American Mineralogist, Volume 91, pages 1918-1921, 2006

Synthesis of novel lead–molybdenum and lead–tungsten oxyhalides with the pinalite structure, Pb₃MoO₅Cl₂ and Pb₃WO₅Br₂

DMITRI O. CHARKIN^{1,*} AND PHILIP LIGHTFOOT²

¹Department of Materials Sciences, Moscow State University, Leninskie Gory, Moscow 119992, Russia ²EaStChem, School of Chemistry, St. Andrews University, St. Andrews, KY16 9ST, U.K.

ABSTRACT

Two new quaternary lead oxyhalides, Pb₃MoO₅Cl₂ and Pb₃WO₅Br₂, have been prepared. They are isostructural with the mineral pinalite, Pb₃WO₅Cl₂, and its barium analog. The crystal structure of Pb₃MoO₅Cl₂ has been refined from powder neutron diffraction data to $R_p = 0.0564$ and $R_{wp} = 0.0342$. All these structures contain significantly stretched MO₅ (M = Mo, W) square pyramids incorporated into the [Pb₂O₂] sheets. Bond valence sums indicate significant overbonding of one of the metal sites, which increases along with structural distortions when passing from Pb₃MoO₅Cl₂ to Pb₃WO₅Cl₂ and from Pb₃WO₅Cl₂ to Ba₃WO₅Cl₂. Possibilities of preparing isostructural and structurally related compounds are discussed.

Keywords: Pb₃MoO₅Cl₂, pinalite, crystal structure, neutron diffraction