American Mineralogist, Volume 87, pages 709-714, 2002

Crystal chemistry of Cr³⁺-V³⁺-rich clinopyroxenes

L. SECCO,^{1,*} F. MARTIGNAGO,¹ A. DAL NEGRO,¹ L.Z. REZNITSKII,² AND E.V. SKLYAROV²

¹Dipartimento di Mineralogia e Petrologia, Università di Padova, Corso Garibaldi 37, Padova, Italy ²Russian Academy of Science. Siberian Branch, Institute of the Earth's Crust, Lermontova Street, 128, Irkutsk, Russia

ABSTRACT

Eleven clinopyroxenes from the Sludyanka Crystalline Complex in Russia belonging to the ternary join $NaVSi_2O_6$ - $NaCrSi_2O_6$ -CaMgSi_2O₆ (natalyite-kosmochlor-diopside) were studied by means of X-ray single crystal diffractometry and electron probe microanalysis.

The crystal chemical data show that the T site is almost completely occupied by Si, so that the Na $(V^{3+}, Cr^{3+}) \rightarrow Ca$ Mg substitution mechanism ensures charge balance. Changes in M1 site geometry are explained by the aggregate ionic radius, and are influenced by Mg occupancy and $V^{3+}/(V^{3+} + Cr^{3+})$ ratio. The M2 site geometry depends both on Na content and on the $(V^{3+}, Cr^{3+}) \rightarrow Mg$ substitution in M1 site. Changes in M2-O3c1 bond length are mainly related to Na content, whereas the longest M2-O3c2 bond lengths are significantly affected by the $V^{3+}/(V^{3+} + Cr^{3+})$ ratio of the M1 site. The T site geometry is affected by chemical and geometrical variations at the M1 and M2 sites, principally the M1 site occupancy.