Neustädtelite and cobaltneustädtelite, the Fe³⁺- and Co²⁺-analogues of medenbachite

WERNER KRAUSE,¹ HEINZ-JÜRGEN BERNHARDT,² CATHERINE MCCAMMON,³ AND HERTA EFFENBERGER^{4,*}

¹Henriette-Lott-Weg 8, D-50354 Hürth, Germany

²Institut für Mineralogie, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany ³Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany ⁴Institut für Mineralogie und Kristallographie. Universität Wien, Althanstrasse 14, A-1090 Vienna, Austria

ABSTRACT

Neustädtelite and cobaltneustädtelite, two new minerals related to medenbachite, were found on samples from the dumps of the Güldener Falk mine near Schneeberg-Neustädtel, Saxony, Germany. The general appearance of the two new minerals is very similar; small tabular crystals up to 0.2 mm in diameter, transparent to translucent, with a brown color and a light brown streak; the lustre is adamantine. Both minerals are optically biaxial negative, $2V = 65(5)^\circ$, $n_z = 2.02(2)$, $n_z = 2.09$ (calc.). $n_z = 2.12(2)$; pleochroism is strong with X = brown to opaque, Y = vellow, Z = pale vellow. Mohs' hardness is 4.5. The cleavage parallel to $\{001\}$ is good. The chemical compositions were derived by means of electron-microprobe analyses. Average contents for neustädtelite/cobaltneustädtelite are (in wt%): Bi₂O₃ 52.58/51.54, PbO 0.08/0.08, CaO 0.15/0.32, Fe₂O₃ 13.92/10.90, Al₂O₃ 0.29/0.07, CoO 3.35/5.47, NiO 0.34/1.61, ZnO 0.09/0.39, CuO 0.07/0.00, As₂O₅ 26.82/25.91, P₂O₅ 0.23/0.43, H₂O (calc.) 2.56/3.01, total 100.48/99.73. Mössbauer spectra of cobaltneustädtelite and medenbachite confirmed that all of the iron is trivalent. Based on 12 O atoms, the empirical formulae for the neustädtelite and cobaltneustädtelite type materials are $(Bi_{1.94}Ca_{0.02})_{\Sigma 1.96}Fe_{1.00}(Fe_{0.50}Co_{0.38}Ni_{0.04}Al_{0.05}Zn_{0.01})$ $Cu_{0,01} \sum_{\Sigma_2,99} [(OH)_{2,44}O_{1,49}]_{\Sigma_3,84} [(AsO_4)_{2,01}(PO_4)_{0,03}]_{\Sigma_2,04}$ and $(Bi_{1,91}Ca_{0,05})_{\Sigma_1,96}Fe_{1,02}(Co_{0,63}Fe_{0,16}Ni_{0,19})_{\Sigma_2,04}$ $Zn_{0.04}Al_{0.01}\sum_{10.5}[(OH)_{2.88}O_{1.12}]_{\Sigma_{4.00}}[(AsO_{4})_{1.95}(PO_{4})_{0.05}]_{\Sigma_{2.00}}$, respectively. As derived from chemical analyses and crystal-structure investigations the ideal end-member compositions are $Bi_2Fe^{3+}Fe^{3+}O_2(OH)_2(AsO_4)_2$ (neustädtelite) and $Bi_2Fe^{3+}Co^{2+}O(OH)_3(AsO_4)_2$ (cobaltneustädtelite). Extensive solid solution is observed between these two minerals. Neustädtelite and cobaltneustädtelite crystallize in space group P1; the cell parameters refined from powder data are a = 4.556(1)/9.156(1), b = 6.153(2)/6.148(1), c = 6.153(2)/6.148(1)8.984(2)/9.338(1) Å, $\alpha = 95.43(2)/83.24(1)$, $\beta = 99.22(2)/70.56(1)$, $\gamma = 92.95(3)/86.91(1)^{\circ}$, V = 1000246.9/492.2 Å³, $Z = \frac{1}{2}$, density (calc.) 5.81/5.81 g/cm³. Structure investigations were performed using single-crystal X-ray data. In both minerals edge-sharing alternating $Fe^{3+}Ø_6$ and $(Fe^{3+},Co^{2+})Ø_6/$ $(Co^{2+}, Fe^{3+}) Ø_6$ octahedra (Ø = O, OH) form chains parallel to [010] that are corner-linked by arsenate tetrahedra to layers parallel to (001). The Bi atoms are linked by O atoms to form columns parallel to [100]; these are sandwiched between layers of composition ${}^{[6]}M_2(OH)_2(AsO_4)_2$ (M = Fe³⁺, Co²⁺). In neustädtelite the Bi atoms are site disordered; in cobaltneustädtelite half of the Bi atoms are ordered and half are on a split position. The partial ordering is induced by the presence of three OH groups, as compared to two in neustädtelite. A structural reinvestigation of medenbachite, Bi₂Fe³⁺ $(Cu^{2+}, Fe^{3+})(O, OH)_2(OH)_2(AsO_4)_2$, proved isotypy with cobaltneustädtelite; the new cell parameters for medenbachite (refined from X-ray powder data) are: a = 9.162(2), b = 6.178(1), c = 9.341(2) Å, $\alpha = 83.50(2), \beta = 71.04(2), \gamma = 85.15(2)^{\circ}, V = 496 \text{ Å}^3, Z = 2.$