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Abstract
The diverse suite of trace elements incorporated into apatite in ore-forming systems has important 

applications in petrogenesis studies of mineral deposits. Trace element variations in apatite can be 
used to distinguish between fertile and barren environments, and thus have potential as mineral ex-
ploration tools. Such classification approaches commonly employ two-variable scatterplots of apatite 
trace element compositional data. While such diagrams offer accessible visualization of compositional 
trends, they often struggle to effectively distinguish ore deposit types because they do not employ all 
the high-dimensional (i.e., multi-element) information accessible from high-quality apatite trace ele-
ment analysis. To address this issue, we use a supervised machine-learning-based approach (eXtreme 
Gradient Boosting, XGBoost) to correlate apatite compositions with ore deposit type, utilizing such 
high-dimensional information. We evaluated 8629 apatite trace element data from five ore deposit 
types (porphyry, skarn, orogenic Au, iron oxide copper gold, and iron oxide-apatite) along with un-
mineralized magmatic and metamorphic apatite to identify discriminating parameters for the individual 
deposit types, as well as for mineralized systems. According to feature selection, eight elements (Th, 
U, Sr, Eu, Dy, Y, Nd, and La) improve the model performance. We show that the XGBoost classifier 
efficiently and accurately classifies high-dimensional apatite trace element data according to the ore 
deposit type (overall accuracy: 94% and F1 score: 89%). Interpretation of the model using the SHAPley 
Additive exPlanations (SHAP) tool shows that Th, U, Eu, and Nd are the most indicative elements for 
classifying deposit types using apatite trace element chemistry. Our approach has broad implications 
for the better understanding of the sources, chemistry, and evolution of melts and hydrothermal fluids 
resulting in ore deposit formation.
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Introduction
To develop a quantitative, process-based model for ore-

forming systems, a characterization of melt and hydrothermal 
fluid source, composition and evolution is required (e.g., Anders-
son et al. 2019). Various minerals in ore-forming systems can 
constrain the conditions of mineralization based on variations in 
their mineral chemistry, thus recording the evolution of melts and 
hydrothermal fluids and yielding constraints on the metallogenic 
processes (Clark and Williams-Jones 2003; Pisiak et al. 2017; 
Chapman et al. 2021; Qiu et al. 2021). As a common accessory 
mineral in igneous, metamorphic, and clastic sedimentary rocks, 
apatite has a broad range of applications in the geosciences, 
including thermochronology studies to investigate tectonic 

unroofing (Fitzgerald et al. 1991), fault slip rates (Brichau et al. 
2006), landscape evolution (Braun et al. 2006), petroleum sys-
tem maturation (Burtner et al. 1994), and the record of volatile 
budgets and volcanic eruption triggering (Stock et al. 2016). The 
structure of apatite also facilitates the substitution of more than 
half the stable members of the periodic table as trace elements 
(Hughes 2015), including the rare earth elements and Sr, Y, Th, 
and U (Sha and Chappell 1999; Chew et al. 2011; Zhou et al. 
2022a). Apatite trace element chemistry thus has important ap-
plications in igneous and metamorphic petrogenesis studies and 
in improving the understanding of ore deposit formation (Chu et 
al. 2009; O’Sullivan et al. 2020; Yu et al. 2021, 2022).

Previous studies that have employed apatite trace element 
chemistry to classify protolith rock type or fertility have typically 
employed binary or ternary discrimination diagrams with the 
variables being apatite trace element abundances or elemental 
ratios. Belousova et al. (2002) analyzed trace elements in apatite 
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