American Mineralogist, Volume 90, pages 1218–1222, 2005

LETTER

Aluminum coordination and the densification of high-pressure aluminosilicate glasses

JEFFREY R. ALLWARDT,^{1,2,*} JONATHAN F. STEBBINS,¹ BURKHARD C. SCHMIDT,^{2,†} DANIEL J. FROST,² ANTHONY C. WITHERS,³ AND MARC M. HIRSCHMANN³

¹Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305, U.S.A. ²Bayerisches Geoinstitut, Universität Bayreuth, Germany

³Department of Geology and Geophysics, University of Minnesota, Minneapolis, Minnesota 55455, U.S.A.

ABSTRACT

To better understand the relationship between atomic-scale structures and densities of aluminosilicate glasses and liquids, we used 27 Al MAS NMR to determine the speciation of aluminum ions in K₃AlSi₃O₉, Na₃AlSi₃O₉, and Ca₃Al₂Si₆O₁₈ glasses quenched from melts at 3 to 10 GPa. These data are a first approximation of high-pressure melt structure and illustrate the effects of the type of modifier cation. High field strength modifier cations (e.g., Ca) clearly induce more high-coordinated Al than lower field strength cations (e.g., Na and K). Measured glass densities show that, especially with rapid decompression, a significant portion of the total densification observed in-situ in melts is retained on return to ambient temperature and pressure. Observed increases in Al coordination are well correlated with decreased volume, which suggests that this structural change is a major part of the mechanism for recovered densification of high-pressure melts. Additionally, 23 Na MAS NMR, combined with the 27 Al MAS spectra and density determinations, reveal that other changes, such as the compression of modifier cation sites and/or decreased network bond angles, must also be significant, especially at low pressure.