Gibbs energies of formation for hydrocerussite $[Pb(OH)_2 \cdot (PbCO_3)_2(s)]$ and hydrozincite $\{[Zn(OH)_2]_3 \cdot (ZnCO_3)_2(s)\}$ at 298 K and 1 bar from electrochemical cell measurements

M.A. MERCY,^{1,*} PETER A. ROCK,² WILLIAM H. CASEY,³ AND MEHDI M. MOKARRAM^{2,3}

¹Department of Geology, University of California, Davis, California 95616, U.S.A.

²Department of Chemistry, University of California, Davis, California 95616, U.S.A.

³Department of Land, Air, and Water Resources and Department of Geology, University of California, Davis, California 95616, U.S.A.

Abstract

New values are reported for the Gibbs energies of formation from the elements for hydrocerussite Pb(OH)₂·(PbCO₃)₂ and hydrozincite $[Zn(OH)_2]_3 \cdot (ZnCO_3)_2$. These ΔG_f^o values were obtained from electrochemical cells without liquid junction. We determined ΔG_f^o [Pb(OH)₂·(PbCO₃)₂(s)] = -1699.8 ± 1.6 kJ/mol for hydrocerussite and ΔG_f^o {[Zn(OH)₂]₃·(ZnCO₃)₂} = -3163.3 ± 4 kJ/mol for hydrozincite. These results allow future electrochemical cell experiments to be performed to determine the ΔG_f^o values of other hydroxycarbonate minerals using either the Pb amalgam-hydrocerussite or the Zn amalgam-hydrozincite as reference electrodes. These reference electrodes provide a strategy for establishing Gibbs energies for phases with two different anions, which are geochemically interesting but difficult to study experimentally.