Crystal structure, hydrogen bonding, and high-pressure behavior of the hydroxide perovskite MgSi(OH)₆: A phase relevant to deep subduction of hydrated oceanic crust

MARK D. WELCH^{1,*}, JENS NAJORKA¹, AND BERND WUNDER²

¹Natural History Museum, London SW7 5BD, U.K. ²Deutsches GeoForschungsZentrum GFZ, Section 3.6, Telegrafenberg, 14473 Potsdam, Germany

ABSTRACT

The structural response to compression of the synthetic high-pressure hydroxide perovskite $MgSi(OH)_6$, the so-called "3.65 Å phase," has been determined to 8.4 GPa at room temperature using single-crystal XRD in the diamond-anvil cell. Two very similar structures have been determined in space groups $P2_1$ and $P2_1/n$, for which differences in oxygen donor-acceptor distances indicate that the non-centrosymmetric structure is likely the correct one. This structure has six nonequivalent H sites, of which two are fully occupied and four are half-occupied. Half-occupied sites are associated with a well-defined crankshaft of hydrogen-bonded donor-acceptor oxygens extending parallel to c. Half occupancy of these sites arises from the averaging of two orientations of the crankshaft H atoms $(\parallel \pm c)$ in equal proportions. The P2₁ and P2₁/n structures are compared. It is shown that the former is likely the correct space group, which is also consistent with recent spectroscopic studies that recognize six nonequivalent O-H. The structure of MgSi(OH)₆ at pressures up to 8.4 GPa was refined in both space groups to see how divergent the two models are. There is a very close correspondence between the responses of the two structures implying that, at least to 8.4 GPa, non-centrosymmetry does not affect compressional behavior. The very different compressional behavior of MgO₆ and SiO₆ octahedra observed in this study suggests that structural phase transformations or discontinuities likely occur in MgSi(OH)₆ above 9 GPa.

Keywords: MgSi(OH)₆, high pressure, cold subduction, hydrous phase