American Mineralogist, Volume 84, pages 1162-1169, 1999

The synthesis and crystal structure of CaAlFSiO₄, the Al-F analog of titanite

ULRIKE TROITZSCH AND DAVID J. ELLIS

Department of Geology, Faculty of Science, Australian National University, Canberra, A.C.T., 0200, Australia

ABSTRACT

Aluminum-rich titanites $[Ca(Ti,Al)(O,F)SiO_4]$ with $X_{Al} > 0.53$ $[X_{Al} = Al/(Al+Ti)]$, including the pure end-member CaAlFSiO₄, were synthesized for the first time in a high-pressure experimental study. The crystal structure of CaAlFSiO₄ was determined by Rietveld analysis of an X-ray powder diffraction pattern. CaAlFSiO₄ is monoclinic, belongs to the space group A2/a, and has the unit-cell dimensions a = 6.9149(2) Å, b = 8.5064(1) Å, c = 6.4384(2) Å, and $\beta = 114.684(2)^\circ$. The unit-cell volume is less than 93% of CaTiOSiO₄, which is consistent with the natural occurrence of Al-rich titanite in high-*P* rocks. Although previous studies suggested that titanite with $X_{Al} > 0.5$ is possibly not stable, this study demonstrates that complete solid solution occurs between CaTiOSiO₄ and CaAlFSiO₄. The similarity of the crystal structures of titanite and CaAlFSiO₄ explains why in natural Al-rich titanite the end-member CaAlFSiO₄ generally dominates over the hypothetical end-member CaAlOHSiO₄, which under geological conditions is stable in a different crystal structure.