Combined neutron and X-ray diffraction determination of disorder in doped zirconolite-2M

KARL R. WHITTLE,^{1,2,*} NEIL C. HYATT,² KATHERINE L. SMITH,¹ IRENE MARGIOLAKI,³ FRANK J. BERRY,^{4,†} KEVIN S. KNIGHT,⁵ AND GREGORY R. LUMPKIN¹

 ¹Institute of Materials and Engineering Science, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
²Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
³European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP220, 38043, Grenoble Cedex, France
⁴Department of Chemistry, The Open University, Walton Hall, Milton Keynes, Bucks MK7 6AA, U.K.
⁵ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, U.K.

ABSTRACT

Zirconolites based on the replacement of Ti^{4+} with equimolar amounts of Nb^{5+} and Fe^{3+} , $CaZrTi_{2-2x}$ $Nb_xFe_xO_7$, have been jointly refined using high-resolution neutron powder diffraction and resonant X-ray powder diffraction data, with extra information provided from ${}^{57}Fe$ Mössbauer spectroscopy, to determine cation disorder. The results indicate that the $CaZrTi_{2-2x}Nb_xFe_xO_7$ series adopts the zirconolite-2*M* polytype across the range, with the replacement of Ti^{4+} by Fe^{3+} and Nb^{5+} located within the hexagonal tungsten bronze (HTB) layers. Mössbauer spectroscopy shows that Fe^{3+} preferentially fills the Ti split (C2) site, with secondary filling of the C1 site and no observable occupancy of the C3 site. This has been confirmed by neutron and resonant X-ray diffraction. Niobium has been found to occupy both the C1 and C3 sites with no evidence for occupancy of the C2 site.

Keywords: Zirconolite, resonant X-ray diffraction, neutron diffraction, Mössbauer