In situ structure determination of the high-pressure phase of Fe₃O₄

YINGWEI FEL^{1,*} DANIEL J. FROST, ^{1,†} HO-KWANG MAO,¹ CHARLES T. PREWITT,¹ AND DANIEL HÄUSERMANN²

¹Geophysical Laboratory and Center for High Pressure Research, Carnegie Institution of Washington, 5251 Branch Road, N.W., Washington, D.C. 20015, U.S.A. ²European Synchrotron Radiation Facility, BP220, F38043 Grenoble Cedex, France

ABSTRACT

The crystal structure of a high-pressure Fe_3O_4 phase was determined by in situ X-ray diffraction measurements at high pressure and temperature, using an imaging plate detector and monochromatic synchrotron X-radiation. The high-pressure phase has the *Pbcm* space group (CaMn₂O₄-type structure) with cell parameters a = 2.7992(3) Å, b = 9.4097(15) Å, and c = 9.4832(9) Å at 23.96 GPa and 823 K. Fe³⁺ occupies an octahedral site and Fe²⁺ is in an eightfold-coordinated site described as a bicapped trigonal prism. The high-pressure CaMn₂O₄-type Fe₃O₄ phase is about 6.5% more dense than the spinel form at 24 GPa.