OH⁻ in synthetic and natural coesite

MONIKA KOCH-MÜLLER,^{1,*} PRZEMYSLAW DERA,² YINGWEI FEI,² BARRY RENO,³ NIKOLAI SOBOLEV,⁴ ERIK HAURI,⁵ AND RICHARD WYSOCZANSKI⁶

¹GeoForschungsZentrum Potsdam, Sektion 4.1, Telegrafenberg, Potsdam D-14473, Germany

²Carnegie Institution of Washington, Geophysical Laboratory, 5251 Broad Branch Road N.W., Washington, D.C. 20015-1305, U.S.A.

³Trinity University, Department of Geosciences, 1932-715 Stadium Drive, San Antonio, Texas 78212-7200, U.S.A.

⁴Russian Academy of Science, Siberian Branch, Institute of Mineralogy and Petrography, 3 Koptyug Avenue, Novosibirsk 90, 630090,

Russia

⁵Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5251 Broad Branch Road N.W., Washington, D.C. 20015, U.S.A ⁶Smithsonian Institution, Department of Mineral Sciences, National Museum of Natural History, Washington, D.C. 20560-0119, U.S.A.

ABSTRACT

The incorporation of hydrogen into the coesite structure was investigated at pressures ranging from 4.0-9.0 GPa and temperatures from 750-1300 °C using Al and B doped SiO₂ starting materials. The spectra show four sharp bands (v_1 , v_{2a} , v_{2b} , and v_3) in the energy range of 3450–3580 cm⁻¹, consistent with the hydrogarnet substitution [Si^{4+(T2)} + 4O²⁻ = va^{T2} + 4OH⁻], two weak sharp bands at 3537 and 3500 cm^{-1} (v_{6a} and v_{6b}) attributed to B-based point defects, and two weaker and broad bands at 3300 and 3210 cm⁻¹ (v_4 and v_5) attributed to substitution of Si⁴⁺ by Al³⁺ + H. More than 80% of the dissolved water is incorporated via the hydrogarnet substitution mechanism. The hydrogen solubility in coesite increases with pressure and temperature. At 7.5 GPa and 1100 °C, 1335 H/106 Si is incorporated into the coesite structure. At 8.5 GPa and 1200 °C, the incorporation mechanism changes: in the IR spectra four new sharp bands appear in the energy range of 3380–3460 cm⁻¹ (v_7-v_{10}) and the v_1 - v_3 bands disappear. Single crystal X-ray diffraction, Raman spectroscopy, polarized single-crystal and in situ high-pressure FTIR spectroscopy confirm that the new bands are due to OH⁻ in coesite. The polarization and high-pressure behavior of the v_7 - v_{10} OH bands is quite different from that of the $v_1 - v_3$ bands, indicating that the H incorporation in coesite changes dramatically at these P and T conditions. Quantitative determination of hydrogen solubility in synthetic coesite as a function of pressure, temperature, and chemical impurity allow us to interpret observations in natural coesite. Hydrogen has not previously been detected in natural coesite samples from ultra high-pressure metamorphic rocks. In this study, we report the first FTIR spectrum of a natural OH-bearing coesite. The dominant substitution mechanism in this sample is the hydrogarnet substitution and the calculated hydrogen content is about 900 $\zeta \pm 300 \text{ H}/10^6$ Si. The coesite occurs as an inclusion in diamond together with an OH-bearing omphacite. The shift of the OH-bands of coesite and omphacite to lower energies indicates that the minerals are still under confining pressure.