Cordierite under hydrostatic compression: Anomalous elastic behavior as a precursor for a pressure-induced phase transition

RONALD MILETICH^{1,*}, G. DIEGO GATTA², THOMAS WILLI^{3,†}, PETER W. MIRWALD⁴, PAOLO LOTTI², MARCO MERLINI², NICOLA ROTIROTI² AND THOMAS LOERTING⁵

¹Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, A-1090 Wien, Austria ²Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, I-20133 Milano, Italy ³Institut für Geowissenschaften, Universität Heidelberg, Im Neuenheimer Feld 234-236, D-69120 Heidelberg, Germany ⁴Institut für Mineralogie und Petrographie, Universität Innsbruck, Innrain 52, A-6020 Innsbruck, Austria ⁵Institut für Physikalische Chemie, Universität Innsbruck, Innrain 52, A-6020 Innsbruck, Austria

ABSTRACT

The high-pressure behavior of cordierite was investigated by means of in situ experiments using piston-cylinder press and diamond-anvil cell. Static compression in diamond-anvil cells was conducted with various penetrating and non-penetrating pressure media (H₂O up to 2 GPa, argon and 4:1-methanolethanol up to 7 GPa). The measurement of lattice parameters revealed neither a significant influence on the elasticity nor any indication for effects in analogy to over-hydration within the experimental pressure ranges. Volumetric compression experiments at constant rates up to 1.2 GPa in a piston-cylinder apparatus insinuate subtle irregularities in the low-pressure range at around ~ 0.35 and ~ 0.85 GPa. The $\Delta V/V$ contribution related to the anomalous compression behavior in that pressure range is of the order of 5×10^{-4} . The results obtained from single-crystal X-ray diffraction between 10^{-4} and 7 GPa revealed an unexpected and anomalous linear volume decrease, corresponding to $K_{T298} = 131\pm1$ GPa for the bulk modulus and $K' = -0.4\pm0.3$ for its pressure derivative for a third-order Birch-Murnaghan equation of state. The compressional behavior of the main axis directions is anisotropic with $\beta_a^{-1} \approx$ $\beta_{b}^{-1} > \beta_{c}^{-1}$ for an initial pressure regime up to ~3 GPa. At pressures above ~4 GPa, the compression of the *a*- and *b*-axis starts to differ significantly, with the *b*-axis showing elastic softening as indicated by negative values for $\partial(\beta_{\rm h}^{-1})/\partial P$. The diversification between the *a*- and *b*-axis is also expressed by the pressure-depending increase of the distortion parameter Δ . The pronounced elastic softening in both the *b*-axis and *c*-axis directions $\partial(\beta_b^{-1})/\partial P = -4.3 \pm 0.9$, $\partial(\beta_c^{-1})/\partial P = -1.2 \pm 0.8$) are responsible for the apparent linear bulk compression, which indicates the structural instability and precedes a so far not reported ferroelastic phase transition to a triclinic polymorph, following a primitive lattice above the critical transition at ~6.9 GPa.

Keywords: Cordierite, high pressure, compressibility, elastic softening, phase transition