A high-pressure structural transition of norsethite-type BaFe(CO₃)₂: Comparison with BaMg(CO₃)₂ and BaMn(CO₃)₂

CHENGCHENG HE^{1,2,†}, CHAOSHUAI ZHAO³, JIANJUN JIANG¹, PAN WANG¹, AND HEPING LI^{1,*,‡}

¹Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China

> ²University of Chinese Academy of Sciences, Beijing, 100049, China ³Center for High Pressure Science and Technology Advanced Research, Beijing 100193, China

ABSTRACT

Investigations on the phase stability of the norsethite-type family $[BaMg(CO_3)_2, BaMn(CO_3)_2, BaFe(CO_3)_2]$ under high-pressure conditions are of great significance for understanding the structure and metal cationic $(Mg^{2+}, Fe^{2+}, Mn^{2+})$ substitution mechanism in double divalent metal carbonates. The structural evolution and equation of state of BaFe(CO_3)_2 were studied at high pressure up to ~7.3 GPa by synchrotron X-ray diffraction (XRD) in diamond-anvil cell (DAC) in this study. BaFe(CO_3)_2 undergoes a reversible phase transition from $R\overline{3}m$ (α -phase) to C2/c (γ -phase) space groups at ~3.0 GPa. The fitted elastic parameters are $V_0 = 377.79(2)$ Å³ and $K_0 = 40.3(7)$ GPa for α -BaFe(CO_3)_2, $V_0 = 483.24(5)$ Å³ and $K_0 = 91.2(24)$ GPa for γ -BaFe(CO_3)_2 using second-order Birch-Murnaghan equation of state (BM2-EoS). Besides, the vibrational properties and structural stability of complete norsethite-type minerals were also investigated first by Raman spectroscopy combined with DAC up to 11.1 GPa. Similar structural phase transitions occur in BaMg(CO_3)_2, BaFe(CO_3)_2, BaMn(CO_3)_2 at 2.2–2.6, 2.6–3.7, and 3.7–4.1 GPa, respectively. The onset phase transition pressures of the norsethite-type family are much lower than that of dolomite-type Ca(Mg,Fe,Mn)(CO_3)_2 and calcite-type (Mg,Fe,Mn)CO_3 carbonates. These results provide new insights into the divalent cation substitution effects on the stability and structural evolution of carbonates under high-pressure conditions.

Keywords: Norsethite-type minerals, synchrotron X-ray diffraction, Raman spectroscopy, phase transition, diamond anvil cell; Earth Analogs for Martian Geological Materials and Processes