American Mineralogist, Volume 108, pages 1357-1367, 2023

Local structure determination of Zn-smectite

QI TAO^{1,2,*}, CHAOGANG XING³, SEUNGYEOL LEE^{4,5}, LONG YANG^{6,7}, QINGJIN ZENG^{1,8}, SHANGYING LI^{1,†}, TIANQI ZHANG^{1,8}, GUANGLIE Lv³, HONGPING HE^{1,2}, AND SRIDHAR KOMARNENI^{9,*}

 ¹CAS Key Laboratory of Mineralogy and Metallogeny and Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
²CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, P.R. China
³Analysis Center of Agrobiology and Environmental Sciences of Zhejiang University, Hangzhou, 310058, P.R. China
⁴USRA Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas 77058, U.S.A.
⁵Department of Earth and Environmental Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
⁶Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, U.S.A.
⁷School of Materials Science and Engineering, Tongji University, Shanghai 201804, P.R. China
⁸University of Chinese Academy of Sciences, Beijing 100049, P.R. China,
⁹Department of Ecosystem Science and Management and Materials Research Institute, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.

ABSTRACT

An aluminum-free zinc-bearing smectite (Zn-smectite) was synthesized under hydrothermal conditions, together with its magnesium substituted products. Its layer charge calculated by cation exchange capacity (CEC) is 117.4 mmol/100 g. Powder X-ray diffraction (XRD) revealed turbostratic stacking and showed that the d_{061} value of the Zn-smectite was >1.525 Å, indicating that it is trioctahedral. Its d_{001} value increased from ca.12.8 Å to ca. 16.0 Å after ethylene glycol (EG) saturation. The Zn-smectite did not irreversibly collapse after heating the Li⁺-saturated sample to 300 °C, suggesting that its layer charge was generated from octahedral-site vacancies (defects). The Zn-smectite resembles zincsilitelike minerals with interlayer Na⁺ and Zn²⁺. The intralayer structure of zincsilite was confirmed by pair distribution function (PDF) analysis, and the whole crystal structure was built and optimized by DFT calculation in the CASTEP module of the Materials Studio software. Synthetic zincsilite is triclinic, space group $P\overline{1}$, and its optimized unit-cell parameters are: a = 5.294 Å, b = 9.162 Å, c = 12.800 Å, $a = 90.788^\circ$, $\beta = 98.345^\circ$, and $\gamma = 90.399^\circ$.

Keywords: Smectite, layer charge, local structure, turbostratic disorder, PDF