Single-crystal IR spectroscopy of very strong hydrogen bonds in pectolite, NaCa₂[Si₃O₈(OH)], and serandite, NaMn₂[Si₃O₈(OH)]

VERA M.F. HAMMER,¹ EUGEN LIBOWITZKY,^{2,3,*} AND GEORGE R. ROSSMAN³

¹Mineralogisch-Petrographische Abteilung, Naturhistorisches Museum Wien, Burgring 7, A-1014 Wien, Austria ²Institut für Mineralogie und Kristallographie, Universität Wien-Geozentrum, Althanstrasse 14, A-1090 Wien, Austria ³Division of Geological and Planetary Sciences, California Institute of Technology, 170-25, Pasadena, California 91125, U.S.A.

ABSTRACT

Polarized infrared absorption spectra of thin, oriented single-crystal slabs of pectolite and serandite were recorded between 4000 and 350 cm⁻¹ at 298 and 83 K. The spectra of both minerals show a broad absorption region parallel to the silicate chains (b direction) that is centered around 1000 cm⁻¹, which is interrupted by a transmission window, and which is superimposed by sharp silicate, lattice, and overtone modes. This band is assigned to the OH stretching mode consistent with the alignment of the O-H \cdots O hydrogen bond parallel to b and the short $O \cdots O$ distance of 2.45–2.48 Å that was found in previous Xray structure refinements. At 1396 cm⁻¹ (pectolite) and 1386 cm⁻¹ (serandite) an OH bending mode is observed in the IR spectra parallel to c. At low temperatures, this mode shifts up to higher frequencies (1403 cm^{-1} at 83 K in pectolite), whereas the down-shift of the OH stretching mode cannot be observed due to the extremely broad band width. The slightly higher energy of the bending mode in pectolite indicates a slightly stronger hydrogen bond with respect to serandite. However, the bond length in serandite is slightly shorter than that in pectolite. An asymmetric $O-H \cdots O$ bond is confirmed in pectolite and serandite through comparison with different materials with similar, very strong hydrogen bonds and low-energy OH stretching modes.