Medium-range order in disordered K-feldspars by multinuclear NMR Luis Sánchez-Muñoz^{1,*}, Jesús Sanz², Isabel Sobrados² and Zhehong Gan³

¹Instituto de Cerámica y Vidrio (CSIC), Kelsen 5, 28049 Madrid, Spain

²Instituto Ciencia de Materiales de Madrid (CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain ³National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, U.S.A.

ABSTRACT

The structures of K-rich feldspar, (K>Na)AlSi₃O₈, are currently described as "ideal" crystals with periodic average structures from Bragg diffraction maxima obtained by reciprocal-space techniques. Polymorphism is explained by variable substitutional disorder of framework Si and Al cations in tetrahedral T sites, and positional disorder of cavity alkali cations in a single M site. Here, highresolution magic angle spinning multinuclear magnetic resonance spectroscopy, leading to ²⁹Si, ²⁷Al, and ²³Na spectra at 9.4 as well as ²⁷Al, ³⁹K, and ²³Na spectra at 19.6 T, has been used to investigate the "real" structures along the order-disorder series of K-feldspar crystals. The "ideal" and "real" structure coincides only in the perfectly long-range ordered triclinic end-member of the low-microcline structure. Long-range disordered structures (either with monoclinic or triclinic symmetry by X-ray diffraction) show non-random disorder at the medium-range scale, triclinic-like distortions with four sets of T sites for framework atoms, two sets of M sites for alkali atoms, and Al-O-(K,Na) multi-site correlations by NMR spectroscopy. The K-feldspar structures can be described by a medium-range structure using the number of Al atoms per four-membered rings of tetrahedra, with "...-2-0-2-0-..." chains for microcline and orthoclase where the Al-occupancies $t_1O > t_2M > t_2O \approx t_1M$, and with "...-1-1-1--..." chains for valencianite and sanidine, in which $t_1 O > t_2 m \approx t_2 O \approx t_1 m$. Framework cations respect Loewenstein's rule (Al-O-Al avoidance), as well as some additional constraints of charge dispersion involving deficiency of Si atoms in Q⁴ (4Si,0Al), (1Si,3Al), and (0Si,4Al) environments, constraints which are particularly strong in valencianite. These "real" structure features cannot be described by "ideal" structures owing to the lack of resolving power of the reciprocal-space techniques.

Keywords: K-feldspars, NMR, medium-range order, valencianite, order-disorder series