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aBstract

The vectorial bond-valence model (VBVM) describes the spatial distribution of bonds to each atom 
in a system in terms of the vector sum of the incident bond valences. It has been applied in the past 
to cations not subject to electronic structure effects (e.g., lone-pair or Jahn-Teller effects) in which 
case the expectation is that the vector sum will be approximately zero. Here we analyze 178 simple-
oxide crystal structures and show that the vectorial bond-valence sum is a predictable function of the 
atomic valence (oxidation state) of each atom and the valence of the strongest bond to atoms for which 
second-order Jahn-Teller and lone-pair effects play a role in determining molecular geometry. Outliers 
are uniformly metastable or unstable under ambient conditions, suggesting that deviation from ideal 
vectorial bond-valence sums might be used as a proxy for some aspect of structural potential energy. 
These results are all strictly in harmony with the VSEPR model of molecular geometry, but may allow 
for more quantitative prediction.

Keywords: Crystal structure, oxide, bond valence, vectorial bond-valence model, electronegativity, 
lone pair, second-order Jahn-Teller effect, spherical symmetry, minimum coordination number

introduction

The bond-valence model (BVM) has become a standard in 
inorganic chemistry for predicting acceptable combinations of 
bonds, with their corresponding lengths, to ions in solid struc-
tures, as well as for assessing unknown oxidation states of ions 
in crystals (Brown 2002, 2009). It is now commonplace (e.g., 
Müller et al. 2003) to assess the plausibility of proposed crystal 
structures in terms of their adherence to the valence-sum rule, 
which states that in a stable crystal structure, the valence of 
bonds incident to an ion should ideally counterbalance the atomic 
valence of the ion (see the Theory section below for details). 
Bickmore et al. (2009) recently used ab initio molecular dynam-
ics simulations to show that the valence-sum rule applies on a 
time-averaged basis to liquid structures, in addition to solids.

Simple structural models like the BVM, e.g., the Lewis model 
and the valence shell electron pair repulsion (VSEPR) model, 
have historically been very important for generating new ideas 
about, for example, reaction mechanisms (Brown 2003). And yet, 
the BVM stands apart from the others because of its ability to 
make quantitative predictions of bond lengths via the valence-sum 
rule. The BVM is conceptually and mathematically very simple, as it 
boils down complex, multi-body interactions into a single parameter, 
the bond-valence sum, which is predictive for many systems.

Even in cases where known structures deviate significantly 
from BVM predictions, the model can prove useful by identify-
ing which aspects of the molecular structure cause the strain. If 

the valence-sum rule puts constraints on structures, it follows 
that deviation from the rule entails some energetic cost. Several 
quantitative structure-activity relationships (QSARs) have been 
formulated based partially on energy cost functions for devia-
tion from the valence-sum rule (Salinas-Sanchez et al. 1992; 
Hiemstra et al. 1996; Adams 2001; Adams and Swenson 2002; 
Adams et al. 2004; Bickmore et al. 2004, 2006; Adams and Rao 
2009; Perez-Mato et al. 2009). In fact, Rappe and coworkers 
have constructed a molecular mechanics force field based on 
such a cost function, along with several more standard potential 
energy terms (Grinberg et al. 2002, 2004; Cooper et al. 2003; 
Shin et al. 2005).

BVM-based energy cost functions are attractive because 
bond-valence calculations are empirically calibrated for different 
cation-anion pairs, so that the end product (bond valence) is a 
common currency, no matter what types of atoms are involved. 
This point is well illustrated by the work of Angel and colleagues, 
who showed that the rate of change of bond-valence sums with 
pressure is constant for cations in both the A and B sites in ABO3 
perovskites (Zhao et al. 2004a, 2004b; Angel et al. 2005b, 2005a; 
Zhao et al. 2006). Such a relationship would be very unlikely if 
the bond valence-energy relationship were substantially different 
for A-O and B-O bonds.

QSARs based solely on the valence-sum rule necessarily have 
limited applicability, because they are an incomplete description 
of molecular structure. Since bond valences are only calculated 
between cations and anions, the model obviously neglects non-
bonded forces such as would be needed to describe ligand-ligand 
interactions. And even if non-bonded interactions were addressed 
in the BVM, the valence-sum rule is non-directional, i.e., con-
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