Structures and transport properties of supercritical SiO₂-H₂O and NaAlSi₃O₈-H₂O fluids

YICHENG SUN^{1,2,†}, XIANDONG LIU^{1,*}, AND XIANCAI LU¹

¹State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China ²Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, College of Oceanography, Hohai University, Nanjing, Jiangsu 210024, China

ABSTRACT

Speciation and transport properties of supercritical fluids is critical for understanding their behavior in the Earth's interior. Here, we report a systematic first principles molecular dynamics simulation study of the structure, speciation, self-diffusivity (D), and viscosity (η) of SiO₂ melt, NaAlSi₃O₈ melt, SiO₂-H₂O and NaAlSi₃O₈-H₂O fluids at 2000–3500 K with 0–70 wt% H₂O. Our calculations show that as the water content increases, the proportion of Q^0 species (Q^n species, where n is the number of bridging oxygens in an individual Si/Al-O polyhedra) increases while Q4 decreases. The proportions of O^1 , O^2 , and O^3 species first increase and then decrease with increasing water content. The diffusivity sequence for the supercritical SiO₂-H₂O fluids is $D_{\rm H} > D_{\rm O} > D_{\rm Si}$, and for the supercritical NaAlSi₃O₈-H₂O fluids, on the whole, is $D_{\text{Na}} \approx D_{\text{H}} > D_{\text{O}} > D_{\text{Al}} \approx D_{\text{Si}}$. The viscosities of the two systems decrease drastically at the beginning of the increase in water content, and then decrease slowly. We demonstrate that the exponential decrease in the viscosity of polymerized silicate melt with increasing water content is due to a sharp decrease in the proportion of Q⁴ species and increase in Si-O-H. The typical structural feature of supercritical fluid is that it contains a large amount of easy-to-flow partially polymerized or depolymerized protonated silicate units, which leads to a low viscosity while being enriched in silicate. This feature provides supercritical fluids the potential to transport elements that are hard to migrate in aqueous fluids or hydrous silicate melts, such as high field strength elements.

Keywords: Supercritical fluid, SiO₂-H₂O, NaAlSi₃O₈-H₂O, first principles, speciation, transport properties