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Identifying serpentine minerals by their chemical compositions with machine learning
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ABSTRACT

The three main serpentine minerals, chrysotile, lizardite, and antigorite, form in various geological
settings and have different chemical compositions and rheological properties. The accurate identification
of serpentine minerals is thus of fundamental importance to understanding global geochemical cycles
and the tectonic evolution of serpentine-bearing rocks. However, it is challenging to distinguish specific
serpentine species solely based on geochemical data obtained by traditional analytical techniques.
Here, we apply machine learning approaches to classify serpentine minerals based on their chemical
compositions alone. Using the Extreme Gradient Boosting (XGBoost) algorithm, we trained a clas-
sifier model (overall accuracy of 87.2%) that is capable of distinguishing between low-temperature
(chrysotile and lizardite) and high-temperature (antigorite) serpentines mainly based on their SiO,, NiO,
and Al,O; contents. We also utilized a k-means model to demonstrate that the tectonic environment in
which serpentine minerals form correlates with their chemical compositions. Our results obtained by
combining these classification and clustering models imply the increase of Al,O; and SiO, contents
and the decrease of NiO content during the transformation from low- to high-temperature serpentine
(i.e., lizardite and chrysotile to antigorite) under greenschist—blueschist conditions. These correlations
can be used to constrain mass transfer and the surrounding environments during the subduction of
hydrated oceanic crust.
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