CHEMISTRY AND MINERALOGY OF EARTH'S MANTLE

The spin state of iron in Fe³⁺-bearing Mg-perovskite and its crystal chemistry at high pressure[†]

IZUMI MASHINO^{1,*}, EIJI OHTANI^{1,2}, NAOHISA HIRAO³, TAKAYA MITSUI⁴, RYO MASUDA⁵, MAKOTO SETO⁵, TAKESHI SAKAI^{1,6}, SUGURU TAKAHASHI¹ AND SATOSHI NAKANO⁷

¹Department of Earth and Planetary Materials Science, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan ²V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Koptyuga Avenue, 3, Novosibirsk, 630090, Russia ³Japan Synchrotron Radiation Institute, Sayo, Hyogo 679-5198, Japan ⁴Japan Atomic Energy Agency, Sayo, Hyogo 679-5148, Japan ⁵Research Reactor Institute, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan ⁶Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan ⁷National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

ABSTRACT

Valence, spin states, and crystallographic sites of Fe in (Mg,Fe)SiO₃ perovskite were investigated using energy-domain ⁵⁷Fe-synchrotron Mössbauer spectroscopy and powder X-ray diffraction up to 86 GPa. The volumes of Fe³⁺-bearing perovskite in this study are slightly smaller than those of Mg endmember perovskite. Our Mössbauer data suggest that Fe³⁺ prefers A sites coupled with Mg vacancies, which is consistent with previous data at ambient conditions. Fe³⁺ in the A site remains in a high-spin state up to 86 GPa, and some fraction of the A site is occupied by Fe²⁺ at pressures above 30 GPa. Fe²⁺ in the A sites is also in a high-spin state up to 86 GPa. The coupled substitution from Mg²⁺ to a highspin state of Fe³⁺ and Mg²⁺ vacancy would make the volume of perovskite smaller than that of Mg end-member perovskite. If the lower mantle is saturated in silica, perovskite containing high-spin Fe³⁺ in A site has a higher density. Such silica oversaturated regions could sink by the density difference.

Keywords: Perovskite, ferric iron, spin state, Mössbauer spectroscopy, X-ray diffraction