Effects of temperature and composition on the bulk modulus of (Mg,Fe)O

Yingwei Fei*

Geophysical Laboratory and Center for High Pressure Research, Carnegie Institution of Washington, 5251 Broad Branch Road, N.W., Washington, D.C. 20015, U.S.A.

ABSTRACT

Isothermal static compression data for MgO at 300 and 1100 K were obtained by combining synchrotron X-ray diffraction techniques with an externally heated high-temperature diamond-anvil cell that is capable of achieving pressures greater than 125 GPa at temperatures up to 1100 K. The experiments at 300 K were conducted under both hydrostatic and nonhydrostatic conditions. The deviatoric stress in non-hydrostatic environment significantly effects the measured lattice parameters. Fits to the static compression data of MgO at 300 K yield a bulk modulus of 185(7) GPa and 160(2) GPa under nonhydrostatic and hydrostatic conditions, respectively. The deviatoric stress decreases with increasing temperature, and a nearly hydrostatic condition was achieved at temperatures above 900 K when NaCl was used as a pressure-medium. The bulk modulus of MgO was determined to be 135(3) GPa at a temperature of 1100 K, yielding its temperature derivative of -0.030(3) GPa/K. Comparing these results with previous studies in the system MgO-FeO, shows that the bulk modulus of (Mg,Fe)O decreases with increasing FeO content, from 160 GPa for MgO to 146 GPa for FeO.