Electronic spin states of ferric and ferrous iron in the lower-mantle silicate perovskite

JUNG-FU LIN,^{1,*} ERCAN E. ALP,² ZHU MAO,¹ TORU INOUE,³ CATHERINE MCCAMMON,⁴ YUMING XIAO,⁵ PAUL CHOW,⁵ AND JIYONG ZHAO²

¹Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712, U.S.A.
²Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.
³Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan
⁴Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany
⁵HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439, U.S.A.

ABSTRACT

The electronic spin and valence states of iron in lower-mantle silicate perovskite have been previously investigated at high pressures using various experimental and theoretical techniques. However, experimental results and their interpretation remain highly debated. Here we have studied a well-characterized silicate perovskite starting sample $[(Mg_{0.9}, Fe_{0.1})SiO_3]$ in a chemically inert Ne pressure medium at pressures up to 120 GPa using synchrotron Mössbauer spectra. Analyses of the Mössbauer spectra explicitly show a high-spin to low-spin transition of the octahedral-site Fe³⁺ occurring at ~13–24 GPa, as evidenced from a significant increase in the hyperfine quadrupole splitting. Two quadrupole doublets of the A-site Fe²⁺, with extremely high-QS values of 4.1 and 3.1 mm/s, occur simultaneously with the spin transition of the octahedral-site Fe³⁺ causes a volume reduction and a change in the local atomic-site configurations that result in a significant increase of the quadrupole splitting in the dodecahedral-site Fe²⁺ at 13–24 GPa. Our results here provide a coherent explanation for recent experimental and theoretical results on the spin and valence states of iron on the properties of the lower-mantle minerals.

Keywords: Silicate perovskite, diamond-anvil cell, spin transition, lower mantle, synchrotron Mössbauer spectroscopy, high pressures