Vorlanite (CaU⁶⁺)O₄—A new mineral from the Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia

EVGENY V. GALUSKIN,^{1,*} THOMAS ARMBRUSTER,² IRINA O. GALUSKINA,¹ BILJANA LAZIC,² ANTONI WINIARSKI,³ VIKTOR M. GAZEEV,⁴ PIOTR DZIERŻANOWSKI,⁵ ALEKSANDR E. ZADOV,⁶ NIKOLAI N. PERTSEV,⁴ ROMAN WRZALIK,³ ANATOLY G. GURBANOV,⁴ AND JANUSZ JANECZEK¹

¹Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography,

University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland

²Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
³August Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
⁴Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM) RAS, Staromonetny 35, Moscow, Russia
⁵Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, al. Żwirki i Wigury 93, 02-089 Warszawa, Poland
⁶OOO Sci.-Research Center "NEOCHEM," Dmitrovskoye Highway 100/2, Moscow, Russia

ABSTRACT

The new mineral vorlanite, $(CaU^{6+})O_4$, $D_{calc} = 7.29$ g/cm³, H = 4-5, $VHN_{10} = 360$ kg/mm², was found near the top of Mt. Vorlan in a calcareous skarn xenolith in ignimbrite of the Upper Chegem caldera in the Northern Caucasus, Kabardino-Balkaria, Russia. Vorlanite occurs as aggregates of black platy crystals up to 0.3 mm long with external symmetry $\overline{3}m$. The strongest powder diffraction lines are [d(Å)/(hkl)]: 3.107/(111), 2.691/(200), 1.903/(220), 1.623/(311), 1.235/(331), 1.203/(420), 1.098/(422), 0.910/(531). Single-crystal X-ray study gives isometric symmetry, space group $Fm\overline{3}m$, a = 5.3813(2)Å, V = 155.834(10) Å³, and Z = 2. X-ray photoelectron spectroscopy indicate that all U in vorlanite is hexavalent. The mineral is isostructural with fluorite and uraninite (U⁴⁺O₂). In contrast to synthetic rhombohedral CaUO₄, and most U⁶⁺ minerals, the U⁶⁺ cations in vorlanite are present as disordered uranyl ions. ^[8]Ca²⁺ and ^[8]U⁶⁺ are disordered over a single site with average M-O = 2.33 Å.

Vorlanite is believed to be a pseudomorphic replacement of originally rhombohedral $CaUO_4$. We assume that this rhombohedral phase transformed by radiation damage to cubic $CaUO_4$ (vorlanite). The new mineral is associated with larnite, chegemite, reinhardbraunsite, lakargiite, rondorfite, and wadalite, which are indicative of high-temperature formation (>800 °C) at shallow depth.

Keywords: Vorlanite, CaUO₄, uranium, skarn, structure, Raman, XPS, Lakargi