A new approach to determine and quantify structural units in silicate glasses using micro-reflectance Fourier-Transform infrared spectroscopy

KIM N. DALBY* AND PENELOPE L. KING

Department of Earth Sciences, The University of Western Ontario, London, Ontario N6A 5B7, Canada

ABSTRACT

Eight silicate unit vibrational modes were identified in a suite of PbO-SiO₂ glasses using microreflectance Fourier Transform infrared (μ R-FTIR) spectra that were transformed using the Kramers-Kronig relation. The transformed FTIR spectra, in the 800–1200 cm⁻¹ range, were deconvolved systematically into eight Voigt-shaped bands at centers that were predicted from the second derivative of the spectra. The area of the eight bands varied as a function of SiO₂ content, and these trends were combined with theoretical constraints to identify and assign the bands to seven provisional silicate units: SiO₄⁴⁻ (830 and 860 cm⁻¹), Si₂O₇⁶⁻ (900 cm⁻¹), Si₆O₁₈¹²⁻ (950 cm⁻¹), Si₂O₆⁴⁻ (980 cm⁻¹), Si₄O₁₀⁶⁻ (1010 cm⁻¹), Si₂O₅²⁻ (1050 cm⁻¹), and SiO₂ (1100 cm⁻¹). The provisional units were then grouped according to their NBO/T values: NBO/T = 4 (SiO₄⁺⁻), NBO/T = 3 (Si₂O₇⁶⁻), NBO/T = 2 (Si₆O₁₈¹²⁻ and Si₂O₆⁴⁻), NBO/T = 1 (Si₄O₁₁⁶⁻ and Si₂O₅²⁻) and NBO/T = 0 (SiO₂). The derived quantities of each NBO/T unit compare favorably with nuclear magnetic resonance data for PbO-SiO₂ glasses reported in the literature. This new approach for determining glass structure is advantageous because it may be performed on small Fe-bearing samples with minimal preparation, and analyses are rapid and relatively inexpensive.

Keywords: IR spectroscopy, glass structure, band fitting, PbO-SiO₂