The enthalpy of formation and internally consistent thermodynamic data of Mg-staurolite

KLAUS-D. GREVEL,^{1,2,*} ALEXANDRA NAVROTSKY,² THOMAS FOCKENBERG,¹ AND JURAJ MAJZLAN²

¹Ruhr-Universität Bochum, Institut für Geologie, Mineralogie und Geophysik, D-44780 Bochum, Germany

²Thermochemistry Facility, Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, California 95616-8779, U.S.A.

ABSTRACT

The enthalpies of drop solution in lead borate (2 PbO· B_2O_3) of four Mg-staurolite samples, synthesized at 720 °C and pressures between 2 and 5 GPa, were measured by high-temperature oxidemelt calorimetry at 702 °C. Staurolite compositions, determined by electron microprobe analysis, Karl-Fischer titration, and thermogravimetry, are: Mg_{3,71}Al_{18,17}Si_{7,60}O_{44,31}(OH)_{3,69}, $Mg_{3,87}Al_{17,65}Si_{7,75}O_{43,68}(OH)_{4,32}, Mg_{3,66}Al_{17,76}Si_{7,68}O_{43,31}(OH)_{4,69}, and Mg_{3,58}Al_{18,05}Si_{7,43}O_{43,01}(OH)_{4,99}.$ The enthalpy of drop solution of the bulk samples (as well as the calculated values for the enthalpy of formation from the elements of Mg-staurolite) are strongly correlated to the H content of the samples. The enthalpy of formation from the elements is best described by the linear relation $\Delta_t H_{298}^0$ (Mgstaurolite) = (-25357.58 + 87.35 N) kJ/mol, where N = number of H atoms per formula unit in Mgstaurolite. The enthalpy of drop solution of two partially dehydrated Mg-staurolite samples is in a good agreement with the linear relation. Phase-equilibrium data for Mg-staurolite (Fockenberg 1998) were recalculated using the stoichiometric formula Mg_{3.5}Al₁₈Si_{7.75}O₄₄(OH)₄. Based on these mineral equilibria and the internally consistent data set of Berman (1988), a mathematical programming analysis of the thermodynamic data of Mg-staurolite gave $\Delta_{f}H_{298}^{0}$ [Mg₃, 5Al₁₈Si_{7,75}O₄₄(OH)₄] = -25005.14 kJ/mol, and S_{98}^{0} [Mg₃₅Al₁₈Si₇₇₅O₄₄(OH)₄] = 937.94 J/(K·mol). Thus, for the first time, reliable thermodynamic data for Mg-staurolite, based on experimental constraints, are provided.