Thermodynamics of uranyl minerals: Enthalpies of formation of rutherfordine, UO₂CO₃, andersonite, Na₂CaUO₂(CO₃)₃(H₂O)₅, and grimselite, K₃NaUO₂(CO₃)₃H₂O

KARRIE-ANN KUBATKO,¹ KATHERYN B. HELEAN,² ALEXANDRA NAVROTSKY,² AND PETER C. BURNS^{1,*}

¹Department of Civil Engineering and Geological Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, U.S.A. ²Thermochemistry Facility and NEAT ORU, University of California at Davis, One Shields Avenue, Davis, California 95616, U.S.A.

ABSTRACT

Enthalpies of formation of rutherfordine, UO₂CO₃, andersonite, Na₂CaUO₂(CO₃)₃(H₂O)₅, and grimselite, K₃NaUO₂(CO₃)₃(H₂O), have been determined using high-temperature oxide melt solution calorimetry. The enthalpy of formation of rutherfordine from the binary oxides, ΔH_{rox} , is -99.1 ± 4.2 kJ/mol for the reaction UO₃ (xl, 298 K) + CO₂ (g, 298 K) = UO₂CO₃ (xl, 298 K). The ΔH_{rox} for andersonite is -710.4 ± 9.1 kJ/mol for the reaction Na₂O (xl, 298 K) + CaO (xl, 298 K) + UO₃ (xl, 298 K) + 3CO₂ (g, 298 K) + 5H₂O (l, 298 K) = Na₂CaUO₂(CO₃)₃(H₂O)₆ (xl, 298 K). The ΔH_{rox} for grimselite is -989.3 ± 14.0 kJ/mol for the reaction 1.5 K₂O (xl, 298 K) + 0.5Na₂O (xl, 298 K) + UO₃ (xl, 298 K) + 3CO₂ (g, 298 K) + H₂O (l, 298 K) = K₃NaUO₂(CO₃)₃H₂O (xl, 298 K). The standard enthalpies of formation from the elements, ΔH_{r}^{r} , are -1716.4 ± 4.2, -5593.6 ± 9.1, and -4431.6 ± 15.3 kJ/mol for rutherfordine, and grimselite, respectively. Energetic trends of uranyl carbonate formation from the binary oxides and ternary carbonates are dominated by the acid-base character of the binary oxides. However, even relative to mixtures of UO₂CO₃, K₂CO₃, and Na₂CO₃ or CaCO₃, andersonite and grimselite are energetically stable by 111.7 ± 10.2 and 139.6 ± 16.1 kJ/mol, respectively, suggesting additional favorable interactions arising from hydration and/or changes in cation environments. These enthalpy values are discussed in comparison with earlier estimates.