahedra) and incompressible (Si tet-
rahedra) polyhedra alternating along [100] (Hazen 1987).
To illustrate this, we show that the relative magnitudes of
Ka, Kb, and Kc can be rationalized in terms of polyhedral
compressibilities. We assume that the polyhedra compress
perfectly isotropically and that they suffer no rotation un-
der compression. A consideration of the elements of the
forsterite structure then allows us to relate directly poly-
hedral and axial compressibilities. Parallel to [001] are
chains of edge-sharing M1 octahedra. These chains of M1
octahedra alternate along the [010] axis with M2 octa-
hedra. Along the [100] axis, the M1 octahedral chains
alternate with rows of Si tetrahedra. Remembering that
linear and volume compressibilities are related by a factor
of three, and using the polyhedral moduli from our LDA
results, the axial compressibilities can be approximated by

21K ø 6(1/K 1 1/K ) 5 683 GPa (10)a Mg1 Si

21K ø 6(1/K 1 1/K ) 5 405 GPa (11)b Mg1 Mg2

K ø 3K 5 474 GPa. (12)c Mg1

The axial moduli predicted by this simple structural mod-
el are all significantly overestimated in comparison with
the results of our quantum mechanical calculations (Fig.
4). The reason for this is that the structural model is over-
simplified. If we take into account polyhedral distortions
and the rotation of octahedra, for instance rotations of the
M1 octahedra about their shared edges, the predicted
moduli are smaller and in better agreement with our LDA
results. However, the relative magnitudes of the axial
moduli are correct (Ka . Kb . Kc) and the ratios of the
moduli (Ka/Kb 5 1.68, Ka/Kc 5 1.46) are similar to those
derived from the LDA results. This shows that the aniso-

tropic compression of the forsterite structure can be ex-
plained essentially in terms of isotropic polyhedral com-
pressibilities. Hazen (1987) came to a similar conclusion.
However, he assumed that KMg1 ø KMg2 and restricted his
analysis to the ratio Ka/Kb. He further assumed, as we
have done, that the polyhedra compress approximately
isotropically. Our LDA calculations, which show that
pressure-induced changes in quadratic elongation are
small, lend substantial theoretical support to this assump-
tion. This prediction must be tested against new high-
resolution crystal-structure refinements at high pressure.
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