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Abstract
The mineral apatite, Ca10(PO4)6(F,OH,Cl)2, incorporates sulfur (S) during crystallization from S-bearing 

hydrothermal fluids and silicate melts. Our previous studies of natural and experimental apatite demonstrate that 
the oxidation state of S in apatite varies systematically as a function of oxygen fugacity (fO2). The S oxidation 
states –1 and –2 were quantitatively identified in apatite crystallized from reduced, S-bearing hydrothermal fluids 
and silicate melts by using sulfur K-edge X-ray absorption near-edge structure spectroscopy (S-XANES) where 
S6+/ΣS in apatite increases from ~0 at FMQ-1 to ~1 at FMQ+2, where FMQ refers to the fayalite-magnetite-quartz 
fO2 buffer. In this study, we employ quantum-mechanical calculations to investigate the atomistic structure and 
energetics of S(-I) and S(-II) incorporated into apatite and elucidate incorporation mechanisms.

One S(-I) species (disulfide, S2
2−) and two S(-II) species (bisulfide, HS−, and sulfide, S2−) are investigated as 

possible forms of reduced S species in apatite. In configuration models for the simulation, these reduced S species 
are positioned along the c-axis channel, originally occupied by the column anions F, Cl, and OH in the end-member 
apatites. In the lowest-energy configurations of S-incorporated apatite, disulfide prefers to be positioned halfway 
between the mirror planes at z = 1/4 and 3/4. In contrast, the energy-optimized bisulfide is located slightly away 
from the mirror planes by ~0.04 fractional units in the c direction. The energetic stability of these reduced S spe-
cies as a function of position along the c-axis can be explained by the geometric and electrostatic constraints of 
the Ca and O planes that constitute the c-axis channel.

The thermodynamics of incorporation of disulfide and bisulfide into apatite is evaluated by using solid-state 
reaction equations where the apatite host and a solid S-bearing source phase (pyrite and Na2S2(s) for disulfide; 
troilite and Na2S(s) for sulfide) are the reactants, and the S-incorporated apatite and an anion sink phase are the 
products. The Gibbs free energy (ΔG) is lower for incorporation with Na-bearing phases than with Fe-bearing 
phases, which is attributed to the higher energetic stability of the iron sulfide minerals as a source phase for S 
than the sodium sulfide phases. The thermodynamics of incorporation of reduced S is also evaluated by using 
reaction equations involving dissolved disulfide and sulfide species [HnS2(aq)

(2–n) and HnS(aq)
(2–n); n = 0, 1, and 2] as a 

source phase. The ΔG of S-incorporation increases for fluorapatite and chlorapatite, and decreases for hydroxyl-
apatite, as these species are protonated (i.e., as n changes from 0 to 2). These thermodynamic results demonstrate 
that the presence of reduced S in apatite is primarily controlled by the chemistry of magmatic and hydrothermal 
systems where apatite forms (e.g., an abundance of Fe; solution pH). Ultimately, our methodology developed for 
evaluating the thermodynamics of S incorporation in apatite as a function of temperature, pH, and composition is 
highly applicable to predicting the trace and volatile element incorporation in minerals in a variety of geological 
systems. In addition to solid-solid and solid-liquid equilibria treated here at different temperatures and pH, the 
methodology can be easily extended to different pressure conditions by just performing the quantum-mechanical 
calculations at elevated pressures.
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Introduction
The behavior of sulfur (S) in earth systems depends on tem-

perature (T), pressure (P), oxygen (fO2), and sulfur (fS2) fugacity, 
and the composition (X) of the S-bearing fluid [i.e., hydrother-

mal or silicate melt (Carroll and Webster 2018; Webster et al. 
2011)]. Sulfur is a polyvalent element that can coexist in multiple
oxidation states (e.g., S6+, S4+, S0, S1−, and S2−) and serves as an
important ligand for the transportation and enrichment of metals 
(e.g., Cu, Fe, Ni, Ag, and Au) and critical elements (e.g., REEs) 
in magmatic-hydrothermal and hydrothermal systems (Piccoli and 
Candela 2002; Simon and Ripley 2011; Wan et al. 2021). In silicate
melts, sulfur is predominantly present as S6+ and/or S2− (Baker and 
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