High-pressure Raman spectroscopic studies of hydrous wadsleyite II

ANNETTE K. KLEPPE,^{1,*} ANDREW P. JEPHCOAT,^{1,2} AND JOSEPH R. SMYTH³

¹Department of Earth Sciences, University of Oxford, Parks Road, Oxford, OX1 3PR, U.K. ²Diamond Light Source, Chilton, Didcot, Oxfordshire, OX11 0QX, U.K. ³Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309, U.S.A.

ABSTRACT

Raman spectra in the range 80 to 4000 cm⁻¹ of wadsleyite II (Fo_{90} with 2.0 wt% H_2O and Fo_{88} with 2.7 wt% H₂O) have been measured in a diamond-anvil cell with solid rare-gas pressure-transmitting media to 51.4 GPa at room temperature. The ambient Raman spectrum of wadsleyite II is closely similar to wadsleyite modified with bands in frequency regions where the SiO₄ tetrahedral and OH stretching vibrations of hydrous ringwoodite occur. The most intense, characteristic wadsleyite II modes at 709 and 911 cm⁻¹ (Si₂O₇ and SiO₃ symmetric stretching vibrations, respectively) shift continuously to 51.4 GPa showing no evidence for a change in the crystal structure. A striking feature in the high-pressure Raman spectra of wadsleyite II is a significant growth in intensity in the mid-frequency range (300-650 cm⁻¹ at 10⁻⁴ GPa and 400–750 cm⁻¹ at 51.4 GPa) under compression accompanied by the appearance of new Raman modes near 40 GPa, perhaps a result of resonance electronic Raman scattering. In the OH stretching frequency range, the Raman spectrum of wadsleyite II exhibits at least six modes and their high-pressure behavior agrees with that of Fo₉₀ hydrous wadsleyite: OH stretching modes above 3530 cm⁻¹ remain approximately constant up to at least 21.8 GPa whereas OH modes at frequencies <3530 cm⁻¹ decrease with increasing pressure. The OH stretching modes are consistent with protonation of the non-silicate oxygen O2 and the O atoms surrounding the partially vacant tetrahedral site Si2, as suggested from X-ray diffraction data.

Keywords: Hydrous wadsleyite II, Raman spectroscopy, diamond-anvil cell, transition zone, high pressure