Ryabchikovite, CuMg(Si₂O₆), a new pyroxene group mineral, and some genetic features of natural anhydrous copper silicates

NADEZHDA V. SHCHIPALKINA^{1,*}, OLEG S. VERESHCHAGIN^{2,}[‡], IGOR V. PEKOV^{1,3}, DMITRY I. BELAKOVSKIY⁴, NATALIA N. KOSHLYAKOVA¹, VLADIMIR V. SHILOVSKIKH⁵, DMITRIY V. PANKIN⁶, SERGEY N. BRITVIN², FEDOR D. SANDALOV¹, AND EVGENY G. SIDOROV^{7,†}

¹Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991, Russia
²Institute of Earth Sciences, St. Petersburg State University, University Embankment 7/9, St. Petersburg, 199034, Russia
³Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygina str. 19, Moscow, 119991, Russia
⁴Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, Moscow, 119071, Russia
⁵Geomodel Resource Centre, St. Petersburg State University, Uliyanovskaya St. 1, St. Petersburg, 198504, Russia
⁶Center for Optical and Laser Materials Research, St. Petersburg State University, Uliyanovskaya St. 5, St. Petersburg, 198504, Russia
⁷Institute of Volcanology and Seismology, Far Eastern Branch of Russian Academy of Sciences, Piip Boulevard 9, Petropavlovsk-Kamchatsky, 683006, Russia

ABSTRACT

Ryabchikovite, ideally CuMg(Si₂O₆), a new pyroxene-group mineral (IMA No. 2021-011) was discovered in exhalations of the active Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. The associated minerals are diopside, hematite, cuprospinel, fluorophlogopite, anhydrite, johillerite, tilasite, and aphthitalite-group sulfates. Ryabchikovite forms thin (up to 25 µm), light brown to reddish-brown epitactic crusts on short-prismatic brownish-gray crystals of diopside (up to 0.5 mm). The new mineral is optically biaxial (+), $\alpha = 1.685(5)$, $\beta = 1.690(5)$, $\gamma = 1.703(4)$, and 2V (meas) = 60(15)°. The average chemical composition (wt%, electron microprobe data) is: MgO 18.05, CaO 0.77, CuO 26.46, ZnO 2.23, Al₂O₃ 0.93, Fe₂O₃ 1.89, SiO₂ 50.10, total 100.43. The empirical formula calculated based on 6 O atoms per formulas unit is (Mg_{1.05}Cu_{0.78}Zn_{0.06}Fe³⁺_{0.06}Ca_{0.03})(Si_{1.96}Al_{0.04}O₆). Electron backscattered diffraction and powder X-ray diffraction show that ryabchikovite is a Cu,Mg-ordered analog of clinoenstatite. Ryabchikovite adopts the space group *P*2₁/*c* and has the following unit-cell parameters: *a* = 9.731(9), *b* = 8.929(8), *c* = 5.221(4) Å, $\beta = 110.00(6)^{\circ}$, *V* = 426.3(7) Å³, and *Z* = 4. Ryabchikovite is named in honor of the outstanding Russian geochemist and petrologist Igor Dmitrievich Ryabchikov (1937–2017). Our studies reveal that copper analogs of rock-forming minerals could be found in fumarolic systems. Their crystallization does not require high temperatures or/and pressures (below 500 °C/Pa).

Keywords: Ryabchikovite, new mineral, pyroxene, fumarole sublimate, copper silicate, gas transport reaction, Tolbachik volcano